|
[1] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learning techniques for autonomous driving,” Journal of Field Robotics, Nov 2019. [2] Abdel-Hamid, O., Mohamed, A.r., Jiang, H., Deng, L., Penn, G., Yu, D., 2014. Convolutional Neural Networks for Speech Recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing 22, 1533–1545. http://ieeexplore.ieee.org/document/6857341/, 10.1109/TASLP.2014.2339736. [3] A. K. Arslan, ¸S. Ya¸sar, and C. Çolak, “An intelligent system for the classification of lung cancer based on deep learning strategy,” in 2019 International Artificial Intelligence and Data Processing Symposium (IDAP), pp. 1–4, 2019. [4] R. Zanc, T. Cioara, and I. Anghel, “Forecasting financial markets using deep learning,” in 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP), pp. 459–466, 2019 [5] R. Mohammad, O. Vicente, R. Joseph, and F. Ali. 2016. Xnor-net: Imagenet classification using binary convolutional neural networks. In European Conference on Computer Vision. Springer, 525–542. [6] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze,“Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural networks,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138, Jan. 2017. [7] D. Kim, J. Ahn, and S. Yoo, “Zena: Zero-aware neural network accelerator,” Design & Test, 2018. [8] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas Chandra, and Hadi Esmaeilzadeh. Bit fusion: Bit-level dynamically composable architecture for accelerating deep neural networks. In Proceedings of the 45th Annual International Symposium on Computer Architecture, pages 764–775, 2018. [9] Eunhyeok Park, Dongyoung Kim, and Sungjoo Yoo. Energy-efficient neural network accelerator based on outlier-aware low-precision computation. In ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), pages 688–698, 2018 [10] Z. Song, B. Fu, F. Wu, Z. Jiang, L. Jiang, N. Jing, and X. Liang. 2020. DRQ: Dynamic region-based quantization for deep neural network acceleration. In ACM/IEEE 47th International Symposium on Computer Architecture (ISCA). 1010–1021. [11] H. Li, A. Kadav, I. Durdanovic, H. Samet, H.P. Graf, Pruning Filters for Efficient ConvNets, in: International Conference on Learning Representations (ICLR), 2017, https://doi.org/10.1029/2009GL038531. [12] Bengio, Y. Learning Deep Architectures for AI. Found. Trends Mach. Learn. 2009, 2, 1–127. [CrossRef] [13] Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applie.d to Document Recognition.Proc. IEEE 1998, 86, 2278–2324. [14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds., 2015. [15] Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems—Volume 1; Curran Associates Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105. [16] Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” in 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2015. [18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2015, pp. 1–9, https://doi.org/10.1109/ [19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. [20] T. Elsken, J.H. Metzen, F. Hutter, Neural Architecture Search, J. Mach. Learn. Res. 20 (2019) 63–77, http://link.springer.com/10.1007/978-3-030-05318- 5_3 [21] Wang, Junpeng, et al. “DeepVID: Deep Visual Interpretation and Diagnosis for Image Classifiers via Knowledge Distillation.” IEEE transactions on visualization and computer graphics 25.6 (2019): 2168–2180. CVPR.2015.7298594. [22] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov. 2015. Tensorizing neural networks. In Advances in Neural Information Processing Systems. 442–450. [23] C. Deng, F. Sun, X. Qian, J. Lin, Z. Wang, and B. Yuan, “TIE: Energy-efficient tensor train-based inference engine for deep neural network,” in Proc. 46th Int. Symp. Comput. Archit., 2019, pp. 264–278. [24] S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural networks with pruning, trained quantization and Huffman coding, in: International Conference on Learning Representations(ICLR), 2016, pp. 199–203. [25] S. Migacz, “NVIDIA 8-bit inference width TensorRT,” GPU Technology Conference, 2017. [26] Deng, B.L.; Li, G.; Han, S.; Shi, L.; Xie, Y. Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey. Proc. IEEE 2020, 108, 485–532. [27] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for efficient neural networks,” in Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1, NIPS’15, (Cambridge, MA, USA), p. 1135–1143, MIT Press, 2015. [28] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model compression. ICLR Workshop, 2018. [29] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online: http://www. cs. toronto. edu/kriz/cifar. html, 55, 2014. [30] Mart´ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), pages 265–283, 2016. [31] Li Deng. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Processing Magazine, 29(6):141–142, 2012.
|