跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 08:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃伯瑜
研究生(外文):Po Yu Huang
論文名稱:電針調節血管新生與腸道微生物群以改善膽管結紮大鼠的門脈高壓
論文名稱(外文):Electroacupuncture relieves portal hypertension by modulating vascular angiogenesis and gut microbiota in bile duct ligation rats
指導教授:李宗諺李宗諺引用關係
指導教授(外文):T. Y. Lee
口試委員:林昭庚劉耕豪呂彥禮廖庠睿林康平李宗諺
口試委員(外文):J. G. LinG. H. LiuY. L. LeuH. R. LiaoK. P. LinT. Y. Lee
口試日期:2023-07-19
學位類別:博士
校院名稱:長庚大學
系所名稱:臨床醫學研究所中醫組
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:99
中文關鍵詞:電針門靜脈高壓腸道微生物群血管病變血管新生足三里
外文關鍵詞:electroacupunctureportal hypertensiongut microbiotavasculopathyangiogenesisST36
相關次數:
  • 被引用被引用:0
  • 點閱點閱:33
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
慢性肝病可能導致肝纖維化並進展為肝衰竭,因而成為全球性的健康問題。在門靜脈高壓的發展過程中,肝內阻力的病理性增加和周邊血管張力的降低扮演著重要角色。而門靜脈高壓與腸道屏障減弱以及微生物多樣性降低相關,相互作用改變了炎症信號級聯。電針刺激可能改善炎症反應,限制動脈血管擴張和門靜脈壓力。
本研究探討了電針刺激在門靜脈高壓大鼠中可能的血流動力學效應的潛在機制。先對大鼠進行膽管結紮使其發生門靜脈高壓,再以2 Hz低頻電針刺激大鼠的下肢足三里穴,每天10分鐘持續7天。結果顯示電針刺激顯著降低了門靜脈壓力,增強了主動脈的最大收縮反應,並減弱了門靜脈高壓大鼠中的血管生成級聯。電針刺激降低了主動脈的血管生成信號級聯,表現為ICAM1,VCAM1,VEGFR1和TGFβR2水平的下調。此外,電針在膽管結紮誘發的門靜脈高壓模型中保留了claudin-1,occludin和ZO-1水平。此外,電針刺激對腸道的Bacteroidetes/Firmicutes比率具有明顯影響,並減少了促炎細胞激素。總結而言,電針刺激可能通過改善腸道屏障功能、調節血管反應和改善微生物組成,對門靜脈高壓大鼠產生有益的效果。
Chronic liver diseases might lead to liver fibrosis and may progress to liver failure, and become a global health issue. The abnormal rise in intrahepatic resistance and decline in peripheral vascular tone contribute to the development of portal hypertension (PHT). PHT has been associated with reduced microbial diversity and compromised intestinal barrier, resulting in altered inflammatory signaling pathways. Electroacupuncture (EA) has the potential to alleviate the inflammatory response, limit arterial vasodilation, and reduce portal pressure. The purpose of this study is to investigate and understand the underlying mechanisms that contribute to the hemodynamic effects of EA in rats with PHT. Rats were subjected to bile duct ligation (BDL) to induce PHT. BDL rats received low-frequency EA (2 Hz) at the acupuncture point ST36, 10 minutes once daily for 7 consecutive days. The results showed that EA markedly decreased portal pressure and enhanced maximum contractile responses in the aorta, while attenuating the angiogenesis cascade in PHT rats. EA down-regulated the levels of ICAM1, VCAM1, VEGFR1, and TGFβR2, which are key markers of aortic angiogenesis signaling. Moreover, EA preserved the levels of claudin-1, occludin, and ZO-1 in the BDL-induced PHT model, which are crucial for maintaining intestinal barrier integrity. Furthermore, EA demonstrated a positive effect on the ratio of Bacteroidetes to Firmicutes in the gut microbiota, while reducing pro-inflammatory cytokines. These findings highlight the potential role of EA in modulating the gut microbiota, potentially attenuating intestinal injury and contributing to improved vascular reactivity in rats with PHT.
Contents
Chinese Abstract i
English Abstract ii
Table of Contents iii
List of Figures v
Chapter 1 Introduction 1
1.1 Portal hypertension and fibrosis 2
1.2 Liver sinusoidal endothelial cells dysfunction and portal hypertension 3
1.3 Hepatic stellate cells and portal hypertension 4
1.4 Gut-liver axis and portal hypertension 15
1.5 Gut barrier function in portal hypertension 16
1.6 Gut microbiota and portal hypertension 20
1.7 Acupuncture and electroacupuncture 22
1.8 Acupuncture point ST36 24
Chapter 2 Purpose 26
Chapter 3 Materials and methods 27
3.1. Animals experiment design 27
3.2. Hemodynamic studies 28
3.3. In vitro vascular contractility study 29
3.4. Histopathology, immunohistochemistry, and immunofluorescence staining 30
3.5. Biochemical parameter analysis 31
3.6. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) assay 31
3.7. Western blot analysis 32
3.8. Gut microbiota sequencing and microbial analysis 33
3.9. Statistics 34
Chapter 4 Results 35
4.1. Hemodynamic parameters after EA treatment in BDL rats 35
4.2. Effect of EA on angiogenesis and inflammation levels in rats with PHT
35
4.3. EA enhances contractile responses in aorta and SMA rings 36
4.4. EA ameliorated intestinal barrier damage in BDL rats 36
4.5. EA altered gut microbial composition in BDL rats 37
4.6. EA altered gut microbial composition at class and order levels 38
4.7. EA altered gut microbial composition at family and genus levels 38
4.8. EA altered gut microbial composition at species level 39
4.9. EA altered html result and heatmap in the species-level microbial composition 39
Chapter 5 Discussion 41
Abbreviation 51
References 52
Figures 74
Appendix 89



List of Figures
Figure 1 Graphic of materials and methods 74
Figure 2 Effects of EA on hemodynamic values in a rat model of portal hypertension induced by bile duct ligation 75
Figure 3 Effects of EA on angiogenesis and inflammation levels in a rat model of portal hypertension induced by bile duct ligation 76
Figure 4 Effects of EA on contractile responses of aortic and superior mesenteric arterial in BDL rats 78
Figure 5 EA enhances tight junction in colon of BDL rats 79
Figure 6 Transcriptomic analysis of fecal samples from sham, BDL, and BDL + EA rats 80
Figure 7 EA alters the class and order-level microbial composition in BDL rat
82
Figure 8 EA alters the family and genus-level microbial composition in BDL rats 84
Figure 9 EA alters the species-level microbial composition in BDL rats 86
Figure 10 Interactive html result and heatmap representing the species-level microbial composition 87
Figure 11 Graphic abstract 88
Abdalla, A., Sheesha, A. A., Shokeir, M., El-Agrody, O., El-Regal, M. E., Abdel-Khalik, M. K., Freeman, K., Boneberg, A., & Hh, A. K. (2002). Serum intercellular adhesion molecule-I in children with chronic liver disease: relationship to disease activity. Dig Dis Sci, 47(6), 1206-1208. doi:10.1023/a:1015393708187

Abraldes, J. G., Iwakiri, Y., Loureiro-Silva, M., Haq, O., Sessa, W. C., & Groszmann, R. J. (2006). Mild increases in portal pressure upregulate vascular endothelial growth factor and endothelial nitric oxide synthase in the intestinal microcirculatory bed, leading to a hyperdynamic state. Am J Physiol Gastrointest Liver Physiol, 290(5), G980-987. doi:10.1152/ajpgi.00336.2005

Abraldes, J. G., Trebicka, J., Chalasani, N., D'Amico, G., Rockey, D. C., Shah, V. H., Bosch, J., & Garcia-Tsao, G. (2019). Prioritization of Therapeutic Targets and Trial Design in Cirrhotic Portal Hypertension. Hepatology, 69(3), 1287-1299. doi:10.1002/hep.30314

Albillos, A., de Gottardi, A., & Rescigno, M. (2020). The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol, 72(3), 558-577. doi:10.1016/j.jhep.2019.10.003

Alvarez-Silva, C., Schierwagen, R., Pohlmann, A., Magdaleno, F., Uschner, F. E., Ryan, P., Vehreschild, M., Claria J., Latz, E., Lelouvier, B., Arumugam, M., & Trebicka, J. (2019). Compartmentalization of Immune Response and Microbial Translocation in Decompensated Cirrhosis. Front Immunol, 10, 69. doi:10.3389/fimmu.2019.00069

Antonetti, D. A., Barber, A. J., Khin, S., Lieth, E., Tarbell, J. M., & Gardner, T. W. (1998). Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Penn State Retina Research Group. Diabetes, 47(12), 1953-1959. doi:10.2337/diabetes.47.12.1953

Assimakopoulos, S. F., Tsamandas, A. C., Tsiaoussis, G. I., Karatza, E., Triantos, C., Vagianos, C. E., Spiliopoulou, I., Keltezioti, V., Charonis, A., Nikolopoulou, V.N., Scopa, C.D., & Thomopoulos, K. C. (2012). Altered intestinal tight junctions' expression in patients with liver cirrhosis: a pathogenetic mechanism of intestinal hyperpermeability. Eur J Clin Invest, 42(4), 439-446. doi:10.1111/j.1365-2362.2011.02609.x

Baffy, G. (2019). Potential mechanisms linking gut microbiota and portal hypertension. Liver Int, 39(4), 598-609. doi:10.1111/liv.13986

Baird, A., & Durkin, T. (1986). Inhibition of endothelial cell proliferation by type beta-transforming growth factor: interactions with acidic and basic fibroblast growth factors. Biochem Biophys Res Commun, 138(1), 476-482. doi:10.1016/0006-291x(86)90305-0

Bajaj, J. S., & Khoruts, A. (2020). Microbiota changes and intestinal microbiota transplantation in liver diseases and cirrhosis. J Hepatol, 72(5), 1003-1027. doi:10.1016/j.jhep.2020.01.017

Bhunchet, E., & Fujieda, K. (1993). Capillarization and venularization of hepatic sinusoids in porcine serum-induced rat liver fibrosis: a mechanism to maintain liver blood flow. Hepatology, 18(6), 1450-1458. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7694897

Bockx, I., Verdrengh, K., Vander Elst, I., van Pelt, J., Nevens, F., Laleman, W., & Cassiman, D. (2012). High-frequency vagus nerve stimulation improves portal hypertension in cirrhotic rats. Gut, 61(4), 604-612. doi:10.1136/gutjnl-2011-301396

Bonaz, B., Bazin, T., & Pellissier, S. (2018). The Vagus Nerve at the Interface of the Microbiota-Gut-Brain Axis. Front Neurosci, 12, 49. doi:10.3389/fnins.2018.00049

Bosch, J., Berzigotti, A., Garcia-Pagan, J. C., & Abraldes, J. G. (2008). The management of portal hypertension: rational basis, available treatments and future options. J Hepatol, 48 Suppl 1, S68-92. doi:10.1016/j.jhep.2008.01.021

Byrne, G. J., Ghellal, A., Iddon, J., Blann, A. D., Venizelos, V., Kumar, S., Howell, A., & Bundred, N. J. (2000). Serum soluble vascular cell adhesion molecule-1: role as a surrogate marker of angiogenesis. J Natl Cancer Inst, 92(16), 1329-1336. doi:10.1093/jnci/92.16.1329

Chang, Z. Y., Chen, C. C., Liu, H. M., Yeh, Y. C., Lin, T. Y., Lee, T. Y., & Huang, T. H. (2019). Positive Effects of Ger-Gen-Chyn-Lian-Tang on Cholestatic Liver Fibrosis in Bile Duct Ligation-Challenged Mice. Int J Mol Sci, 20(17). doi:10.3390/ijms20174181

Chehade, J. M., Haas, M. J., & Mooradian, A. D. (2002). Diabetes-related changes in rat cerebral occludin and zonula occludens-1 (ZO-1) expression. Neurochem Res, 27(3), 249-252. doi:10.1023/a:1014892706696

Chen, L., Gu, T., Li, B., Li, F., Ma, Z., Zhang, Q., Cai, X., and Lu, L. (2019). Delta-like ligand 4/DLL4 regulates the capillarization of liver sinusoidal endothelial cell and liver fibrogenesis. Biochim Biophys Acta Mol Cell Res, 1866(10), 1663-1675. doi:10.1016/j.bbamcr.2019.06.011

Chen, Y. S., Wen, C. K., Liu, G. H., & Lee, T. Y. (2022). Electroacupuncture attenuates vascular hyporeactivity in a rat model of portal hypertension induced by bile duct ligation. Acupunct Med, 40(1), 68-77. doi:10.1177/09645284211039230

Cook-Mills, J. M., & Deem, T. L. (2005). Active participation of endothelial cells in inflammation. J Leukoc Biol, 77(4), 487-495. doi:10.1189/jlb.0904554

Corpechot, C., Barbu, V., Wendum, D., Kinnman, N., Rey, C., Poupon, R., Housset, C., & Rosmorduc, O. (2002). Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology, 35(5), 1010-1021. doi:10.1053/jhep.2002.32524

Culotta, E., & Koshland, D. E., Jr. (1992). NO news is good news. Science, 258(5090), 1862-1865. doi:10.1126/science.1361684

Dümcke, C. W., & Møller, S. (2008). Autonomic dysfunction in cirrhosis and portal hypertension. Scand J Clin Lab Invest, 68(6), 437-447. doi:10.1080/00365510701813096

Dadhich, S., Goswami, A., Jain, V. K., Gahlot, A., Kulamarva, G., & Bhargava, N. (2014). Cardiac dysfunction in cirrhotic portal hypertension with or without ascites. Ann Gastroenterol, 27(3), 244-249.

De Gottardi, A., Rautou, P. E., Schouten, J., Rubbia-Brandt, L., Leebeek, F., Trebicka, J., Murad, S.D., Vilgrain, V., Hernandez-Gea, V., Nery, F., Plessier, A., Berzigotti, A., Bioulac-Sage, P., Primignani, M., Semela, D., Elkrief, L., Bedossa, P., Valla, D., & Garcia-Pagan, J. C. (2019). Porto-sinusoidal vascular disease: proposal and description of a novel entity. Lancet Gastroenterol Hepatol, 4(5), 399-411. doi:10.1016/s2468-1253(19)30047-0

de Kort, S., Keszthelyi, D., & Masclee, A. A. (2011). Leaky gut and diabetes mellitus: what is the link? Obes Rev, 12(6), 449-458. doi:10.1111/j.1467-789X.2010.00845.x

DeLeve, L. D., Wang, X., Hu, L., McCuskey, M. K., & McCuskey, R. S. (2004). Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation. Am J Physiol Gastrointest Liver Physiol, 287(4), G757-763. doi:10.1152/ajpgi.00017.2004

Dewidar, B., Meyer, C., Dooley, S., & Meindl-Beinker, A. N. (2019). TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis-Updated 2019. Cells, 8(11). doi:10.3390/cells8111419

Diaz-Sanchez, A., Matilla, A., Nuñez, O., Rincon, D., Lorente, R., Lo Iacono, O., Merino, B., Hernando, A., Campos, R., Clemente, G., & Bañares, R. (2013). Serum level of soluble vascular cell adhesion molecule in patients with hepatocellular carcinoma and its association with severity of liver disease. Ann Hepatol, 12(2), 236-247.

Ding, Z. Y., Jin, G. N., Liang, H. F., Wang, W., Chen, W. X., Datta, P. K., Zhang, M.Z., Zhang, B., & Chen, X. P. (2013). Transforming growth factor β induces expression of connective tissue growth factor in hepatic progenitor cells through Smad independent signaling. Cell Signal, 25(10), 1981-1992. doi:10.1016/j.cellsig.2013.05.027

Dissen, G. A., Lara, H. E., Fahrenbach, W. H., Costa, M. E., & Ojeda, S. R. (1994). Immature rat ovaries become revascularized rapidly after autotransplantation and show a gonadotropin-dependent increase in angiogenic factor gene expression. Endocrinology, 134(3), 1146-1154. doi:10.1210/endo.134.3.8119153

Dooley, S., Delvoux, B., Lahme, B., Mangasser-Stephan, K., & Gressner, A. M. (2000). Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology, 31(5), 1094-1106. doi:10.1053/he.2000.6126

Dooley, S., Hamzavi, J., Breitkopf, K., Wiercinska, E., Said, H. M., Lorenzen, J., Ten Dijke, P., & Gressner, A. M. (2003). Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology, 125(1), 178-191. doi:10.1016/s0016-5085(03)00666-8

Dooley, S., Hamzavi, J., Ciuclan, L., Godoy, P., Ilkavets, I., Ehnert, S., Ueberham, E., Gebhardt, R., Kanzler, S., Geier, A., Breitkopf, K., Wen, H., & Mertens, P. R. (2008). Hepatocyte-specific Smad7 expression attenuates TGF-beta-mediated fibrogenesis and protects against liver damage. Gastroenterology, 135(2), 642-659. doi:10.1053/j.gastro.2008.04.038

Dooley, S., & ten Dijke, P. (2012). TGF-β in progression of liver disease. Cell Tissue Res, 347(1), 245-256. doi:10.1007/s00441-011-1246-y

Du Plessis, J., Vanheel, H., Janssen, C. E., Roos, L., Slavik, T., Stivaktas, P. I., Nieuwoudt, M., Van Wyk, S.G., Vieira, W., Pretorius, E., Beukes, M., Farré, R., Tack, J., Laleman, W., Fevery, J., Nevens, F., Roskams, T., & Van der Merwe, S. W. (2013). Activated intestinal macrophages in patients with cirrhosis release NO and IL-6 that may disrupt intestinal barrier function. J Hepatol, 58(6), 1125-1132. doi:10.1016/j.jhep.2013.01.038

Eisenstein, M. (2016). Microbiome: Bacterial broadband. Nature, 533(7603), S104-106. doi:10.1038/533S104a

Fan, H., Yang, J. W., Wang, L. Q., Huang, J., Lin, L. L., Wang, Y., Zhang, N., & Liu, C. Z. (2020). The Hypotensive Role of Acupuncture in Hypertension: Clinical Study and Mechanistic Study. Front Aging Neurosci, 12, 138. doi:10.3389/fnagi.2020.00138

Fausto, N., Mead, J. E., Braun, L., Thompson, N. L., Panzica, M., Goyette, M., Bell, G.I., & Shank, P. R. (1986). Proto-oncogene expression and growth factors during liver regeneration. Symp Fundam Cancer Res, 39, 69-86.
Fernandez, M. (2015). Molecular pathophysiology of portal hypertension. Hepatology, 61(4), 1406-1415. doi:10.1002/hep.27343

Fernandez, M., Mejias, M., Garcia-Pras, E., Mendez, R., Garcia-Pagan, J. C., & Bosch, J. (2007). Reversal of portal hypertension and hyperdynamic splanchnic circulation by combined vascular endothelial growth factor and platelet-derived growth factor blockade in rats. Hepatology, 46(4), 1208-1217. doi:10.1002/hep.21785

Fernandez, M., Vizzutti, F., Garcia-Pagan, J. C., Rodes, J., & Bosch, J. (2004). Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology, 126(3), 886-894. doi:10.1053/j.gastro.2003.12.012

Fernández, M., Semela, D., Bruix, J., Colle, I., Pinzani, M., & Bosch, J. (2009). Angiogenesis in liver disease. J Hepatol, 50(3), 604-620. doi:10.1016/j.jhep.2008.12.011

Fogleman, C., & McKenna, K. (2022). Integrative Health Strategies to Manage Chronic Pain. Prim Care, 49(3), 469-483. doi:10.1016/j.pop.2022.01.001

Fouts, D. E., Torralba, M., Nelson, K. E., Brenner, D. A., & Schnabl, B. (2012). Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J Hepatol, 56(6), 1283-1292. doi:10.1016/j.jhep.2012.01.019

Fràter-Schröder, M., Müller, G., Birchmeier, W., & Böhlen, P. (1986). Transforming growth factor-beta inhibits endothelial cell proliferation. Biochem Biophys Res Commun, 137(1), 295-302. doi:10.1016/0006-291x(86)91209-x

Funyu, J., Mochida, S., Inao, M., Matsui, A., & Fujiwara, K. (2001). VEGF can act as vascular permeability factor in the hepatic sinusoids through upregulation of porosity of endothelial cells. Biochem Biophys Res Commun, 280(2), 481-485. doi:10.1006/bbrc.2000.4148

Furuse, M., Hirase, T., Itoh, M., Nagafuchi, A., Yonemura, S., Tsukita, S., & Tsukita, S. (1993). Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol, 123(6 Pt 2), 1777-1788. doi:10.1083/jcb.123.6.1777

Furuta, K., Guo, Q., Pavelko, K. D., Lee, J. H., Robertson, K. D., Nakao, Y., Melek, J., Shah, V.H., Hirsova, P., & Ibrahim, S. H. (2021). Lipid-induced endothelial vascular cell adhesion molecule 1 promotes nonalcoholic steatohepatitis pathogenesis. J Clin Invest, 131(6). doi:10.1172/jci143690

Garcia-Tsao, G., Albillos, A., Barden, G. E., & West, A. B. (1993). Bacterial translocation in acute and chronic portal hypertension. Hepatology, 17(6), 1081-1085.

Garcia-Tsao, G., Lee, F. Y., Barden, G. E., Cartun, R., & West, A. B. (1995). Bacterial translocation to mesenteric lymph nodes is increased in cirrhotic rats with ascites. Gastroenterology, 108(6), 1835-1841. doi:10.1016/0016-5085(95)90147-7

Gedgaudas, R., Bajaj, J. S., Skieceviciene, J., Varkalaite, G., Jurkeviciute, G., Gelman, S., Valantiene, I., Zykus, R., Pranculis, A., Bang, C., Franke, A., Schramm, C., & Kupcinskas, J. (2022). Circulating microbiome in patients with portal hypertension. Gut Microbes, 14(1), 2029674. doi:10.1080/19490976.2022.2029674

Genescà, J., Martí, R., Rojo, F., Campos, F., Peribáñez, V., Gónzalez, A., Castells, L., Ruiz-Marcellán, C., Margarit, C., Esteban, R., Guardia, J., & Segura, R. (2003). Increased tumour necrosis factor alpha production in mesenteric lymph nodes of cirrhotic patients with ascites. Gut, 52(7), 1054-1059. doi:10.1136/gut.52.7.1054

Ghosh, S., Whitley, C. S., Haribabu, B., & Jala, V. R. (2021). Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell Mol Gastroenterol Hepatol, 11(5), 1463-1482. doi:10.1016/j.jcmgh.2021.02.007

Gill, S. R., Pop, M., Deboy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., Gordon, J. I., Relman, D. A., Fraser-Liggett, C. M., & Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. Science, 312(5778), 1355-1359. doi:10.1126/science.1124234

Girón-González, J. A., Martínez-Sierra, C., Rodriguez-Ramos, C., Rendón, P., Macías, M. A., Fernández-Gutiérrez, C., Díaz, F., & Martín-Herrera, L. (2005). Adhesion molecules as a prognostic marker of liver cirrhosis. Scand J Gastroenterol, 40(2), 217-224. doi:10.1080/00365520510011470

González-Mariscal, L., Betanzos, A., & Avila-Flores, A. (2000). MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol, 11(4), 315-324. doi:10.1006/scdb.2000.0178

Greenlee, H., DuPont-Reyes, M.J., Balneaves, L.G., Carlson, L.E., Cohen, M.R., Deng, G., Johnson, J.A., Mumber, M., Seely, D., Zick, S. M., Boyce, L.M., & Tripathy, D. (2017). Clinical practice guidelines on the evidence-based use of integrative therapies during and after breast cancer treatment. CA Cancer J Clin, 67(3), 194-232. doi:10.3322/caac.21397

Guillemot, L., Paschoud, S., Pulimeno, P., Foglia, A., & Citi, S. (2008). The cytoplasmic plaque of tight junctions: a scaffolding and signaling center. Biochim Biophys Acta, 1778(3), 601-613. doi:10.1016/j.bbamem.2007.09.032

Hayashi, I., & Carr, B. I. (1985). DNA synthesis in rat hepatocytes: inhibition by a platelet factor and stimulation by an endogenous factor. J Cell Physiol, 125(1), 82-90. doi:10.1002/jcp.1041250111

Heinemann, U., & Schuetz, A. (2019). Structural Features of Tight-Junction Proteins. Int J Mol Sci, 20(23). doi:10.3390/ijms20236020

Hellerbrand, C., Jobin, C., Licato, L. L., Sartor, R. B., & Brenner, D. A. (1998). Cytokines induce NF-kappaB in activated but not in quiescent rat hepatic stellate cells. Am J Physiol, 275(2), G269-278. doi:10.1152/ajpgi.1998.275.2.G269

Hennenberg, M., Trebicka, J., Stark, C., Kohistani, A. Z., Heller, J., & Sauerbruch, T. (2009). Sorafenib targets dysregulated Rho kinase expression and portal hypertension in rats with secondary biliary cirrhosis. Br J Pharmacol, 157(2), 258-270. doi:10.1111/j.1476-5381.2009.00158.x

Herbst, H., Wege, T., Milani, S., Pellegrini, G., Orzechowski, H. D., Bechstein, W. O., Neuhaus, P., Gressner, A.M., & Schuppan, D. (1997). Tissue inhibitor of metalloproteinase-1 and -2 RNA expression in rat and human liver fibrosis. Am J Pathol, 150(5), 1647-1659.

Horn, T., Christoffersen, P., & Henriksen, J. H. (1987). Alcoholic liver injury: defenestration in noncirrhotic livers--a scanning electron microscopic study. Hepatology, 7(1), 77-82. doi:10.1002/hep.1840070117

Hu, S., Du, M. H., Luo, H. M., Wang, H., Lv, Y., Ma, L., Lin, Z. L., Shi, X., Gaischek, I., Wang, L., & Litscher, G. (2013). Electroacupuncture at Zusanli (ST36) Prevents Intestinal Barrier and Remote Organ Dysfunction following Gut Ischemia through Activating the Cholinergic Anti-Inflammatory-Dependent Mechanism. Evid Based Complement Alternat Med. 2013, 592127. doi: 10.1155/2013/592127. Epub 2013 Apr 4. PMID: 23662144; PMCID: PMC3638586.

Huang, Y. T., Wang, G. F., Yang, M. C., Chang, S. P., Lin, H. C., & Hong, C. Y. (1996). Vascular hyporesponsiveness in aorta from portal hypertensive rats: possible sites of involvement. J Pharmacol Exp Ther, 278(2), 535-541.

Inagaki, Y., Truter, S., Greenwel, P., Rojkind, M., Unoura, M., Kobayashi, K., & Ramirez, F. (1995). Regulation of the alpha 2(I) collagen gene transcription in fat-storing cells derived from a cirrhotic liver. Hepatology, 22(2), 573-579.

Iruela-Arispe, M. L., & Sage, E. H. (1993). Endothelial cells exhibiting angiogenesis in vitro proliferate in response to TGF-beta 1. J Cell Biochem, 52(4), 414-430. doi:10.1002/jcb.240520406

Itoh, M., & Bissell, M. J. (2003). The organization of tight junctions in epithelia: implications for mammary gland biology and breast tumorigenesis. J Mammary Gland Biol Neoplasia, 8(4), 449-462. doi:10.1023/b:Jomg.0000017431.45314.07

Iwakiri, Y., & Kim, M. Y. (2015). Nitric oxide in liver diseases. Trends Pharmacol Sci, 36(8), 524-536. doi:10.1016/j.tips.2015.05.001

Iwakiri, Y., & Trebicka, J. (2021). Portal hypertension in cirrhosis: Pathophysiological mechanisms and therapy. JHEP Rep, 3(4), 100316. doi:10.1016/j.jhepr.2021.100316

Iwakiri, Y., Tsai, M. H., McCabe, T. J., Gratton, J. P., Fulton, D., Groszmann, R. J., & Sessa, W. C. (2002). Phosphorylation of eNOS initiates excessive NO production in early phases of portal hypertension. Am J Physiol Heart Circ Physiol, 282(6), H2084-2090. doi:10.1152/ajpheart.00675.2001

Jansen, C., Chatterjee, D. A., Thomsen, K. L., Al-Kassou, B., Sawhney, R., Jones, H., Gallego-Leon, A., Lehmann, J., Pohlmann, A., Nickenig, G., Strassburg, C.P., Andrié, R., Jalan, R., Linhart, M., Trebicka, J., & Mookerjee, R. P. (2019). Significant reduction in heart rate variability is a feature of acute decompensation of cirrhosis and predicts 90-day mortality. Aliment Pharmacol Ther, 50(5), 568-579. doi:10.1111/apt.15365

Jansen, C., Möller, P., Meyer, C., Kolbe, C. C., Bogs, C., Pohlmann, A., Schierwagen, R., Praktiknjo, M., Abdullah, Z., Lehmann, J., Thomas, D., Strassburg, C.P., Latz, E., Mueller, S., Rössle, M., & Trebicka, J. (2018). Increase in liver stiffness after transjugular intrahepatic portosystemic shunt is associated with inflammation and predicts mortality. Hepatology, 67(4), 1472-1484. doi:10.1002/hep.29612

Jurzik, L., Froh, M., Straub, R. H., Schölmerich, J., & Wiest, R. (2005). Up-regulation of nNOS and associated increase in nitrergic vasodilation in superior mesenteric arteries in pre-hepatic portal hypertension. J Hepatol, 43(2), 258-265. doi:10.1016/j.jhep.2005.02.036

Königshofer, P., Hofer, B. S., Brusilovskaya, K., Simbrunner, B., Petrenko, O., Wöran, K., Herac, M., Stift, J., Lampichler, K., Timelthaler, G., Bauer, D., Hartl, L., Robl, B., Sibila, M., Podesser, B.K., Oberhuber, G., Schwabl, P., Mandorfer, M., Trauner, M., & Reiberger, T. (2022). Distinct structural and dynamic components of portal hypertension in different animal models and human liver disease etiologies. Hepatology, 75(3), 610-622. doi:10.1002/hep.32220

Kanzler, S., Lohse, A. W., Keil, A., Henninger, J., Dienes, H. P., Schirmacher, P., Rose-John, S., zum Büschenfelde, K.H., & Blessing, M. (1999). TGF-beta1 in liver fibrosis: an inducible transgenic mouse model to study liver fibrogenesis. Am J Physiol, 276(4), G1059-1068. doi:10.1152/ajpgi.1999.276.4.G1059
Kelly, R. B. (2009). Acupuncture for pain. Am Fam Physician, 80(5), 481-484.

Khan, S., Moore, R. J., Stanley, D., & Chousalkar, K. K. (2020). The Gut Microbiota of Laying Hens and Its Manipulation with Prebiotics and Probiotics To Enhance Gut Health and Food Safety. Appl Environ Microbiol, 86(13). doi:10.1128/aem.00600-20

Kisseleva, T., & Brenner, D. A. (2007). Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. J Gastroenterol Hepatol, 22 Suppl 1, S73-78. doi:10.1111/j.1440-1746.2006.04658.x

Kisseleva, T., & Brenner, D. A. (2011). Anti-fibrogenic strategies and the regression of fibrosis. Best Pract Res Clin Gastroenterol, 25(2), 305-317. doi:10.1016/j.bpg.2011.02.011

Knittel, T., Fellmer, P., & Ramadori, G. (1996). Gene expression and regulation of plasminogen activator inhibitor type I in hepatic stellate cells of rat liver. Gastroenterology, 111(3), 745-754. doi:10.1053/gast.1996.v111.pm8780581

Koch, A. E., Halloran, M. M., Haskell, C. J., Shah, M. R., & Polverini, P. J. (1995). Angiogenesis mediated by soluble forms of E-selectin and vascular cell adhesion molecule-1. Nature, 376(6540), 517-519. doi:10.1038/376517a0

Komers, R., & Cooper, M. E. (1996). Renal sodium handling in experimental diabetes: role of NO. Nephrol Dial Transplant, 11(11), 2170-2177. doi:10.1093/oxfordjournals.ndt.a027133

Kostallari, E., & Shah, V. H. (2019). Pericytes in the Liver. Adv Exp Med Biol, 1122, 153-167. doi:10.1007/978-3-030-11093-2_9

Krupinski, J., Kumar, P., Kumar, S., & Kaluza, J. (1996). Increased expression of TGF-beta 1 in brain tissue after ischemic stroke in humans. Stroke, 27(5), 852-857. doi:10.1161/01.str.27.5.852

Lai, F., Ren, Y., Lai, C., Chen, R., Yin, X., Tan, C., Li, J., Yang, C., Liang, G., Li, J., & Zeng, R. (2020)
Acupuncture at Zusanli (ST36) for Experimental Sepsis: A Systematic Review. Evid Based Complement Alternat Med, 2020, 3620741. doi: 10.1155/2020/3620741.

Lancet. (2009). What is health? The ability to adapt. Lancet, 373(9666), 781. doi:10.1016/S0140-6736(09)60456-6

Langer, D. A., & Shah, V. H. (2006). Nitric oxide and portal hypertension: interface of vasoreactivity and angiogenesis. J Hepatol, 44(1), 209-216. doi:10.1016/j.jhep.2005.10.004

Lee, J. S., Semela, D., Iredale, J., & Shah, V. H. (2007). Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte? Hepatology, 45(3), 817-825. doi:10.1002/hep.21564

Li, L., Wang, J. Y., Yang, C. Q., & Jiang, W. (2012). Effect of RhoA on transforming growth factor β1-induced rat hepatic stellate cell migration. Liver Int, 32(7), 1093-1102. doi:10.1111/j.1478-3231.2012.02809.x

Li, W., & Olshansky, B. (2011). Inflammatory cytokines and nitric oxide in heart failure and potential modulation by vagus nerve stimulation. Heart Fail Rev, 16(2), 137-145. doi:10.1007/s10741-010-9184-4

Liu, G. H., Liu, H. M., Chen, Y. S., & Lee, T. Y. (2020). Effect of Electroacupuncture in Mice with Dextran Sulfate Sodium-Induced Colitis and the Influence of Gut Microbiota. Evid Based Complement Alternat Med, 2020, 2087903. doi:10.1155/2020/2087903

Liu, G. H., Tsai, M. Y., Chang, G. J., Wu, C. M., Lin, S. K., Chen, Y. S., & Lee, T. Y. (2018). Safety Assessment of the Auto Manipulation Device for Acupuncture in Sprague-Dawley Rats: Preclinical Evaluation of the Prototype. Evid Based Complement Alternat Med, 2018, 5708393. doi:10.1155/2018/5708393

Liu, G. H., Zhuo, X. C., Huang, Y. H., Liu, H. M., Wu, R. C., Kuo, C. J., Chen, N.H., Chuang, L.P., Lin, S.W., Chen, Y.L., Yang, H.Y., & Lee, T. Y. (2022). Alterations in Gut Microbiota and Upregulations of VPAC2 and Intestinal Tight Junctions Correlate with Anti-Inflammatory Effects of Electroacupuncture in Colitis Mice with Sleep Fragmentation. Biology (Basel), 11(7). doi:10.3390/biology11070962

Liu, S., Wang, Z., Su, Y., Qi, L., Yang, W., Fu, M., Jing, X., Wang, Y., & Ma, Q. (2021). A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis. Nature, 598(7882), 641-645. doi:10.1038/s41586-021-04001-4

Liu, Y., Liu, H., Meyer, C., Li, J., Nadalin, S., Königsrainer, A., Weng, H., Dooley, S., & Ten Dijke, P. (2013). Transforming growth factor-β (TGF-β)-mediated connective tissue growth factor (CTGF) expression in hepatic stellate cells requires Stat3 signaling activation. J Biol Chem, 288(42), 30708-30719. doi:10.1074/jbc.M113.478685

Lo Iacono, O., García-Monzón, C., Almasio, P., García-Buey, L., Craxí, A., & Moreno-Otero, R. (1998). Soluble adhesion molecules correlate with liver inflammation and fibrosis in chronic hepatitis C treated with interferon-alpha. Aliment Pharmacol Ther, 12(11), 1091-1099. doi:10.1046/j.1365-2036.1998.00412.x

Lo Iacono, O., Rincón, D., Hernando, A., Ripoll, C., Catalina, M. V., Salcedo, M., Clemente, G., Gomez, J., Nuñez, O., Matilla, A., & Bañares, R. (2008). Serum levels of soluble vascular cell adhesion molecule are related to hyperdynamic circulation in patients with liver cirrhosis. Liver Int, 28(8), 1129-1135. doi:10.1111/j.1478-3231.2008.01763.x

Martin, P. Y., Ginès, P., & Schrier, R. W. (1998). Nitric oxide as a mediator of hemodynamic abnormalities and sodium and water retention in cirrhosis. N Engl J Med, 339(8), 533-541. doi:10.1056/nejm199808203390807

May, D., Djonov, V., Zamir, G., Bala, M., Safadi, R., Sklair-Levy, M., & Keshet, E. (2011). A transgenic model for conditional induction and rescue of portal hypertension reveals a role of VEGF-mediated regulation of sinusoidal fenestrations. PLoS One, 6(7), e21478. doi:10.1371/journal.pone.0021478

McGuire, R. F., Bissell, D. M., Boyles, J., & Roll, F. J. (1992). Role of extracellular matrix in regulating fenestrations of sinusoidal endothelial cells isolated from normal rat liver. Hepatology, 15(6), 989-997. doi:10.1002/hep.1840150603

Mederacke, I., Hsu, C. C., Troeger, J. S., Huebener, P., Mu, X., Dapito, D. H., Pradere, J.P., & Schwabe, R. F. (2013). Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun, 4, 2823. doi:10.1038/ncomms3823

Mejias, M., Garcia-Pras, E., Tiani, C., Miquel, R., Bosch, J., & Fernandez, M. (2009). Beneficial effects of sorafenib on splanchnic, intrahepatic, and portocollateral circulations in portal hypertensive and cirrhotic rats. Hepatology, 49(4), 1245-1256. doi:10.1002/hep.22758

Meng, X., Guo, X., Zhang, J., Moriya, J., Kobayashi, J., Yamaguchi, R., & Yamada, S. (2019). Acupuncture on ST36, CV4 and KI1 Suppresses the Progression of Methionine- and Choline-Deficient Diet-Induced Nonalcoholic Fatty Liver Disease in Mice. Metabolites, 9(12):299. doi: 10.3390/metabo9120299. PMID: 31835339; PMCID: PMC6949943.

Mitten, E. K., & Baffy, G. (2022). Microbiota transplantation in portal hypertension: promises and pitfalls. Clin Sci (Lond), 136(6), 425-429. doi:10.1042/cs20220029

Mogensen, C. E. (1971). Glomerular filtration rate and renal plasma flow in short-term and long-term juvenile diabetes mellitus. Scand J Clin Lab Invest, 28(1), 91-100. doi:10.3109/00365517109090667

Mok, K. W., Mruk, D. D., & Cheng, C. Y. (2013). Regulation of blood-testis barrier (BTB) dynamics during spermatogenesis via the "Yin" and "Yang" effects of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2. Int Rev Cell Mol Biol, 301, 291-358. doi:10.1016/b978-0-12-407704-1.00006-3

Molina-Jijón, E., Rodríguez-Muñoz, R., Namorado Mdel, C., Pedraza-Chaverri, J., & Reyes, J. L. (2014). Oxidative stress induces claudin-2 nitration in experimental type 1 diabetic nephropathy. Free Radic Biol Med, 72, 162-175. doi:10.1016/j.freeradbiomed.2014.03.040

Morales-Ruiz, M., Jiménez, W., Pérez-Sala, D., Ros, J., Leivas, A., Lamas, S., Rivera, F., & Arroyo, V. (1996). Increased nitric oxide synthase expression in arterial vessels of cirrhotic rats with ascites. Hepatology, 24(6), 1481-1486. doi:10.1053/jhep.1996.v24.pm0008938184

Morgan, X. C., Tickle, T. L., Sokol, H., Gevers, D., Devaney, K. L., Ward, D. V., Reyes, J. A., Shah, S. A., LeLeiko, N., Snapper, S. B., Bousvaros, A., Korzenik, J., Sands, B. E., Xavier, R. J., & Huttenhower, C. (2012). Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol, 13(9), R79. doi:10.1186/gb-2012-13-9-r79

Moustakas, A., & Kardassis, D. (1998). Regulation of the human p21/WAF1/Cip1 promoter in hepatic cells by functional interactions between Sp1 and Smad family members. Proc Natl Acad Sci U S A, 95(12), 6733-6738. doi:10.1073/pnas.95.12.6733

Muñoz, L., Albillos, A., Nieto, M., Reyes, E., Lledó, L., Monserrat, J., Sanz, E., de la Hera, A., & Alvarez-Mon, M. (2005). Mesenteric Th1 polarization and monocyte TNF-alpha production: first steps to systemic inflammation in rats with cirrhosis. Hepatology, 42(2), 411-419. doi:10.1002/hep.20799

Muñoz, L., Borrero, M. J., Úbeda, M., Conde, E., Del Campo, R., Rodríguez-Serrano, M., Lario, M., Sánchez-Díaz, A. M., Pastor, O., Díaz, D., García-Bermejo, L., Monserrat, J., Álvarez-Mon, M., & Albillos, A. (2019). Intestinal Immune Dysregulation Driven by Dysbiosis Promotes Barrier Disruption and Bacterial Translocation in Rats With Cirrhosis. Hepatology, 70(3), 925-938. doi:10.1002/hep.30349

Mukherji, A., Kobiita, A., Ye, T., & Chambon, P. (2013). Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell, 153(4), 812-827. doi:10.1016/j.cell.2013.04.020

Najafian, B., & Mauer, M. (2009). Progression of diabetic nephropathy in type 1 diabetic patients. Diabetes Res Clin Pract, 83(1), 1-8. doi:10.1016/j.diabres.2008.08.024

Nakamura, T., Tomita, Y., Hirai, R., Yamaoka, K., Kaji, K., & Ichihara, A. (1985). Inhibitory effect of transforming growth factor-beta on DNA synthesis of adult rat hepatocytes in primary culture. Biochem Biophys Res Commun, 133(3), 1042-1050. doi:10.1016/0006-291x(85)91241-0

Nie, Y., Liu, Q., Zhang, W., Wan, Y., Huang, C., & Zhu, X. (2021). Ursolic acid reverses liver fibrosis by inhibiting NOX4/NLRP3 inflammasome pathways and bacterial dysbiosis. Gut Microbes, 13(1), 1972746. doi:10.1080/19490976.2021.1972746

Nieto, N., Dominguez-Rosales, J. A., Fontana, L., Salazar, A., Armendariz-Borunda, J., Greenwel, P., & Rojkind, M. (2001). Rat hepatic stellate cells contribute to the acute-phase response with increased expression of alpha1(I) and alpha1(IV) collagens, tissue inhibitor of metalloproteinase-1, and matrix-metalloproteinase-2 messenger RNAs. Hepatology, 33(3), 597-607. doi:10.1053/jhep.2001.22520

Odenwald, M. A., Choi, W., Buckley, A., Shashikanth, N., Joseph, N. E., Wang, Y., Warren, M. H., Buschmann, M. M., Pavlyuk, R., Hildebrand, J., Margolis, B., Fanning, A. S., & Turner, J. R. (2017). ZO-1 interactions with F-actin and occludin direct epithelial polarization and single lumen specification in 3D culture. J Cell Sci, 130(1), 243-259. doi:10.1242/jcs.188185

Oh J. E., & Kim, S. N. (2022) Anti-Inflammatory Effects of Acupuncture at ST36 Point: A Literature Review in Animal Studies. Front Immunol. 12:813748. doi: 10.3389/fimmu.2021.813748.

Osborn, L., Hession, C., Tizard, R., Vassallo, C., Luhowskyj, S., Chi-Rosso, G., & Lobb, R. (1989). Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell, 59(6), 1203-1211. doi:10.1016/0092-8674(89)90775-7

Ouyang, H., & Chen, J. D. (2004). Review article: therapeutic roles of acupuncture in functional gastrointestinal disorders. Aliment Pharmacol Ther, 20(8), 831-841. doi:10.1111/j.1365-2036.2004.02196.x

Pigott, R., Dillon, L. P., Hemingway, I. H., & Gearing, A. J. (1992). Soluble forms of E-selectin, ICAM-1 and VCAM-1 are present in the supernatants of cytokine activated cultured endothelial cells. Biochem Biophys Res Commun, 187(2), 584-589. doi:10.1016/0006-291x(92)91234-h

Pirisi, M., Fabris, C., Falleti, E., Soardo, G., Toniutto, P., Vitulli, D., Gonano, F., & Bartoli, E. (1996). Serum soluble vascular-cell adhesion molecule-1 (VCAM-1) in patients with acute and chronic liver diseases. Dis Markers, 13(1), 11-17. doi:10.1155/1996/129325

Pizcueta, P., Piqué, J. M., Fernández, M., Bosch, J., Rodés, J., Whittle, B. J., & Moncada, S. (1992). Modulation of the hyperdynamic circulation of cirrhotic rats by nitric oxide inhibition. Gastroenterology, 103(6), 1909-1915. doi:10.1016/0016-5085(92)91451-9

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., Mende, D. R., Li, J., Xu, J., Li, S., Li, D., Cao, J., Wang, B., Liang, H., Zheng, H., Xie, Y., Tap, J., Lepage, P., Bertalan, M., Batto, J. M., Hansen, T., Le Paslier, D., Linneberg, A., Nielsen, H. B., Pelletier, E., Renault, P., Sicheritz-Ponten, T., Turner, K., Zhu, H., Yu, C., Li, S., Jian, M., Zhou, Y., Li, Y., Zhang, X., Li, S., Qin, N., Yang, H., Wang, J., Brunak, S., Doré, J., Guarner, F., Kristiansen, K., Pedersen, O., Parkhill, J., Weissenbach, J.; MetaHIT Consortium; Bork, P., Ehrlich, S. D., & Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59-65. doi:10.1038/nature08821

Queck, A., Carnevale, R., Uschner, F. E., Schierwagen, R., Klein, S., Jansen, C., Meyer, C., Praktiknjo, M., Thomas, D., Strassburg, C., Zeuzem, S., Violi, F., & Trebicka, J. (2020). Role of portal venous platelet activation in patients with decompensated cirrhosis and TIPS. Gut, 69(8), 1535-1536. doi:10.1136/gutjnl-2019-319044

Rahman, A., & Fazal, F. (2009). Hug tightly and say goodbye: role of endothelial ICAM-1 in leukocyte transmigration. Antioxid Redox Signal, 11(4), 823-839. doi:10.1089/ars.2008.2204

Ravichandra, A., & Schwabe, R. F. (2021). Mouse Models of Liver Fibrosis. Methods Mol Biol, 2299, 339-356. doi:10.1007/978-1-0716-1382-5_23

RayChaudhury, A., & D'Amore, P. A. (1991). Endothelial cell regulation by transforming growth factor-beta. J Cell Biochem, 47(3), 224-229. doi:10.1002/jcb.240470307

Reiberger, T., Angermayr, B., Schwabl, P., Rohr-Udilova, N., Mitterhauser, M., Gangl, A., & Peck-Radosavljevic, M. (2009). Sorafenib attenuates the portal hypertensive syndrome in partial portal vein ligated rats. J Hepatol, 51(5), 865-873. doi:10.1016/j.jhep.2009.06.024

Reichenbach, V., Fernández-Varo, G., Casals, G., Oró, D., Ros, J., Melgar-Lesmes, P., Weiskirchen, R., Morales-Ruiz, M., & Jiménez, W. (2012). Adenoviral dominant-negative soluble PDGFRβ improves hepatic collagen, systemic hemodynamics, and portal pressure in fibrotic rats. J Hepatol, 57(5), 967-973. doi:10.1016/j.jhep.2012.07.012

Roderburg, C., Urban, G. W., Bettermann, K., Vucur, M., Zimmermann, H., Schmidt, S., Janssen, J., Koppe, C., Knolle, P., Castoldi, M., Tacke, F., Trautwein, C., & Luedde, T. (2011). Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology, 53(1), 209-218. doi:10.1002/hep.23922

Roy, S., Benz, F., Vargas Cardenas, D., Vucur, M., Gautheron, J., Schneider, A., Hellerbrand, C., Pottier, N., Alder, J., Tacke, F., Trautwein, C., Roderburg, C., & Luedde, T. (2015). miR-30c and miR-193 are a part of the TGF-β-dependent regulatory network controlling extracellular matrix genes in liver fibrosis. J Dig Dis, 16(9), 513-524. doi:10.1111/1751-2980.12266

Sancho, P., Mainez, J., Crosas-Molist, E., Roncero, C., Fernández-Rodriguez, C. M., Pinedo, F., Huber, H., Eferl, R., Mikulits, W., & Fabregat, I. (2012). NADPH oxidase NOX4 mediates stellate cell activation and hepatocyte cell death during liver fibrosis development. PLoS One, 7(9), e45285. doi:10.1371/journal.pone.0045285

Schierwagen, R., Alvarez-Silva, C., Madsen, M. S. A., Kolbe, C. C., Meyer, C., Thomas, D., Uschner, F. E., Magdaleno, F., Jansen, C., Pohlmann, A., Praktiknjo, M., Hischebeth, G. T., Molitor, E., Latz, E., Lelouvier, B., Trebicka, J., & Arumugam, M. (2019). Circulating microbiome in blood of different circulatory compartments. Gut, 68(3), 578-580. doi:10.1136/gutjnl-2018-316227

Schmidt, T. S. B., Raes, J., & Bork, P. (2018). The Human Gut Microbiome: From Association to Modulation. Cell, 172(6), 1198-1215. doi:10.1016/j.cell.2018.02.044

Semela, D., Das, A., Langer, D., Kang, N., Leof, E., & Shah, V. (2008). Platelet-derived growth factor signaling through ephrin-b2 regulates hepatic vascular structure and function. Gastroenterology, 135(2), 671-679. doi:10.1053/j.gastro.2008.04.010

Sender, R., Fuchs, S., & Milo, R. (2016). Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell, 164(3), 337-40. doi: 10.1016/j.cell.2016.01.013. PMID: 26824647.

Shah, R., Reyes-Gordillo, K., Arellanes-Robledo, J., Lechuga, C. G., Hernández-Nazara, Z., Cotty, A., Rojkind. M., & Lakshman, M. R. (2013). TGF-β1 up-regulates the expression of PDGF-β receptor mRNA and induces a delayed PI3K-, AKT-, and p70(S6K) -dependent proliferative response in activated hepatic stellate cells. Alcohol Clin Exp Res, 37(11), 1838-1848. doi:10.1111/acer.12167

Shah, V., Wiest, R., Garcia-Cardena, G., Cadelina, G., Groszmann, R. J., & Sessa, W. C. (1999). Hsp90 regulation of endothelial nitric oxide synthase contributes to vascular control in portal hypertension. Am J Physiol, 277(2), G463-468. doi:10.1152/ajpgi.1999.277.2.G463

Shin, N. R., Whon, T. W., & Bae, J. W. (2015). Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol, 33(9), 496-503. doi:10.1016/j.tibtech.2015.06.011

Sieber, C. C., & Groszmann, R. J. (1992). Nitric oxide mediates hyporeactivity to vasopressors in mesenteric vessels of portal hypertensive rats. Gastroenterology, 103(1), 235-239. doi:10.1016/0016-5085(92)91118-n

Simbrunner, B., Mandorfer, M., Trauner, M., & Reiberger, T. (2019). Gut-liver axis signaling in portal hypertension. World J Gastroenterol, 25(39), 5897-5917. doi:10.3748/wjg.v25.i39.5897

Sorribas, M., Jakob, M. O., Yilmaz, B., Li, H., Stutz, D., Noser, Y., de Gottardi, A., Moghadamrad, S., Hassan, M., Albillos, A., Francés, R., Juanola, O., Spadoni, I., Rescigno, M., & Wiest, R. (2019). FXR modulates the gut-vascular barrier by regulating the entry sites for bacterial translocation in experimental cirrhosis. J Hepatol, 71(6), 1126-1140. doi:10.1016/j.jhep.2019.06.017

Springer, T. A. (1994). Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell, 76(2), 301-314. doi:10.1016/0092-8674(94)90337-9

Stojanov, S., Berlec, A., & Štrukelj, B. (2020). The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms, 8(11). doi:10.3390/microorganisms8111715

Strain, A. J., Frazer, A., Hill, D. J., & Milner, R. D. (1987). Transforming growth factor beta inhibits DNA synthesis in hepatocytes isolated from normal and regenerating rat liver. Biochem Biophys Res Commun, 145(1), 436-442. doi:10.1016/0006-291x(87)91340-4

Sumanovski, L. T., Battegay, E., Stumm, M., van der Kooij, M., & Sieber, C. C. (1999). Increased angiogenesis in portal hypertensive rats: role of nitric oxide. Hepatology, 29(4), 1044-1049. doi:10.1002/hep.510290436

ten Dijke, P., & Arthur, H. M. (2007). Extracellular control of TGFbeta signaling in vascular development and disease. Nat Rev Mol Cell Biol, 8(11), 857-869. doi:10.1038/nrm2262

Thabut, D., Routray, C., Lomberk, G., Shergill, U., Glaser, K., Huebert, R., Patel, L., Masyuk, T., Blechacz, B., Vercnocke, A., Ritman, E., Ehman, R., Urrutia, R., & Shah, V. (2011). Complementary vascular and matrix regulatory pathways underlie the beneficial mechanism of action of sorafenib in liver fibrosis. Hepatology, 54(2), 573-585. doi:10.1002/hep.24427

Thaiss, C. A., Zeevi, D., Levy, M., Zilberman-Schapira, G., Suez, J., Tengeler, A. C., Abramson, L., Katz, M.N., Korem, T., Zmora, N., Kuperman, Y., Biton, I., Gilad, S., Harmelin, A., Shapiro, H., Halpern, Z., Segal, E., & Elinav, E. (2014). Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell, 159(3), 514-529. doi:10.1016/j.cell.2014.09.048

Tilg, H., Cani, P. D., & Mayer, E. A. (2016). Gut microbiome and liver diseases. Gut, 65(12), 2035-2044. doi:10.1136/gutjnl-2016-312729

Tornavaca, O., Chia, M., Dufton, N., Almagro, L. O., Conway, D. E., Randi, A. M., Schwartz, M. A., Matter, K., & Balda, M. S. (2015). ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation. J Cell Biol, 208(6), 821-838. doi:10.1083/jcb.201404140

Tranah, T. H., Edwards, L. A., Schnabl, B., & Shawcross, D. L. (2021). Targeting the gut-liver-immune axis to treat cirrhosis. Gut, 70(5), 982-994. doi:10.1136/gutjnl-2020-320786

Trefts, E., Gannon, M., & Wasserman, D. H. (2017). The liver. Curr Biol, 27(21), R1147-R1151. doi:10.1016/j.cub.2017.09.019

Tse, J. K. Y. (2017). Gut Microbiota, Nitric Oxide, and Microglia as Prerequisites for Neurodegenerative Disorders. ACS Chem Neurosci, 8(7), 1438-1447. doi:10.1021/acschemneuro.7b00176

Tsuchida, T., & Friedman, S. L. (2017). Mechanisms of hepatic stellate cell activation. Nat Rev Gastroenterol Hepatol, 14(7), 397-411. doi:10.1038/nrgastro.2017.38

Turnbaugh, P. J., Ley, R. E., Hamady, M., Fraser-Liggett, C. M., Knight, R., & Gordon, J. I. (2007). The human microbiome project. Nature, 449(7164), 804-810. doi:10.1038/nature06244

Tyc, O., Jansen, C., Schierwagen, R., Uschner, F. E., Israelsen, M., Klein, S., Ortiz, C., Strassburg, C.P., Zeuzem, S., Gu, W., Torres, S., Praktiknjo, M., Kersting, S., Langheinrich, M., Nattermann, J., Servant, F., Arumugam, M., Krag, A., Lelouvier, B., Weismüller, T.J., & Trebicka, J. (2020). Variation in Bile Microbiome by the Etiology of Cholestatic Liver Disease. Liver Transpl, 26(12), 1652-1657. doi:10.1002/lt.25882

Úbeda, M., Lario, M., Muñoz, L., Borrero, M. J., Rodríguez-Serrano, M., Sánchez-Díaz, A. M., Del Campo, R., Lledó, L., Pastor, Ó,. García-Bermejo, L., Díaz, D., Álvarez-Mon, M., & Albillos, A. (2016). Obeticholic acid reduces bacterial translocation and inhibits intestinal inflammation in cirrhotic rats. J Hepatol, 64(5), 1049-1057. doi:10.1016/j.jhep.2015.12.010

Ueberham, E., Löw, R., Ueberham, U., Schönig, K., Bujard, H., & Gebhardt, R. (2003). Conditional tetracycline-regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis. Hepatology, 37(5), 1067-1078. doi:10.1053/jhep.2003.50196

Uemura, M., Swenson, E. S., Gaça, M. D., Giordano, F. J., Reiss, M., & Wells, R. G. (2005). Smad2 and Smad3 play different roles in rat hepatic stellate cell function and alpha-smooth muscle actin organization. Mol Biol Cell, 16(9), 4214-4224. doi:10.1091/mbc.e05-02-0149

Umeda, K., Matsui, T., Nakayama, M., Furuse, K., Sasaki, H., Furuse, M., & Tsukita, S. (2004). Establishment and characterization of cultured epithelial cells lacking expression of ZO-1. J Biol Chem, 279(43), 44785-44794. doi:10.1074/jbc.M406563200

Van Steenkiste, C., Geerts, A., Vanheule, E., Van Vlierberghe, H., De Vos, F., Olievier, K., Casteleyn, C., Laukens, D., De Vos, M., Stassen, J.M., Carmelient, P., & Colle, I. (2009). Role of placental growth factor in mesenteric neoangiogenesis in a mouse model of portal hypertension. Gastroenterology, 137(6), 2112-2124.e2111-2116. doi:10.1053/j.gastro.2009.08.068

Verbeke, L., Farre, R., Trebicka, J., Komuta, M., Roskams, T., Klein, S., Elst, I.V., Windmolders, P., Vanuytsel, T., Nevens, F., & Laleman, W. (2014). Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology, 59(6), 2286-2298. doi:10.1002/hep.26939

Verbeke, L., Mannaerts, I., Schierwagen, R., Govaere, O., Klein, S., Vander Elst, I., Windmolders, P., Farre, R., Wenes, M., Mazzone, M., Nevens, F., Van Grunsven, L.A., Trebicka, J., & Laleman, W. (2016). FXR agonist obeticholic acid reduces hepatic inflammation and fibrosis in a rat model of toxic cirrhosis. Sci Rep, 6, 33453. doi:10.1038/srep33453

Wang, C. H., Liu, H. M., Chang, Z. Y., Huang, T. H., & Lee, T. Y. (2021). Losartan Prevents Hepatic Steatosis and Macrophage Polarization by Inhibiting HIF-1α in a Murine Model of NAFLD. Int J Mol Sci, 22(15). doi:10.3390/ijms22157841

Wen, C. K., & Lee, T. Y. (2014). Electroacupuncture decreases the leukocyte infiltration to white adipose tissue and attenuates inflammatory response in high fat diet-induced obesity rats. Evid Based Complement Alternat Med, 2014, 473978. doi:10.1155/2014/473978

Wen, C. K., & Lee, T. Y. (2015). Electroacupuncture prevents white adipose tissue inflammation through modulation of hypoxia-inducible factors-1α-dependent pathway in obese mice. BMC Complement Altern Med, 15, 452. doi:10.1186/s12906-015-0977-9

Wiest, R., Albillos, A., Trauner, M., Bajaj, J. S., & Jalan, R. (2017). Targeting the gut-liver axis in liver disease. J Hepatol, 67(5), 1084-1103. doi:10.1016/j.jhep.2017.05.007

Wiest, R., & Groszmann, R. J. (2002). The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology, 35(2), 478-491. doi:10.1053/jhep.2002.31432

Wiest, R., Lawson, M., & Geuking, M. (2014). Pathological bacterial translocation in liver cirrhosis. J Hepatol, 60(1), 197-209. doi:10.1016/j.jhep.2013.07.044

Wisse, E. (1970). An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res, 31(1), 125-150. doi:10.1016/s0022-5320(70)90150-4

Yang, J., Chen, J., Yang, M., Yu, S., Ying, L., Liu, G. J., Ren, Y.L., Wright, J.M., & Liang, F. R. (2018). Acupuncture for hypertension. Cochrane Database Syst Rev, 11(11), Cd008821. doi:10.1002/14651858.CD008821.pub2

Yang, L., Roh, Y. S., Song, J., Zhang, B., Liu, C., Loomba, R., & Seki, E. (2014). Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice. Hepatology, 59(2), 483-495. doi:10.1002/hep.26698

Zöhrens, G., Armbrust, T., Pirzer, U., Meyer zum Büschenfelde, K. H., & Ramadori, G. (1993). Intercellular adhesion molecule-1 concentration in sera of patients with acute and chronic liver disease: relationship to disease activity and cirrhosis. Hepatology, 18(4), 798-802. doi:10.1002/hep.1840180408

Zafar, H., & Saier, M. H., Jr. (2021). Gut Bacteroides species in health and disease. Gut Microbes, 13(1), 1-20. doi:10.1080/19490976.2020.1848158

Zeng, C., Wang, Y. L., Xie, C., Sang, Y., Li, T. J., Zhang, M., Wang, R., Zhang, Q., Zheng, L., & Zhuang, S. M. (2015). Identification of a novel TGF-β-miR-122-fibronectin 1/serum response factor signaling cascade and its implication in hepatic fibrogenesis. Oncotarget, 6(14), 12224-12233. doi:10.18632/oncotarget.3652

Zhang, S., Wu, B., Liu, M., Li, N., Zeng, X., Liu, H., Yang, Q., Han, Z., Rao, P., & Wang, D. (2015). Acupuncture efficacy on ischemic stroke recovery: multicenter randomized controlled trial in China. Stroke, 46(5):1301-6. doi: 10.1161/STROKEAHA.114.007659.

Zong, G. Q., Fei, Y., Chen, J., & Liu, R. M. (2014). Selective double disconnection for cirrhotic portal hypertension. J Surg Res, 192(2), 383-389. doi:10.1016/j.jss.2014.05.065
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊