跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 04:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許譯
研究生(外文):HSU, YI
論文名稱:使用有限元素法模擬評估人工聽小骨置換物之材質與幾何拓撲最佳化對聲傳遞之影響
論文名稱(外文):Impacts of Material Properties and Topology Optimization of Ossicular Replacement Prostheses on Sound Transmission from the External Auditory Canal to the Inner Ear: Based on Finite Element Analysis
指導教授:施子卿
指導教授(外文):SHIH, TZU-CHING
口試委員:洪子倫蔡豐聲吳德昌王堂權
口試委員(外文):HORNG, TZYY-LENGTSAI, FENG-SHENGWU, TE-CHANGWANG, TANG-CHUAN
口試日期:2023-07-06
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:生物醫學影像暨放射科學學系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:101
中文關鍵詞:聽小骨置換手術3D有限元素模擬拓撲技術學
外文關鍵詞:Ossicular replacement surgery3D finite element simulationTopology optimization technique
相關次數:
  • 被引用被引用:0
  • 點閱點閱:39
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
中耳疾病導致傳導性聽損,影響了全球5%以上的人口。健保給付的人工聽小骨置換物,傳遞特性似於二力桿件結構,且通常需於人工聽小骨置換物及鼓膜之間插入一塊軟骨作為緩衝,增加手術成功率及延長最佳聽力表現。本研究,我們利用拓撲技術確定了最佳的傳遞路徑,並保留了中耳聽小骨最原始的結構特徵。透過3D有限元素模型模擬頻率0.2 kHz~20 kHz,90 dB SPL聲壓下的位移。觀察鼓膜臍、鐙鼓足板及基底膜,加以比較不同型態、不同材質的傳遞效果。其中嘗試了四種不同材料性質,分別為鈦金屬、皮質骨、蠶絲、膠原蛋白/氫氧基磷灰石。結果表明了,拓撲的人工聽小骨置換物在鼓膜臍上的位移較小,降低了長期震動導致鼓膜穿刺的風險。拓撲人工聽小骨置換物在鐙鼓足板及基底膜上,也表現了較大的位移量,代表傳遞效果較健保給付佳,且四種材質的位移表現,呈現出接近原始聽骨鏈的位移曲線趨勢。這項研究提供了新的拓撲技術,且設計出非常規的人工聽小骨置換物,可以透過超精密加工或3D列印進行製造,創造患者專用設備改善其傳導性聽損。
Ear diseases lead to conductive hearing loss, affecting over 5% of the global population. The middle ear prosthesis covered by health insurance has transmission characteristics similar to a two-force bar structure, and it usually requires the insertion of a piece of cartilage between the prosthesis and the eardrum as a buffer. This enhances the success rate of the surgery and prolongs optimal hearing performance. In this study, we utilized topology optimization techniques to determine the optimal transmission pathway while preserving the original structural features of the middle ear ossicles. A 3D finite element model was employed to simulate the displacement at frequencies ranging from 0.2 kHz to 20 kHz under a sound pressure level of 90 dB SPL. We observed and compared the displacement of the umbo, the stapes footplate, and the basilar membrane, evaluating the transmission efficiency for different types and materials. Specifically, we examined four different material properties: titanium alloy, cortical bone, silk, and collagen/hydroxyapatite. The results demonstrated that the topology-optimized prosthesis showed less displacement at the umbo, reducing the risk of long-term vibration-induced eardrum perforation. Moreover, the topology-optimized prosthesis showed larger displacement at the stapes footplate and basilar membrane, indicating better transmission efficiency compared to the health insurance covered prosthesis. Additionally, the displacement performance of the four materials closely showed the displacement curve trend of the original ossicular chain. This study provided novel topology optimization techniques and designed unconventional middle ear prostheses that can be manufactured through ultra-precision machining or 3D printing, enabling the creation of patient-specific devices to improve their conductive hearing loss.
中文摘要 I
ABSTRACT II
目錄 III
圖目錄 VI
表目錄 IX
第一章 前言 1
1.1研究背景 1
1.2研究目的 3
第二章 理論基礎及文獻回顧 4
2.1耳道解剖學及生理學 4
2.1.1聽骨鏈 (Ossicular Chain) 4
2.1.2耳蝸 (Cochlea) 5
2.1.3聽覺系統 (Auditory System) 6
2.2 ANSYS® 8
2.3 OSSICULAR REPLACEMENT PROSTHESES 10
2.4 TOPOLOGY OPTIMIZATION 13
2.5 DIFFERENT MATERIALS OF OSSICULAR REPLACEMENT PROSTHESES 16
第三章 研究方法及材料 18
3.1 3D有限元素模型 18
3.1.1 3D有限元素全耳模型重建及修改 18
3.1.2 3D有限元素全耳模型的材料特性 24
3.1.3 Mesh of the FE Model 27
3.2 TOPOLOGY OPTIMIZATION 29
3.2.1 Topology Optimization Model 30
3.2.2 Topology Optimization Materials 31
3.2.3 Topology Optimiation Analysis Setting 32
3.2.4 Topology Optimization 34
3.2.5 3D Topology Optimization FE Model 40
3.3 PARTIAL OSSICULAR REPLACEMENT PROSTHESIS 43
3.4 TOTAL OSSICULAR REPLACEMENT PROSTHESIS 51
3.5 DIFFERENT MATERIALS 59
3.6 3D有限元素模型模擬 60
3.6.1 聲壓 60
3.6.2 設置邊界條件 61
3.6.3 流固耦合(Fluid-Structure Interface, FSI) 63
3.6.4 Fixed Support 65
3.6.5 Deformation of Frequency Response 68
第四章 結果與討論 70
4.1 3D FE模型驗證 70
4.1.2鐙骨位移 72
4.2 TOPOLOGY OPTIMIZATION 結果 73
4.3 不同材料位移量對比 75
4.3.1不同材料之鼓膜臍位移量對比 76
4.3.2不同材料之鐙骨位移量對比 80
4.3.3不同人工聽小骨置換物型態之鼓膜臍位移量對比 85
4.3.4不同人工聽小骨置換物型態之鐙骨位移量對比 89
4.3.5不同人工聽小骨置換物型態之基底膜位移量對比 92
第五章 結論 96
參考文獻 98

Adell, R., Lekholm, U., Rockler, B., & Brånemark, P.-I. (1981). A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. International journal of oral surgery, 10(6), 387-416.
Alaani, A., & Raut, V. (2010). Kurz titanium prosthesis ossiculoplasty—follow-up statistical analysis of factors affecting one year hearing results. Auris nasus larynx, 37(2), 150-154.
Arechvo, I., Bornitz, M., Lasurashvili, N., Zahnert, T., & Beleites, T. (2012). New total ossicular replacement prostheses with a resilient joint: experimental data from human temporal bones. Otology & Neurotology, 33(1), 60-66.
Baran, N. (1988). Finite element analysis on microcomputers. McGraw-Hill Companies.
Beleites, T., Bornitz, M., Offergeld, C., Neudert, M., Hüttenbrink, K.-B., & Zahnert, T. (2007). Experimentelle Untersuchungen zu Mittelohrimplantaten mit integriertem mikromechanischem Gelenk. Laryngo-Rhino-Otologie, 86(09), 649-654.
Brown, M. A., Ji, X. D., & Gan, R. Z. (2021). 3D Finite element modeling of blast wave transmission from the external ear to cochlea. Annals of biomedical engineering, 49, 757-768.
Dai, C., Cheng, T., Wood, M. W., & Gan, R. Z. (2007). Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: experiment and modeling. Hearing research, 230(1-2), 24-33.
De Greef, D., Buytaert, J. A., Aerts, J. R., Van Hoorebeke, L., Dierick, M., & Dirckx, J. (2015). Details of human middle ear morphology based on micro‐CT imaging of phosphotungstic acid stained samples. Journal of morphology, 276(9), 1025-1046.
Gan, R. Z., Reeves, B. P., & Wang, X. (2007). Modeling of sound transmission from ear canal to cochlea. Annals of biomedical engineering, 35, 2180-2195.
Gan, R. Z., Sun, Q., Dyer Jr, R. K., Chang, K.-H., & Dormer, K. J. (2002). Three-dimensional modeling of middle ear biomechanics and its applications. Otology & Neurotology, 23(3), 271-280.
Gan, R. Z., Sun, Q., Feng, B., & Wood, M. W. (2006). Acoustic–structural coupled finite element analysis for sound transmission in human ear—pressure distributions. Medical engineering & physics, 28(5), 395-404.
Gan, R. Z., Wood, M. W., Dyer, R. K., & Dormer, K. J. (2001). Mass loading on the ossicles and middle ear function. Annals of Otology, Rhinology & Laryngology, 110(5), 478-485.
Gardner, E. K., Jackson, C. G., & Kaylie, D. M. (2004). Results with titanium ossicular reconstruction prostheses. The Laryngoscope, 114(1), 65-70.
Gostian, A., Pazen, D., Luers, J., Huttenbrink, K., & Beutner, D. (2013). Titanium ball joint total ossicular replacement prosthesis–experimental evaluation and midterm clinical results. Hearing research, 301, 100-104.
Gottlieb, P. K., Li, X., Monfared, A., Blevins, N., & Puria, S. (2016). First results of a novel adjustable‐length ossicular reconstruction prosthesis in temporal bones. The Laryngoscope, 126(11), 2559-2564.
Grote, J. J. (1984). Tympanoplasty with calcium phosphate. Archives of otolaryngology, 110(3), 197-199.
Hamill, T. A., & Price, L. L. (2017). The hearing sciences. Plural Publishing.
Javia, L. R., & Ruckenstein, M. J. (2006). Ossiculoplasty. Otolaryngologic Clinics of North America, 39(6), 1177-1189.
Jung, G. S., & Buehler, M. J. (2017). Multiscale modeling of muscular-skeletal systems. Annual Review of Biomedical Engineering, 19, 435-457.
Kapur, T., & Jayaramchandran, S. (1992). Long-term results of total ossicular chain reconstruction using autografts. The Journal of Laryngology & Otology, 106(8), 688-691.
Kuru, I., Coy, J., Ferrer, F. L., Lenarz, T., Maier, H., & Lueth, T. C. (2015). A new postoperative adjustable prosthesis for ossicular chain reconstructions. 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO),
Kwok, P., Waldeck, A., & Strutz, J. (2003). How do metallic middle ear implants behave in the MRI? Laryngo-Rhino-Otologie, 82(1), 13-18.
Li, C., Hotz, B., Ling, S., Guo, J., Haas, D. S., Marelli, B., Omenetto, F., Lin, S. J., & Kaplan, D. L. (2016). Regenerated silk materials for functionalized silk orthopedic devices by mimicking natural processing. Biomaterials, 110, 24-33.
Ling, S., Zhang, Q., Kaplan, D. L., Omenetto, F., Buehler, M. J., & Qin, Z. (2016). Printing of stretchable silk membranes for strain measurements. Lab on a Chip, 16(13), 2459-2466.
Liu, H., Wang, W., Zhao, Y., Yang, J., Yang, S., Huang, X., & Liu, W. (2020). Effect of stimulation sites on the performance of electromagnetic middle ear implant: a finite element analysis. Computers in Biology and Medicine, 124, 103918.
Mardassi, A., Deveze, A., Sanjuan, M., Mancini, J., Parikh, B., Elbedeiwy, A., Magnan, J., & Lavieille, J.-P. (2011). Titanium ossicular chain replacement prostheses: prognostic factors and preliminary functional results. European annals of otorhinolaryngology, head and neck diseases, 128(2), 53-58.
Martin, A. D., Driscoll, C. L., Wood, C. P., & Felmlee, J. P. (2005). Safety evaluation of titanium middle ear prostheses at 3.0 tesla. Otolaryngology–Head and Neck Surgery, 132(4), 537-542.
Milazzo, M., Contessi Negrini, N., Scialla, S., Marelli, B., Farè, S., Danti, S., & Buehler, M. J. (2019). Additive manufacturing approaches for hydroxyapatite‐reinforced composites. Advanced Functional Materials, 29(35), 1903055.
Milazzo, M., Muyshondt, P. G., Carstensen, J., Dirckx, J. J., Danti, S., & Buehler, M. J. (2020). De novo topology optimization of total ossicular replacement prostheses. Journal of the Mechanical Behavior of Biomedical Materials, 103, 103541.
Nair, A. K., Gautieri, A., Chang, S.-W., & Buehler, M. J. (2013). Molecular mechanics of mineralized collagen fibrils in bone. Nature communications, 4(1), 1724.
Neely, S. T. (1998). From Sound to Synapse: Physiology of the Mammalian Ear. Ear and Hearing, 19(6), 486.
Neff, B. A., Rizer, F. M., Schuring, A. G., & Lippy, W. H. (2003). Tympano‐ossiculoplasty utilizing the Spiggle and Theis titanium total ossicular replacement prosthesis. The Laryngoscope, 113(9), 1525-1529.
Schwager, K. (1998). Titanium as a biomaterial for ossicular replacement: results after implantation in the middle ear of the rabbit. European archives of oto-rhino-laryngology, 255, 396-401.
Slater, P. W., Rizer, F. M., Schuring, A. G., & Lippy, W. H. (1997). Practical use of total and partial ossicular replacement prostheses in ossiculoplasty. The Laryngoscope, 107(9), 1193-1198.
Smyth, G. (1982). Five-year report on partial ossicular replacement prostheses and total ossicular replacement prostheses. Otolaryngology--head and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck Surgery, 90(3 Pt 1), 343-346.
Stupp, C., Stupp, H., & Grün, D. (1996). Replacement of ear ossicles with titanium prostheses. Laryngo-Rhino-Otologie, 75(6), 335-337.
Sun, Q., Chang, K.-H., Dormer, K. J., Dyer Jr, R. K., & Gan, R. Z. (2002). An advanced computer-aided geometric modeling and fabrication method for human middle ear. Medical engineering & physics, 24(9), 595-606.
Sun, Q., Gan, R., Chang, K.-H., & Dormer, K. (2002). Computer-integrated finite element modeling of human middle ear. Biomechanics and modeling in mechanobiology, 1, 109-122.
Tachos, N. S., Sakellarios, A. I., Rigas, G. A., Spiridon, I., Bibas, A., Böhnke, F., & Fotiadis, D. I. (2015). A computational study of ligaments effect in middle ear chain anatomy behavior. 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE),
Yamada, H., & Goode, R. L. (2010). A self-adjusting ossicular prosthesis containing polyurethane sponge. Otology & Neurotology, 31(9), 1404-1408.
Yang, S., Xu, D., & Liu, X. (2016). Evaluation of round window stimulation performance in otosclerosis using finite element modeling. Computational and Mathematical Methods in Medicine, 2016.
Yu, Y.-C., Wang, T.-C., & Shih, T.-C. (2022). Effects of age-related tympanic-membrane material properties on sound transmission in the middle ear in a three-dimensional finite-element model. Computer Methods and Programs in Biomedicine, 215, 106619.
Zhao, F., Koike, T., Wang, J., Sienz, H., & Meredith, R. (2009). Finite element analysis of the middle ear transfer functions and related pathologies. Medical engineering & physics, 31(8), 907-916.
Zhao, S., Hato, N., & Goode, R. L. (2005). Experimental study of an adjustable-length titanium ossicular prosthesis in a temporal bone model. Acta oto-laryngologica, 125(1), 33-37.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top