跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/01 13:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴映如
研究生(外文):LAI, YING-RU
論文名稱:黑果枸杞根部之二次代謝產物分析及活性探討
論文名稱(外文):Chemical analysis and bioactivity study of secondary metabolites from the root of Lycium ruthenicum
指導教授:李家琳李家琳引用關係
指導教授(外文):LEE, CHIA-LIN
口試委員:李家琳趙子華謝佩文
口試委員(外文):LEE, CHIA-LINCHAO, CHIH-HUAXIE, PEI-WEN
口試日期:2023-07-06
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:藥用化妝品學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:210
中文關鍵詞:黑果枸杞根部紅果枸杞根皮分離純化結構鑑定HPLC指紋圖譜天皰瘡
外文關鍵詞:Lycium ruthenicumLycium chinenseisolation and purificationstructural elucidationHPLC chemical fingerprintpemphigus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:25
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
中藥地骨皮為紅果枸杞之根皮,惟中藥店亦有販賣黑果枸杞根部取代前者。迄今黑果枸杞根部尚未有相關研究報導,故本實驗將對黑果枸杞根部進行化學成分分離純化、結構解析及生物活性研究,以探討同為枸杞屬植物的黑果枸杞根部與紅果枸杞根皮之化學成分組成與活性差異。本研究從黑果枸杞根部之甲醇萃取物經分配萃取得到三個分層包含乙酸乙酯層(LRCEA)、正丁醇層(LRCB)及水層(LRCW)。針對LRCEA和LRCB兩層進行分離純化,共得十七個已知化合物,名為tetracosyl (2E)-3-(4-hydroxy-3-methoxyphenyl)-2-propenoate (LRC-1)、beta-sitosterol (LRC-2)、vanillic acid (LRC-3)、echinatun (LRC-4)、licochalcone A (LRC-5)、scopoletin (LRC-6)、licoflavone A (LRC-7)、N-trans-feruloyltyramine (LRC-8)、(-)-trans-N-feruloyloctopamine (LRC-9)、trans-caffeoyltyramine (LRC-10)、licochalcone B (LRC-11)、4-hydroxybenzoic acid (LRC-12)、N-trans-feruloylputrescine (LRC-13)、1-(4-hydroxy-3-methoxy)-phenyl-2-[4-(1,2, 3-tri-hydroxypropyl)-2-methoxy]-phenoxy-1,3-propandiol (LRC-14)、3,4,5-trimethoxyphenyl 6-O-β-D-xylopyranosyl-β-D-glucopyranoside (LRC-15)、7-O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside (LRC-16)與(6R,7S,8S)-7a-[(β-D-glucopyranosyl)oxy]lyonires-inol (LRC-17),上述化合物結構為利用核磁共振、質譜及旋光儀等技術鑑定之。黑果枸杞根部(LRM)及紅果枸杞根皮(LCM)甲醇萃取物之HPLC指紋圖譜成分分析結果顯示LRM與LCM具相似之化學成分組成;在生物活性試驗中紅果枸杞根皮所含之生物鹼成分具有抗天皰瘡之潛力,且黑果枸杞根部亦具有類似骨架的生物鹼,推測黑果枸杞根部與紅果枸杞根皮可能具有相似的。本研究成果能提供未來開發黑果枸杞根部藥材之相關參考資料,以期更多化學與生物活性數據來更準確釐清黑果枸杞根部與紅果枸杞根皮的功效相似性及互相取代使用的可能性。
Traditional Chinese medicine (TCM), Lycii Radicis Cortex (Digupi) is the root bark of Lycium chinense (LC) recorded in Taiwan Herbal Pharmacopeia. However, the root of L. ruthenicum (LR) instead of LC could be purchased from a TCM pharmacy. There is no research on the chemical composition and bioactivity of LR until now. In order to investigate the differences between LR and LC, the primary objective of this study is to conduct chemical purification, structural elucidation, and bioactivities of LR. In this experiment, the methanolic extract of LR was partitioned into three fractions, including ethyl acetate- (LRCEA), n-butanol- (LRCB), and water- (LRCW) soluble fractions. Seventeen known compounds named as tetracosyl (2E)-3-(4-hydroxy-3-methoxyphenyl)-2-propenoate (LRC-1), beta-sitosterol (LRC-2), vanillic acid (LRC-3), echinatun (LRC-4), licochalcone A (LRC-5), scopoletin (LRC-6), licochalcone A (LRC-7), N-trans-feruloyltyramine (LRC-8), (-)-trans-N-feruloyloctopamine (LRC-9), trans-caffeoyltyramine (LRC-10), licochalcone B (LRC-11), 4-hydroxybenzoic acid (LRC-12), N-trans-feruloylputrescine (LRC-13), 1-(4-hydroxy-3-methoxy)-phenyl-2-[4-(1,2,3-tri-hydroxypropyl)-2-methoxy]-phenoxy-1,3-propandiol (LRC-14), 3,4,5-trimethoxyphenyl 6-O-β-D-xylopyranosyl-β-D-glucopyranoside (LRC-15), 7-O-β-D-xylopyranosyl-(1→6)-β-D-glucopyranoside (LRC-16), and (6R,7S,8S)-7a-[(β-D-glucopyran-osyl) oxy]lyoniresinol (LRC-17) were isolated from LRCEA and LRCB. The structures of LRC-1-17 were identified using nuclear magnetic resonance spectroscopy, mass spectroscopy, and optical rotation. The HPLC chemical fingerprints of the methanol extracts prepared from L. ruthenicum root (LRM) and L. chinense root bark (LCM). revealed that both materials possess the same chemical compositions with each other. In bioactivity tests, alkaloids of LC exhibited potential anti-pemphigus effects and LR had the similar alkaloid skeleton compounds to LC that led to LR could have the bioefficacy like LC. Whole study will help the development of the new Chinese medicine or new natural ingredients of LR. However, more chemical and biological data should be investigated to clarify if LR could be used instead of LC.
中文摘要 III
Abstract V
目錄 VII
第一章 前言 1
第一節、研究動機與目的 1
第二節、植物介紹與文獻回顧 2
第二章 材料與方法 50
第一節、實驗室使用之儀器與藥品 50
第二節、藥材來源 52
第三節、藥材萃取製備與化合物分離純化 55
第四節、生物活性試驗方法 69
第三章 化合物結構解析 71
第一節、Tetracosyl (2E)-3-(4-hydroxy-3-methoxyphenyl)-2-propenoate 71
第二節、Beta-sitosterol 79
第三節、Vanillic acid 83
第四節、Echinatin 86
第五節、Licochalcone A 94
第六節、Scopoletin 102
第七節、Licoflavone A 110
第八節、N-trans-Feruloyltyramine 117
第九節、(-)-trans-N-Feruloyloctopamine 125
第十節、trans-Caffeoyltyramine 133
第十一節、Licochalcone B 140
第十二節、4-Hydroxybenzoic acid 148
第十三節、N-trans-Feruloylputrescine 154
第十四節、1-(4-Hydroxy-3-methoxy)-phenyl-2-[4-(1,2, 3-tri-hydroxypropyl)-2-methoxy]-phenoxy-1, 3-propandiol 162
第十五節、3,4,5-Trimethoxyphenyl 6-O-β-D-xylopyranosyl-β-D-glucopyranoside 169
第十六節、7-O-β-D-xylopyranosyl-(1→6) -β-D-glucopyranoside 176
第十七節、(6R,7S,8S)-7a-[(β-D-glucopyranosyl)oxy]lyoniresinol 183
第四章 結果與討論 191
第五章 結論 197
第六章 參考文獻 199
表一、黑果枸杞果實中黃酮類成份 2
表二、黑果枸杞果實中花青素成分 5
表三、黑果枸杞果實中酚酸類成份 9
表四、黑果枸杞果實中生物鹼類成分 12
表五、黑果枸杞果實中脂肪酸類化合物 16
表六、紅果枸杞根皮中有機酸及其酯類成分結構 21
表七、紅果枸杞根皮中生物鹼類型結構 27
表八、紅果枸杞根皮中黃酮和其他類成分結構 31
表九、紅果枸杞根皮中苯丙素和香豆素類成分結構 34
表十、紅果枸杞根皮中甾體和三萜類成分結構 37
表十一、紅果枸杞根皮中環肽類成分結構 39
表十二、紅果枸杞根皮中苷類成分結構 41
表十三、紅果枸杞根皮中蒽醌類成分結構 45
表十四、本研究分離純化所得之化合物總表 65
表十五、LRC-1之1H、13C與2D NMR數據整理 73
表十六、LRC-1與文獻1D NMR數據整理 74
表十七、LRC-2與文獻1D NMR數據整理 80
表十八、LRC-3與文獻1D NMR數據整理 84
表十九、LRC-4之 1H、13C與2D NMR數據整理 88
表二十、LRC-4與文獻1D NMR數據整理 89
表二一、LRC-5之1H、13C與2D NMR數據整理 96
表二二、LRC-5與文獻1D NMR數據整理 97
表二三、LRC-6之1H、13C與2D NMR數據整理 104
表二四、LRC-6與文獻1D NMR數據整理 105
表二五、LRC-7之1H、13C與2D NMR數據整理 112
表二六、LRC-7與文獻1D NMR數據整理 113
表二七、LRC-8之1H、13C與2D NMR數據整理 119
表二八、LRC-8與文獻1D NMR數據整理 120
表二九、LRC-9之1H、13C與2D NMR數據整理 127
表三十、LRC-9與文獻1D NMR數據整理 128
表三一、LRC-10之1H、13C與2D NMR數據整理 135
表三二、LRC-10與文獻1D NMR數據整理 136
表三三、LRC-11之1H、13C與2D NMR數據整理 142
表三四、LRC-11與文獻1D NMR數據整理 143
表三五、LRC-12之1H、13C與2D NMR數據整理 149
表三六、LRC-12與文獻1D NMR數據整理 150
表三七、LRC-13之1H、13C與2D NMR數據整理 156
表三八、LRC-13與文獻1D NMR數據整理 157
表三九、LRC-14之1H、13C與2D NMR數據整理 164
表四十、LRC-14與文獻1D NMR數據整理 165
表四一、LRC-15之1H、13C與2D NMR數據整理 171
表四二、LRC-15與文獻1D NMR數據整理 172
表四三、LRC-16之1H、13C與2D NMR數據整理 178
表四四、LRC-16與文獻1D NMR數據整理 179
表四五、LRC-17之1H、13C與2D NMR數據整理 185
表四六、LRC-17與文獻1D NMR數據整理 186
圖一、(A)黑果枸杞根部藥材攝影、(B)紅果枸杞根皮藥材攝影 52
圖二 (A)、黑果枸杞樣品於工業技術研究院DNA基原鑑定結果 53
圖二 (B)、紅果枸杞樣品於工業技術研究院DNA基原鑑定結果 54
圖三 (A)、黑果枸杞根部乙酸乙酯層( LRCEA)成分分離純化流程圖 56
圖三 (B)、黑果枸杞根部乙酸乙酯層( LRCEA)成分分離純化流程圖 57
圖四、黑果枸杞根部正丁醇層( LRCB)成分分離純化流程圖 58
圖五、LRC-1 1H-1H COSY和HMBC NMR 相關性 72
圖六、LRC-1 1H NMR(400 MHz, CDCl3)圖譜 75
圖七、LRC-1 13C NMR(100 MHz, CDCl3)圖譜 75
圖八、LRC-1 HSQC(400 MHz, CDCl3)圖譜 76
圖九、LRC-1 1H-1H COSY(400 MHz, CDCl3)圖譜 76
圖十、LRC-1 HMBC(400 MHz, CDCl3)圖譜 77
圖十一、LRC-1 NOESY(400 MHz, CDCl3)圖譜 77
圖十二、LRC-1 EI-MS圖譜 78
圖十三、LRC-2 1H NMR(400 MHz, CDCl3)圖譜 82
圖十四、LRC-2 13C NMR(100 MHz, CDCl3)圖譜 82
圖十五、LRC-3 1H NMR(400 MHz, Pyridine-d5)圖譜 85
圖十六、LRC-3 13C NMR(100 MHz, Pyridine-d5)圖譜 85
圖十七、LRC-4 1H-1H COSY和HMBC NMR 相關性 87
圖十八、LRC-4 1H NMR(400 MHz, Pyridine-d5)圖譜 90
圖十九、LRC-4 13C NMR(100 MHz, Pyridine-d5)圖譜 90
圖二十、LRC-4 HSQC(400 MHz, Pyridine-d5)圖譜 91
圖二一、LRC-4 1H-1H COSY(400 MHz, Pyridine-d5)圖譜 91
圖二二、LRC-4 HMBC(400 MHz, Pyridine-d5)圖譜 92
圖二三、LRC-4 NOESY(400 MHz, Pyridine-d5)圖譜 92
圖二四、LRC-4 ESI-MS 圖譜 93
圖二五、LRC-5 1H-1H COSY和HMBC NMR 相關性 95
圖二六、LRC-5 1H NMR(400 MHz, CD3OD)圖譜 98
圖二七、LRC-5 13C NMR(100 MHz, CD3OD)圖譜 98
圖二八、LRC-5 HSQC(400 MHz, CD3OD)圖譜 99
圖二九、LRC-5 1H-1H COSY(400 MHz, CD3OD)圖譜 99
圖三十、LRC-5 HMBC(400 MHz, CD3OD)圖譜 100
圖三一、LRC-5 NOESY(400 MHz, CD3OD)圖譜 100
圖三二、LRC-5 ESI-MS 圖譜 101
圖三三、LRC-6 1H-1H COSY和HMBC NMR 相關性 103
圖三四、LRC-6 1H NMR(400 MHz, CD3OD)圖譜 106
圖三五、LRC-6 13C NMR(100 MHz, CD3OD)圖譜 106
圖三六、LRC-6 HSQC(400 MHz, CD3OD)圖譜 107
圖三七、LRC-6 1H-1H COSY(400 MHz, CD3OD)圖譜 107
圖三八、LRC-6 HMBC(400 MHz, CD3OD)圖譜 108
圖三九、LRC-6 NOESY(400 MHz, CD3OD)圖譜 108
圖四十、LRC-6 ESI-MS 圖譜 109
圖四一、LRC-7 1H-1H COSY和HMBC NMR 相關性 111
圖四二、LRC-7 1H NMR(400 MHz, CD3OD)圖譜 114
圖四三、LRC-7 13C NMR(100 MHz, CD3OD)圖譜 114
圖四四、LRC-7 HSQC(400 MHz, CD3OD)圖譜 115
圖四五、LRC-7 1H-1H COSY(400 MHz, CD3OD)圖譜 115
圖四六、LRC-7 HMBC(400 MHz, CD3OD)圖譜 116
圖四七、LRC-7 ESI-MS圖譜 116
圖四八、LRC-8 1H-1H COSY和HMBC NMR 相關性 118
圖四九、LRC-8 1H NMR(400 MHz, CD3OD)圖譜 121
圖五十、LRC-8 13C NMR(100 MHz, CD3OD)圖譜 121
圖五一、LRC-8 HSQC(400 MHz, CD3OD)圖譜 122
圖五二、LRC-8 1H-1H COSY(400 MHz, CD3OD)圖譜 122
圖五三、LRC-8 HMBC(400 MHz, CD3OD)圖譜 123
圖五四、LRC-8 NOESY(400 MHz, CD3OD)圖譜 123
圖五五、LRC-8 ESI-MS圖譜 124
圖五六、LRC-9 1H-1H COSY和HMBC NMR 相關性 126
圖五七、LRC-9 1H NMR(400 MHz, CD3OD)圖譜 129
圖五八、LRC-9 13C NMR(100 MHz, CD3OD)圖譜 129
圖五九、LRC-9 HSQC(400 MHz, CD3OD)圖譜 130
圖六十、LRC-9 1H-1H COSY(400 MHz, CD3OD)圖譜 130
圖六一、LRC-9 HMBC(400 MHz, CD3OD)圖譜 131
圖六二、LRC-9 NOESY(400 MHz, CD3OD)圖譜 131
圖六三、LRC-9 ESI-MS 圖譜 132
圖六四、LRC-10 1H-1H COSY和HMBC NMR 相關性 134
圖六五、LRC-10 1H NMR(400 MHz, CD3OD)圖譜 137
圖六六、LRC-10 13C NMR(100 MHz, CD3OD)圖譜 137
圖六七、LRC-10 HSQC(400 MHz, CD3OD)圖譜 138
圖六八、LRC-10 1H-1H COSY(400 MHz, CD3OD)圖譜 138
圖六九、LRC-10 HMBC(400 MHz, CD3OD)圖譜 139
圖七十、LRC-10 ESI-MS圖譜 139
圖七一、LRC-11 1H-1H COSY和HMBC NMR 相關性 141
圖七二、LRC-11 1H NMR(400 MHz, CD3OD)圖譜 144
圖七三、LRC-11 13C NMR(100 MHz, CD3OD)圖譜 144
圖七四、LRC-11 HSQC(400 MHz, CD3OD)圖譜 145
圖七五、LRC-11 1H-1H COSY(400 MHz, CD3OD)圖譜 145
圖七六、LRC-11 HMBC(400 MHz, CD3OD)圖譜 146
圖七七、LRC-11 NOESY(400 MHz, CD3OD)圖譜 146
圖七八、LRC-11 ESI-MS圖譜 147
圖七九、LRC-12 1H-1H COSY和HMBC NMR 相關性 148
圖八十、LRC-12 1H NMR(400 MHz, CD3OD)圖譜 151
圖八一、LRC-12 13C NMR(100 MHz, CD3OD)圖譜 151
圖八二、LRC-12 HSQC(400 MHz, CD3OD)圖譜 152
圖八三、LRC-12 1H-1H COSY(400 MHz, CD3OD)圖譜 152
圖八四、LRC-12 HMBC(400 MHz, CD3OD)圖譜 153
圖八五、LRC-13 1H-1H COSY和HMBC NMR 相關性 155
圖八六、LRC-13 1H NMR(400 MHz, CD3OD)圖譜 158
圖八七、LRC-13 13C NMR(100 MHz, CD3OD)圖譜 158
圖八八、LRC-13 HSQC(400 MHz, CD3OD)圖譜 159
圖八九、LRC-13 1H-1H COSY(400 MHz, CD3OD)圖譜 159
圖九十、LRC-13 HMBC(400 MHz, CD3OD)圖譜 160
圖九一、LRC-13 NOESY(400 MHz, CDCL3)圖譜 160
圖九二、LRC-13 ESI-MS圖譜 161
圖九三、LRC-14 1H-1H COSY和HMBC NMR 相關性 163
圖九四、LRC-14 1H NMR(400 MHz, CD3OD)圖譜 166
圖九五、LRC-14 13C NMR(100 MHz, CD3OD)圖譜 166
圖九六、LRC-14 HSQC(400 MHz, CD3OD)圖譜 167
圖九七、LRC-14 1H-1H COSY(400 MHz, CD3OD)圖譜 167
圖九八、LRC-14 HMBC(400 MHz, CD3OD)圖譜 168
圖九九、LRC-14 NOESY(400 MHz, CD3OD)圖譜 168
圖一百、LRC-15 1H-1H COSY和HMBC NMR 相關性 170
圖一零一、LRC-15 1H NMR(400 MHz, CD3OD)圖譜 173
圖一零二、LRC-15 13C NMR(100 MHz, CD3OD)圖譜 173
圖一零三、LRC-15 HSQC(400 MHz, CD3OD)圖譜 174
圖一零四、LRC-15 1H-1H COSY(400 MHz, CD3OD)圖譜 174
圖一零五、LRC-15 HMBC(400 MHz, CD3OD)圖譜 175
圖一零六、LRC-15 NOESY(400 MHz, CD3OD)圖譜 175
圖一零七、LRC-16 1H-1H COSY和HMBC NMR 相關性 177
圖一零八、LRC-16 1H NMR(400 MHz, D2O)圖譜 180
圖一零九、LRC-16 13C NMR(100 MHz, D2O/ CD3OD)圖譜 180
圖一一零、LRC-16 HSQC(400 MHz, D2O/ CD3OD)圖譜 181
圖一一一、LRC-16 1H-1H COSY(400 MHz, D2O/ CD3OD)圖譜 181
圖一一二、LRC-16 HMBC(400 MHz, D2O/ CD3OD)圖譜 182
圖一一三、LRC-16 NOESY(400 MHz, D2O/ CD3OD)圖譜 182
圖一一四、LRC-17 HMBC NMR 相關性 184
圖一一五、LRC-17 1H NMR(400 MHz, CD3OD)圖譜 188
圖一一六、LRC-17 13C NMR(100 MHz, CD3OD)圖譜 188
圖一一七、LRC-17 HSQC(400 MHz, CD3OD)圖譜 189
圖一一八、LRC-17 1H-1H COSY(400 MHz, CD3OD)圖譜 189
圖一一九、LRC-17 HMBC(400 MHz, CD3OD)圖譜 190
圖一二零、LRC-17 NOESY(400 MHz, CD3OD)圖譜 190
圖一二一、LRM與LCM之HPLC指紋圖譜 191
圖一二二、HPLC之標定化合物結構 191
圖一二三 (A)、LRM之HPLC圖譜 192
圖一二三 (B)、LCM之HPLC圖譜 192
圖一二四、紅果枸杞根皮生物活性實驗中所用化合物結構 194
圖一二五、紅果枸杞根皮中化合物對HaCaT細胞存活率影響 195
圖一二六 (A、B)、細胞中DSG1及DSG3 mRNA給藥前後表達差異 195
1.Wu PY, Li TM, Chen SI, Chen CJ, Chiou JS, Lin MK, Tsai FJ, Wu YC, Lin TH, Liao CC, Huang SM, Lin YN, Liang WM, Lin YJ. Complementary chinese herbal medicine therapy improves survival in patients with pemphigus: a retrospective study from a taiwan-based registry. Frontiers in Pharmacology. 2020, 11, p. 1-11.
2.Taiwan herbal pharmacopeia. 衛生福利部. 2021, p. 122.
3.Chen JZ, Lu X, Hu YQ, Guo HH, Ma XL, Guo X, Jiang ZB, Wang F. Research progress on chemical constituents and pharmacological studies on root bark of Lycium barbarum. China Journal of Chinese Materia Medica. 2021, 46(12), p. 3066-75.
4.Wang H, Li J, Tao W, Zhang X, Gao X, Yong J, Zhao J, Zhang L, Li Y, Duan JA. Lycium ruthenicum studies: molecular biology, phytochemistry and pharmacology. Food Chemistry. 2018, 240, p. 759-66.
5.Ma LJ, Huo PC, Sun MR, Zhu L, Hu Q, Ge GB, Jia SN. Research progress on chemical constituents and pharmacological activities of Lycium ruthenicum. Chinese Traditional and Herbal Drugs, 2020, 51(22), p.5584.
6.Wu T, Lv H, Wang F, Wang Y. Characterization of polyphenols from Lycium ruthenicum fruit by UPLC-Q-TOF/MS(E) and their antioxidant activity in caco-2 cells. Journal of Agricultural and Food Chemistry. 2016, 64(11), p. 2280-88.
7.Zhao J, Xu FF, Li J. A new spermidine from the fruits of Lycium ruthenicum. Chemistry of Natural Compounds. 2014, 50(5), p. 880-83.
8.Li J, Yang F, Luan G, Dong Q, Wang H, Hu N. 黑果枸杞的花青素類成分及其藥理作用的研究進展. 華西藥學雜誌. 2022, 37(3), p. 331.
9.Zhang Q, Chen W, Zhao J, Xi W. Functional constituents and antioxidant activities of eight chinese native goji genotypes. Food Chemistry. 2016, 200, p. 230-36.
10.Chi XF, Xiao Y, Qi D, Yue QY, Hu F. Fatty acid composition of Lycium ruthenicum collected from the qinghai-tibetan plateau. Chemistry of Natural Compounds. 2016, 52(4), p. 674-75.
11.李進,李淑珍, 馮文娟. 黑果枸杞葉總黄酮的體外抗氧化活性研究. 食品科學期刊. 2010, 31(13), p. 259.
12.林麗,李進,李永潔. 黑果枸杞花色苷對氧化低密度脂蛋白損傷血管内皮细胞的保護作用. 中國藥學雜誌. 2013, 48(8), p. 606.
13.王超,蔣寶平,龍軍. 黑果枸杞對急性酒精性肝損傷的保護及其抗氧化作用的影響. 中藥新藥與臨床藥理. 2015, 26(2), p. 192.
14.Lin J, Zhang Y, Wang X, Wang W. Lycium ruthenicum extract alleviates high-fat diet-induced nonalcoholic fatty liver disease via enhancing the AMPK signaling pathway. Molecular Medicine Reports. 2015, 12(3), p. 3835-40.
15.張軻,曹建民,郭嫻. 黑果枸杞對大鼠運動性腎缺血再灌注損傷的保護作用. 首都體育學院學報. 2015, 27(1), p. 85.
16.Zhu J, Chen C, Zhang B, Huang Q. The inhibitory effects of flavonoids on α-amylase and α-glucosidase. Critical Reviews in Food Science and Nutrition. 2020, 60(4), p. 695-708.
17.Li J, Qu WJ, Liu C, Shi DH. Effect of Lycium ruthenicum pigment on blood lipids level and lipid peroxidation in mice with hyperlipemia. Journal of Food Science. 2007, 28(9), p. 5.
18.Tsuda T. Regulation of adipocyte function by anthocyanins; possibility of preventing the metabolic syndrome. Journal of Agricultural and Food Chemistry. 2008, 56(3), p. 642-46.
19.李淑珍,李進. 黑果枸杞總黄酮降血脂作用. 時珍國醫國藥. 2012, 23(5), p. 1072.
20.馬麗艷,陶大勇,陳妍. 黑色果樹色素對三黃雞體液免疫、細細胞免疫的影響. 塔里木大學學報. 2008, 20(4), p.6
21.Liu Y, Gong GP, Sun YJ, Wang ZF. Isolation, structural characterization, and immunological activity of a polysaccharide LRLP4-A from the leaves of Lycium ruthenicum. Journal of Carbohydrate Chemistry. 2016, 35(1), p. 40-56.
22.Ni W, Gao T, Wang H, Du Y, Li J, Li C, Wei L, Bi HT. Anti-fatigue activity of polysaccharides from the fruits of four tibetan plateau indigenous medicinal plants. Journal of Ethnopharmacology. 2013, 150(2), p. 529-35.
23.許偉,麻華偉,許婷婷. 黑果枸杞膠囊對青少年輕中度近視控制的臨床觀察. 中國中醫藥現代遠程教育. 2015, 13(14), p. 29.
24.Maldoni BE, Dartayet G. Studies on the petroleum ether extract of Lycium chinese root. Revista Latinoamericana de Química. 1998, 19(1), p.15.
25.Jie ML, Liu BL, Zhang Y, Zhou GX. Chemical constituents in root barks of Lycium chinense. Chinese Traditional and Herbal Drugs. 2014, 45(15), p. 2139-42.
26.Wei XL, Liang JY, Chemical study on the root barks of Lycium chinese Mill.. Chinese Traditional and Herbal Drugs. 2003, 34(7), p. 580-81.
27.Kim HP, Kim SY, Lee EJ, Kim YC, Kim YC. Zeaxanthin dipalmitate from Lycium chinense has hepatoprotective activity. Research Communications in Molecular Pathology and Pharmacology. 1997, 97(3), p. 301-14.
28.霍攬明,鄭新恒,陳芳,劉怡靖,周光雄. 地骨皮水提取物的化學成分. 暨南大學學報(自然科學與醫學版). 2017, 35(8), p.443.
29.Yang J, Kang JH, Wei ZQ, Yun HW. Measurement of taurine in Lycium cortex by ultraviolet spectrophotometer. Amino Acids and Biotic Resources. 2006, 28(3), p.26.
30.Funayama S, Yoshida K, Konno C, Hikino H. Structure of kukoamine A, a hypotensive principle of Lycium chinense root barks1. Tetrahedron Letters. 1980, 21(14), p. 1355-56.
31.Funayama S, Zhang GR, Nozoe S. Kukoamine B, a spermine alkaloid from Lycium chinense. Phytochemistry. 1995, 38(6), p. 1529-31.
32.Lee DG, Park Y, Kim MR, Jung HJ, Seu YB, Hahm KS, Woo ER. Anti-fungal effects of phenolic amides isolated from the root bark of Lycium chinense. Biotechnology Letters. 2004, 26(14), p. 1125-30.
33.Li X, Chu C, Mao H, Tong S, Cheng D, Yan J. Chemical constituents from Lycii cortex. 中國現代應用藥學. 2012, 29(9), p.805.
34.Harsh ML. Tropane alkaloids from Lycium barbarum Linn., in vivo and in vitro. Current Science. 1989, 58(14), p. 817-18.
35.Asano N, Kato A, Miyauchi M, Kizu H, Tomimori T, Matsui K, Nash RJ, Molyneux RJ. Specific alpha-galactosidase inhibitors, N-methylcalystegines--structure/activity relationships of calystegines from Lycium chinense. European Journal of Biochemistry. 1997, 248(2), p. 296-303.
36.Yang Y, An Y, Wang W, Du N, Zhang J, Feng Z, Jiang J, Zhang P. Nine compounds from the root bark of Lycium chinense and their anti-inflammatory activitieslammatory activitiesretain. Acta Pharmaceutica Sinica B. 2017, 7(4), p. 491-95.
37.Han SH, Lee HH, Lee IS, Moon YH, Woo ER. A new phenolic amide from Lycium chinense Miller. Archives of Pharmacal Research. 2002, 25(4), p. 433-37.
38.Yahara S, Shigeyama C, Nohara T, Okuda H, Wakamatsu K, Yasuhara T. Structures of anti ace and renin peptides from Lycii radicis cortex. Tetrahedron Letters. 1989, 30(44), p. 6041-42.
39.Yahara S, Shigeyama C, Ura T, Wakamatsu K, Yasuhara T, Nohara T. Cyclic peptides, acyclic diterpene glycosides and other compounds from Lycium chinense Mill. Chemical and Pharmaceutical Bulletin. 1993, 41(4), p. 703-9.
40.Wei XL, Liang JY. Chemical study on the root barks of Lycium chinese Mill.. Chinese Traditional and Herbal Drugs. 2002, 33(4), p. 580-81.
41.Zhang JX, Guan SH, Feng RH, Wang Y, Wu ZY, Zhang YB, Chen XH, Bi KS, Guo DA. Neolignanamides, lignanamides, and other phenolic compounds from the root bark of Lycium chinense. Journal of Natural Products. 2013, 76(1), p. 51-8.
42.黄小红,周興旺,王强,馬世平,李明. 3種地骨皮類生藥對白鼠的解熱和降血糖作用. 福建農業大學學報. 2000, 29(2), p.229.
43.Zhou J, Meng L, Huang JA, Zhang YW, Qiao W. Hypoglycemic effect of cortex Lycii radicis (CLR) on alloxan-induced diabetic mice. Chinese Traditional Patent Medicine. 2001, 23(6), p. 424.
44.李惠,王衛杰,何棟. 地骨皮蒽醌對高脂血症大鼠膽汁酸代謝機理研究. 飼料博覽省級. 2016, 11, p. 40.
45.Wang WJ, Guo SS, He D, Li H, Wang L, Xu D. Experimental study on hypolipidemic effects in hyperlipidemia rats by free anthraquinone in cortex Lycii radicis. Acta Chinese Medicine and Pharmacology. 2017, 45(3), p.17.
46.曹静,王淑華. 不同劑量地骨皮的藥理作用及應用. International Journal of Clinical and Experimental Medicine. 2002, 1(4), p. 262.
47.楊風琴,陳少平,馬學琴. 地骨皮的醇提取物及其體外抑菌活性研究. 寧夏醫學雜誌. 2007, 29(9), p.787.
48.鄭新川,楊景程,祝元峰,鄭江. 地骨皮乙素對细菌基因组的结合與拮抗作用研究. 中國藥理學會通訊. 2013, 12(3), p.61.
49.李志勇,劉洪超,周鳳琴. 地骨皮治療小鼠皮膚燙傷的藥效學研究. Journal of Chinese Medicinal Materials. 2011, 34(8), p. 1266.
50.葉田園,李志勇,李彥文,周鳳琴. 地骨皮提取物對熱損傷大鼠皮膚成纖維细胞的保護作用. 時珍國醫國藥雜誌. 2015, 26(11), p.2641.
51.殷軍,王大為,李發美,陳英杰,姜志明. 幾種生藥的提取部位對成骨細胞的增殖作用. 瀋陽藥科大學學報. 2001, 18(4), p.279.
52.Park E, Kim J, Kim MC, Yeo S, Kim J, Park S, Jo M, Choi CW, Jin HS, Lee SW, Li WY, Lee JW, Park JH, Huh D, Jeong SY. Anti-osteoporotic effects of kukoamine B isolated from Lycii radicis cortex extract on osteoblast and osteoclast cells and ovariectomized osteoporosis model mice. International Journal of Molecular Sciences. 2019, 20(11), p.2784.
53.Sitrallah S, Joumaa M. Isolation and identification of ferulic acid from Syrian Urtica pilulifera. International Journal of Scientific Engineering and Research. 2020, 11(10), p.403-6.
54.Katagiri Y, Mizutani J, and, Tahara S. Ferulic acid esters of unsaturated higher alcohols from Lupinus luteus roots. Phytochemistry. 1997, 46(2), p. 347-52.
55.Venkata SPC, Indra P. Isolation of stigmasterol and β-sitosterol from the dichloromethane extract of rubus suavissimus. International Current Pharmaceutical Journal. 2012, 1(9), p. 239-42.
56.Sakurai N, Kobayashi M, Shigihara A, Inoue T. Berchemolide, a novel dimeric vanillic acid glucoside from Berchemia racemosa. Chemical and Pharmaceutical Bulletin. 1992, 40(4), p. 851-3.
57.Olmo-Cunillera A, López-Yerena A, Lozano-Castellón J, Tresserra-Rimbau A, Vallverdú-Queralt A, Pérez M. NMR spectroscopy: a powerful tool for the analysis of polyphenols in extra virgin olive oil. Journal of the Science of Food and Agriculture. 2020, 100(5), p. 1842-51.
58.Fu Y, Chen J, Li YJ, Zheng YF, Li P. Antioxidant and anti-inflammatory activities of six flavonoids separated from licorice. Food Chemistry. 2013, 141(2), p. 1063-71.
59.Kajiyama K, Demizu S, Hiraga Y, Kinoshita K, Koyama K, Takahashi K, Tamura Y, Okada K, Kinoshita Y. Two prenylated retrochalcones from Glycyrrhiza inflata. Phytochemistry. 1992, 31(9), p. 3229-32.
60.Egebjerg MM, Olesen PT, Eriksen FD, Ravn-Haren G, Bredsdorff L, Pilegaard K. Are wild and cultivated flowers served in restaurants or sold by local producers in denmark safe for the consumer?. Food and Chemical Toxicology. 2018, 120, p.129-42.
61.Wang J, Zhang YS, Thakur K, Hussain SS, Zhang JG, Xiao GR, Wei ZJ. Licochalcone A from licorice root, an inhibitor of human hepatoma cell growth via induction of cell apoptosis and cell cycle arrest. Food and Chemical Toxicology. 2018, 120, p. 407-17.
62.Shah MR, Shamim A, White L, Bertino MF, Mesaik MA, Soomro S. The anti-inflammatory properties of Au–scopoletin nanoconjugates. New Journal of Chemistry. 2014, 38(11), p. 5566-72.
63.Darmawan A, Kosela S, Kardono LBS, Syah YM. Scopoletin, a coumarin derivative compound isolated from Macaranga gigantifolia Merr.. Journal of Applied Pharmaceutical Science. 2012, 2(12), p.175-77.
64.佐. 出水,喜. 梶山,敬. 平賀,薫. 木下,清. 小山,邦. 高橋,幸. 田村,憲. 岡田,武. 木下. prenylated dibenzoylmethane derivatives from the root of glycyrrhiza inflata. Chemical and Pharmaceutical Bulletin. 1992, 40(2), p. 392-95.
65.Gao X, Wang C, Chen Z, Chen Y, Santhanam RK, Xue Z, Ma Q, Guo Q, Liu W, Zhang M, Chen H. Effects of N-trans-feruloyltyramine isolated from laba garlic on antioxidant, cytotoxic activities and H2O2-induced oxidative damage in HepG2 and L02 cells. Food and Chemical Toxicology. 2019, 130, p. 130-41.
66.Pedersen HA, Steffensen SK, Christophersen C. Cinnamoylphenethylamine 1H-NMR chemical shifts: a concise reference for ubiquitous compounds. Natural Product Communications. 2010, 5(8), p.1259-62
67.Song YH, Kim DW, Curtis-Long MJ, Park C, Son M, Kim JY, Yuk HJ, Lee KW, Park KH. Cinnamic acid amides from tribulus terrestris displaying uncompetitive α-glucosidase inhibition. European Journal of Medicinal Chemistry. 2016, 114, p. 201-08.
68.Othman A, Sayed AM, Amen Y, Shimizu K. Possible neuroprotective effects of amide alkaloids from bassia indica and agathophora alopecuroides: in vitro and in silico investigations. RSC Advances. 2022, 12(29), p. 18746-58
69.Nusan S, Soekamto NH, Syah YM, Hermawati E. (R)-N-trans- feruloyloctopamine from the root timber of Melochia umbellata (Houtt.) Stapf var. Visenia (Paliasa). Journal of Physics: Conference Series. 2019, 1341(3), p. 32021
70.Wang Z, Liu Z, Cao Y, Paudal S, Yoon G, Cheon SH. Short and efficient synthesis of licochalcone B and D through acid-mediated laisen-schmidt condensation. Bulletin of the Korean Chemical Society. 2013, 34(12), p.3906-09
71.Wang M, Zeng J, Zhu Y, Chen X, Guo Q, Tan H, Cui B, Song S, Deng Y. A 4-hydroxybenzoic acid-mediated signaling system controls the physiology and virulence of shigella sonnei. Microbiology Spectrum. 2023, 11(3), p. 4835
72.Nomura T, Shiozawa M, Ogita S, Kato Y. Occurrence of hydroxycinnamoylputrescines in xylogenic bamboo suspension cells. Plant Biotechnology Journal. 2013, 30(5), p. 447-53.
73.Li L, Seeram NP. Further investigation into maple syrup yields 3 new lignans, a new phenylpropanoid, and 26 other phytochemicals. Journal of Agricultural and Food Chemistry. 2011, 59(14), p. 7708-16.
74.Peng Y, Lou LL, Liu SF, Zhou L, Huang XX, Song SJ. Antioxidant and anti-inflammatory neolignans from the seeds of hawthorn. Bioorganic & Medicinal Chemistry Letters. 2016, 26(22), p. 5501-06.
75.Greca MD, Ferrara M, Fiorentino A, Monaco P, Previtera L. Antialgal compounds from Zantedeschia aethiopica. Phytochemistry. 1998, 49(5), p. 1299.
76.Kosuge K, Mitsunaga K, Koike K, Ohmoto T. Studies on the constituents of Ailanthus integrifolia. Chemical and Pharmaceutical Bulletin. 1994, 42(8), p. 1669-71.
77.Kitajima J, Kamoshita A, Ishikawa T, Takano A, Fukuda T, Isoda S, Ida Y. Glycosides of Atractylodes ovata. Chemical and Pharmaceutical Bulletin. 2003, 51(9), p. 1106-8.
78.Yang YL, Chang FR, Wu YC. Squadinorlignoside: a novel 7,9'-dinorlignan from the stems of Annona squamosa. Helvetica Chimica Acta. 2005, 88(10), p. 2731-37.
79.Kasperkiewicz M, Ellebrecht CT, Takahashi H, Yamagami J, Zillikens D, Payne AS, Amagai M. Pemphigus. Nature Reviews Disease Primers. 2017,11(3), p. 17026.
80.Berkowitz P, Hu P, Liu Z, Diaz LA, Enghild JJ, Chua MP, Rubenstein DS. Desmosome signaling. Inhibition of p38MAPK prevents pemphigus vulgaris IgG-induced cytoskeleton reorganization. Journal of Biological Chemistry. 2005, 280(25), p. 23778-84.
81.Zhou T, Zhou P, Hua H, Liu X. Beneficial effects and safety of corticosteroids combined with traditional chinese medicine for pemphigus: a systematic review. Evidence-Based Complementary and Alternative Medicine. 2015, 2015, p. 815358.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top