跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/03 09:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁偉誠
研究生(外文):WENG,WEI-CHENG
論文名稱:新風換氣系統去除室內粒狀物之粒徑分布形態 與通風換氣改善評估
論文名稱(外文):Particle Size Distribution and Ventilation Improvement Assessment of Indoor Particulate Matter Removal Using a Ventilation System
指導教授:蔡瀛逸蔡瀛逸引用關係
指導教授(外文):TSAI,YING-I
口試委員:黃小林陳培詩
口試委員(外文):HUANG,HSIAO-LINCHEN, PEI-SHIH
口試日期:2023-07-31
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:121
中文關鍵詞:新風換氣系統微粒數目濃度粒徑分布二氧化碳室內空氣品質粒狀物
外文關鍵詞:Fresh Air Ventilation SystemParticle number concentration and size distributionCO2Indoor Air QualityParticulate matter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:12
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
國人對環境品質日益重視,更因COVID-19肆虐,對健康防護更為要求。現今常以空氣清淨機淨化室內空品,但在密閉的室內空間中,會有各式產生污染之行為,如烹飪、拜香等,而這些行為會使得室內二氧化碳及微粒濃度增加,進而讓人受到影響,對人體造成危害。因此本研究藉由新風換氣系統探討對微粒之去除及除霾全熱交換機置換室內二氧化碳之效能。
本研究設計在室內密閉空間中進行拜香燃燒,藉由新風換氣系統去除微粒。香擺放三支,新風換氣系統使用之風量為620 m3/h (Cubic meters per hour, CMH),所使用之濾網為高效濾網 H12 級。為了解新風換氣系統對於微粒之去除效能,共設計兩次測試,一次為因應節能角度規畫短時間(約15分鐘)之新風運轉(低拜香燃燒量),另一次為長時間(約175分鐘)之新風運轉(高拜香燃燒量),為了解需耗費多長時間能將空間中微粒濾除至與拜香前室內微粒濃度相同。同時為了解在二氧化碳在室內之變化趨勢及除霾全熱交換機對於降低室內二氧化碳之成效,因此設計了兩種情境,兩種情境中人數皆為5人,一種為初始二氧化碳濃度較高(高於1000 ppm),另一種為初始二氧化碳濃度較低(低於800 ppm),分別探討二氧化碳濃度下降速率及上升速率變化之研究,其新風換氣系統風量同為620 CMH。
在室內空間大小為35.7 m3,在低拜香燃燒量理論空間置換次數約為4.3次,在高拜香燃燒量理論空間置換次數約為50.6次。進行拜香燃煙時,室內空間中微粒濃度大幅度上升,拜香燃煙所產生之微粒數目濃度粒徑分布在50-200 nm之間。在新風換氣系統啟動後1-3分鐘,空間中微粒被揚起,使空間中微粒總濃度上升,而被揚起之微粒數目濃度其粒徑分布在100-200 nm之間。低拜香燃燒量中新風換氣系統在15分鐘的運轉中,對於微粒數目、表面積及體積濃度分別去除率可達67.2%、66.8%、63.6%,到了後靜置時因室內空間不再受到擾動,空間中微粒緩慢沉降。高拜香燃燒量在長達175分鐘之運轉中,在運轉15分鐘時,對於微粒數目、表面積及體積濃度分別去除率可達90.9%、94.0%、93.9%,而到了第175分鐘時,對於微粒數目、表面積及體積濃度分別去除率可達98.6%、99.6%、99.6%。高拜香燃燒量測試中在10 nm至10 m微粒粒徑中,在微粒分徑10-100 nm有較佳之去除效果,k約為0.294,次之則為300-1000 nm的分徑,k約為0.290。低拜香燃燒量中,在各階段之數目濃度眾數粒徑約在99.1-106.0 nm之間,表面積眾數粒徑約在148.4- 158.7 nm之間,體積濃度眾數粒徑約在194.1-254.1 nm之間,長時間之濾除會使得微粒眾數粒徑向左偏移。
在有5人且空間大小為91.9 m3的室內環境中,理論空間置換次數約為3.3次。在室內二氧化碳較高之測試中,初始二氧化碳濃度為1295 ppm ,經過30分鐘後室內二氧化碳濃度約為1275 ppm ,室內二氧化碳濃度較不易上升。之後啟動除霾全熱交換機30分鐘可降低室內二氧化碳濃度約至1138 ppm,下降比例為14%。未開啟除霾全熱交換機時每分鐘二氧化碳增加速率為0.591 ppm/min,而開啟除霾全熱交換機後每分鐘二氧化碳下降速率為16.896 ppm/min, 由此兩者增加/減少之速率相比,除霾全熱交換機可有效降低室內二氧化碳。而在室內二氧化碳較高之測試中,初始環境初始二氧化碳為600 ppm ,經過30分鐘後室內二氧化碳濃度約至822 ppm ,上升比例為37%,啟動除霾全熱交換機室內二氧化碳濃度上升至865 ppm,上升比例為5%。未開啟除霾全熱交換機時每分鐘二氧化碳增加速率為5.555 ppm/min,而開啟除霾全熱交換機後每分鐘二氧化碳增加速率為1.550 ppm/min,由此兩者增加速率相比,開啟除霾全熱交換機可有效減少二氧化碳增加。因此除霾全熱交換機可有效降低室內二氧化碳濃度也可抑制室內二氧化碳濃度增加之速率。

As environmental quality gains increasing attention among the populace, and with the ongoing impact of the COVID-19 pandemic, the demand for health protection has surged. Air purifiers have become commonplace for improving indoor air quality. However, within enclosed indoor spaces, various activities such as cooking and burning incense contribute to pollution, leading to elevated levels of indoor carbon dioxide (CO2) and particulate matter. These pollutants can adversely affect human health. Therefore, this study focuses on evaluating the efficiency of a new air ventilation system in removing particulate matter and an air-to-air heat exchanger in reducing indoor CO2 levels.
The study involved burning incense in a sealed indoor space while utilizing a fresh air ventilation system to eliminate particulate matter. Three incense sticks were burnt, and the ventilation system had an airflow rate of 620 m3/h (Cubic meters per hour, CMH) using a high-efficiency H12-grade filter. To assess the particulate removal efficiency, two tests were conducted: one with short-duration ventilation (about 15 minutes) to simulate low incense burning and another with extended-duration ventilation (about 175 minutes) to mimic high incense burning. The aim was to determine the time required to restore indoor particulate concentrations to levels similar to those before incense burning.
The study also investigated the trends in indoor CO2 variations and the effectiveness of the air-to-air heat exchanger in reducing indoor CO2 levels. Two scenarios were designed, each involving five occupants. One scenario started with higher initial CO2 concentrations (above 1000 ppm), while the other began with lower initial CO2 concentrations (below 800 ppm). The research explored changes in CO2 concentration reduction and increase rates, both scenarios using the same fresh air ventilation system with a flow rate of 620 CMH.
In an indoor space with a volume of 35.7 m³, the theoretical air exchange rate for low Bai Xiang combustion is approximately 4.3 air changes, while for high Bai Xiang combustion, it's around 50.6 air changes. During the combustion of Bai Xiang incense, there is a significant increase in indoor particulate concentration. The particle number concentration distribution resulting from Bai Xiang incense combustion ranges from 50 to 200 nm.Upon activation of the ventilation system within 1-3 minutes, airborne particles are stirred up, leading to a rise in the total particle concentration in the room. The size distribution of these airborne particles is within the range of 100-200 nm. In the case of low Bai Xiang combustion, with the new air ventilation system running for 15 minutes, removal rates for particle number, surface area, and volume concentrations reach 67.2%, 66.8%, and 63.6% respectively. During the subsequent stationary period, as the indoor environment is no longer disturbed, particles settle slowly.For high Bai Xiang combustion over a duration of 175 minutes, the removal rates after 15 minutes of operation are 90.9% for particle number, 94.0% for surface area, and 93.9% for volume concentrations. By the 175th minute, these removal rates increase to 98.6%, 99.6%, and 99.6% respectively. In the high Bai Xiang combustion test, within the particle size range of 10 nm to 10 μm, optimal removal efficiency is observed for particle sizes ranging from 10 to 100 nm, with a coefficient (k) of about 0.294. Subsequently, the particle sizes in the range of 300 to 1000 nm exhibit the next best removal efficiency, with a k value of approximately 0.290.In the case of low Bai Xiang combustion, the mode particle diameter for number concentration at each stage falls within the range of 99.1-106.0 nm. Furthermore, the mode particle diameter for surface area concentration lies between 148.4 and 158.7 nm, while for volume concentration, it ranges from 194.1 to 254.1 nm. Prolonged filtration leads to a leftward shift in the mode particle diameter of the particle size distribution.
In a larger indoor environment with a volume of 91.9 m3 and multiple individuals, the ventilation system with an airflow rate of 620 CMH was used. The initial CO2 concentration was around 1295 ppm. After 30 minutes, the indoor CO2 concentration was approximately 1275 ppm. Activating the ventilation system lowered the indoor CO2 concentration to about 1138 ppm, a reduction of 14%. Without the ventilation system, the CO2 increase rate was 0.5909 ppm/min, while with the system, the CO2 decrease rate was 16.896 ppm/min. Therefore, the ventilation system effectively reduced indoor CO2 levels. When the initial CO2 was 600 ppm, after 30 minutes, the indoor CO2 concentration increased to around 822 ppm, a rise of 37%. Activating the ventilation system increased the indoor CO2 concentration to 865 ppm, a rise of 5%. Without the ventilation system, the CO2 increase rate was 5.5545 ppm/min, and with the system, the increase rate was 1.5502 ppm/min. Thus, activating the ventilation system effectively slowed down the CO2 increase rate. Therefore, the ventilation system can reduce indoor CO2 concentrations and suppress the rate of CO2 increase.

摘要 i
Abstract iv
致謝 vi
目錄 vii
圖目錄 ix
表目錄 xviii
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 5
2-1室內空氣污染物類型與規範 5
2-2室內空氣污燃物來源及危害 8
2-3室內通風與空氣品質 10
2-4室內空間淨化 11
2-4-1纖維過濾技術 11
2-4-2靜電集塵技術 12
2-4-3微粒去除成效 13
2-4-4二氧化碳置換成效 14
第三章 研究方法 15
3-1微粒去除之研究方法、設備及場域 15
3-2二氧化碳置換成效之研究方法、設備及場域 24
第四章 結果與討論 29
4-1開啟新風換氣系統前後室內空間微粒體積濃度各階段熱區圖變化 29
4-2開啟新風換氣系統前後室內不同位置空間微粒濃度 31
4-3開啟新風換氣系統前後室內空間微粒濃度的時間變化 33
4-4 新風換氣系統過濾成效 43
4-5開啟新風過濾啟動逐分去除係數 46
4-6開啟新風換氣系統前後室內空間微粒分徑濃度的時間變化 52
4-7開啟新風換氣系統前後各階段室內空間微粒粒徑濃度分布變化 59
4-8開啟新風換氣系統前後各階段室內空間微粒分徑濃度變化及占比 71
4-9開啟除霾全熱交換機前後CO2濃度分布 107
4-10開啟除霾全熱交換機前後CO2濃度時間趨勢變化 110
第五章 結論與建議 113
5-1結論 113
5-2建議 115
參考文獻 117
Anderson, J.O., Thundiyil, J.G., Stolbach, A., 2012. Clearing the air: a review of the effects of particulate matter air pollution on human health. Journal of Medical Toxicology 8, 166–175.
Awan, A., Alnour, M., Jahanger, A., Onwe, J.C., 2022. Do technological innovation and urbanization mitigate carbon dioxide emissions from the transport sector? Technology in Society 71, 102128.
Azuma, K., Kagi, N., Yanagi, U., Osawa, H., 2018. Effects of low-level inhalation exposure to carbon dioxide in indoor environments: A short review on human health and psychomotor performance. Environment International 121, 51–56.
Batterman, S., Godwin, C., Jia, C., 2005. Long duration tests of room air filters in cigarette smokers' homes. Environmental Science & Technology 39, 7260–7268.
Bowe, B., Xie, Y., Yan, Y., Al-Aly, Z., 2019. Burden of cause-specific mortality associated with PM2.5 air pollution in the United States. JAMA Network open 2, e1915834–e1915834.
Buonanno, G., Giovinco, G., Morawska, L., Stabile, L., 2015. Lung cancer risk of airborne particles for Italian population. Environmental Research 142, 443–451.
Chen, Y. H., Tu, Y. P., Sung, S. Y., Weng, W.-C., Huang, H.-L., & Tsai, Y. I., 2022. A comprehensive analysis of the intervention of a fresh air ventilation system on indoor air quality in classrooms. Atmospheric Pollution Research 13, 101373.
De Giuli, V., Da Pos, O., De Carli, M., 2012. Indoor environmental quality and pupil perception in Italian primary schools. Building and Environment 56, 335–345.
Du, L., Batterman, S., Parker, E., Godwin, C., Chin, J.-Y., O’Toole, A., Robins, T., Brakefield-Caldwell, W., Lewis, T., 2011. Particle concentrations and effectiveness of free-standing air filters in bedrooms of children with asthma in Detroit, Michigan. Building and Environment 46, 2303–2313.
Di, Q., Wang, Y., Zanobetti, A., Wang, Y., Koutrakis, P., Choirat, C., Dominici, F., Schwartz, J.D., 2017. Air pollution and mortality in the Medicare population. New England Journal of Medicine 376, 2513–2522.
Garaga, R., Gokhale, S., Kota, S. H., 2020. Source apportionment of size-segregated atmospheric particles and the influence of particles deposition in the human respiratory tract in rural and urban locations of north-east India. Chemosphere 255, 126980.
Griffiths, M., Eftekhari, M., 2008. Control of CO2 in a naturally ventilated classroom. Energy and Buildings 40, 556-560.
Hill, L., Flack, M., 1908. The effect of excess of carbon dioxide and of want of oxygen upon the respiration and the circulation. The Journal of Physiology 37, 77.
Hu, H., Ye, J., Liu, C., Yan, L., Yang, F., Qian, H., 2023. Emission and oxidative potential of PM2.5 generated by nine indoor sources. Building and Environment 110021.
Jeong, J. Y., Choi, K., Choi, H.J., 2022. Novel post-treatment of removed fine dust particle: Electrorheological application. Journal of Cleaner Production 368, 133128.
Krall, J.R., Ladva, C.N., Russell, A. G., Golan, R., Peng, X., Shi, G., Greenwald, R., Raysoni, A.U., Waller, L.A., Sarnat, J.A., 2018. Source-specific pollution exposure and associations with pulmonary response in the Atlanta Commuters Exposure Studies. Journal of Exposure Science & Environmental Epidemiology 28, 337–347.
Li, Y.-G., Gao, X., 2014. Epidemiologic studies of particulate matter and lung cancer. Chinese Journal of Cancer 33, 376.
Liu, G., Xiao, M., Zhang, X., Gal, C., Chen, X., Liu, L., Pan, S., Wu, J., Tang, L., Clements-Croome, D., 2017. A review of air filtration technologies for sustainable and healthy building ventilation. Sustainable Cities and Society 32, 375–396.
Loomis, D., Grosse, Y., Lauby-Secretan, B., El Ghissassi, F., Bouvard, V., Benbrahim-Tallaa, L., Guha, N., Baan, R., Mattock, H., Straif, K., 2013. The carcinogenicity of outdoor air pollution. The Lancet Oncology 14, 1262-1263.
Madureira, J., Slezakova, K., Costa, C., Pereira, M.C., Teixeira, J.P., 2020. Assessment of indoor air exposure among newborns and their mothers: Levels and sources of PM10, PM2.5 and ultrafine particles at 65 home environments. Environmental Pollution 264, 114746.
Raaschou-Nielsen, O., Andersen, Z. J., Beelen, R., Samoli, E., Stafoggia, M., Weinmayr, G., Hoffmann, B., Fischer, P., Nieuwenhuijsen, M.J., Brunekreef, B., 2013. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). The Lancet Oncology 14, 813–822.
Seppanen, O., Fisk, W.J., Lei, Q.H., 2005. Ventilation and work performance in office work. National Library of Medicine Indoor Air 16, 28–36.
Sharifi, S., Behzadi, S., Laurent, S., Forrest, M. L., Stroeve, P., Mahmoudi, M., 2012. Toxicity of nanomaterials. Chemical Society Reviews 41, 2323–2343.
Bentayeb, M., Simoni, M., Norback, D., Baldacci, S., Maio, S., Viegi, G., Annesi–Maesano, I., 2013. Indoor air pollution and respiratory health in the elderly. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering 48, 1783–1789.
Torkmahalleh, M. A., Ospanova, S., Baibatyrova, A., Nurbay, S., Zhanakhmet, G., Shah, D., 2018. Contributions of burner, pan, meat and salt to PM emission during grilling. Environmental Research 164, 11–17.
Wang, X., Hong, S., Lian, H., Zhan, X., Cheng, M., Huang, Z., Manzo, M., Cai, L., Nadda, A., Van Le, Q., 2021. Photocatalytic degradation of surface-coated tourmaline-titanium dioxide for self-cleaning of formaldehyde emitted from furniture. Journal of Hazardous Materials 420, 126565.
Wang, Z., Yu, H., Liang, W., Wang, F., Wang, G., Chen, D., Wang, W., Zhao, H., Feng, Y., Shi, Z., 2022. Ensemble source apportionment of air pollutants and carbon dioxide based on online measurements. Journal of Cleaner Production 370, 133468.
Weichenthal, S., 2012. Selected physiological effects of ultrafine particles in acute cardiovascular morbidity. Environmental Research 115, 26–36.
Wi, S., Kim, M.G., Myung, S.W., Baik, Y. K., Lee, K.B., Song, H.S., Kwak, M.J., Kim, S., 2020. Evaluation and analysis of volatile organic compounds and formaldehyde emission of building products in accordance with legal standards: A statistical experimental study. Journal of Hazardous Materials 393, 122381.
Wong, A., Lou, W., Ho, K.F, Yiu, B. K.F., Lin, S., Chu, W. C.W., Abrigo, J., Lee, D., Lam, B. Y.k., Au, L. W.c., 2020. Indoor incense burning impacts cognitive functions and brain functional connectivity in community older adults. Scientific Reports 10, 1–11.
Yao, M., Hu, Y., Zhang, A., Ji, J. S., Zhao, B., 2022. COPD deaths attributable to ozone in 2019 and future projections using the WHO AQG 2021 in urban China. Eco-Environment & Health 1, 251–258.
Zhang, J., Chen, Z., Shan, D., Wu, Y., Zhao, Y., Li, C., Shu, Y., Linghu, X., Wang, B., 2024. Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. Journal of Environmental Sciences 135, 449–473.
行政院環境保護署,2008, 推動公共場所自主管理制度及室內空氣品質管理法相關子法訂定期末報告。
行政院環境保護署,2012。
https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL068252
孫國書,2023 ,室內空氣品質管理與改善簡介。 https://proj.ftis.org.tw/eta/epaper/PDF/ti104-1.pdf (accessed on January 13 ,2023)
王建鈞,2021,光學以及電化學對於一氧化碳及二氧化碳感測器的研究,碩士論文,國立台灣大學電子工程學研究所,台北。
馬瑞鴻,2020,靜電集塵器集塵效率的數值模擬,碩士論文,國立台灣大學應用力學研究所,台北。
陳世雄,2018,學校學習場域室內空氣品質調查與改善─ 子計畫四-室內空氣中氣狀汙染物之吸附去除機構探討,嘉南藥理大學。
賴鵬仁,2017,都會區機車排放空氣污染物濃度變化與影響因子之研究,碩士論文,景文科技大學環境科技與物業管理系碩士在職專班,新北。
麥富德、蔡佳芳、許又文、陳文貴,2005,醫院室內空氣品質的監測。 科儀新知147,73–80。
顧惟婷,2012,臺灣漢人信仰中用香與香火觀之解析,碩士論文,國立台北大學古典文獻與民俗藝術研究所,台北。
吳世彬,2007,沉香文化的發展及其現代應用,碩士論文,佛光大學生命學研究所,宜蘭。
陳其南,2021,應用物聯網技術於室內空氣品質即時改善系統,碩士論文,南華大學科技學院永續綠色科技碩士學位學程,嘉義。

電子全文 電子全文(網際網路公開日期:20280831)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊