跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/19 17:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王家良
研究生(外文):Chia-Liang Wang
論文名稱:透析患者在血管鈣化促進劑和抑制劑相關的礦物質異常以及補充鋅在這些血管鈣化的生化指標的效應
論文名稱(外文):Altered Mineral Metabolism Between Calcification Promoters and Inhibitors and Effect of Zinc Supplementation on Potential Biomarkers of Vascular Calcification in Hemodialysis Patients
指導教授:劉凱莉劉凱莉引用關係
指導教授(外文):Kai-Li Liu
口試委員:郭志宏江采宜張浤榮柯萬盛
口試委員(外文):Chih-Hung GuoTsay-I ChiangHorng-Rong ChangWan-Cheng Ko
口試日期:2022-07-28
學位類別:博士
校院名稱:中山醫學大學
系所名稱:營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
語文別:中文
論文頁數:135
中文關鍵詞:血管鈣化抗氧化礦物質氧化壓力發炎透析患者
外文關鍵詞:vascular calcificationantioxidant mineralsoxidative stressinflammationdialysis patientszinc
DOI:10.6834/csmu202200214
相關次數:
  • 被引用被引用:0
  • 點閱點閱:70
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
血液透析患者有異常的血液中抗氧化礦物質濃度,同時有增加的氧化壓力,可導致並促進血管鈣化。本研究的第一階段,旨在評估在血液透析患者,抗氧化礦物質與血管鈣化臨床生物標記之間的關聯。在血液透析患者 (n = 62) 和年齡和性別匹配的健康受試者( n = 30),檢驗血液生化參數、抗氧化礦物質(硒 (Se)、鋅 (Zn)、銅 (Cu) 和鎂 (Mg))以及幾種鈣化促進劑和抑制劑(基質 Gla 蛋白 (MGP)、纖維母細胞生長因子 23 ( FGF-23)、基質金屬蛋白酶 (MMP-2和-9) 和金屬蛋白酶組織抑制劑 (TIMP-1和-2))。與健康受試者相比,血液透析患者的血液硒和鋅濃度顯著降低,銅和鎂濃度增加,氧化壓力和發炎標記(銅/鋅比值、丙二醛 (MDA)、晚期糖基化終產物 (AGEs)、和C反應蛋白 (CRP) 增加。我們發現,血液透析患者的 MGP 濃度顯著降低,而 FGF-23、MMP-2 和-9、TIMP-和-2以及MMP-2/TIMP-2 和MMP-9/TIMP-1比值顯著升高。我們還觀察到這些礦物質的濃度與鈣化生物標記之間的顯著關係。這些結果表明,抗氧化礦物質(Se、Zn、Cu 和 Mg)的變化可能增加氧化壓力和發炎狀態,進而參與血液透析患者血管鈣化的機制。
本研究的第二階段,旨在評估補充抗氧化礦物質鋅 (Zn) 對透析患者的血管鈣化生物標記的影響。接受長期血液透析或腹膜透析的患者(n = 32)接受口服葡萄糖酸鋅治療,每日劑量為78 mg(每10mg元素鋅),持續6個月。年齡和性別匹配的健康受試者作為對照組。在基線和實驗期結束時,測量生化標記。與基線值相比,補充後血鋅濃度顯著升高。補鋅顯著降低氧化壓力和發炎標記(MDA、Cu/Zn ratio、CRP、TNF-和IL-1);此外,這些接受鋅治療的患者血液骨橋蛋白(osteopontin)和胱抑素C(cystatin C) 濃度明顯降低,但FGF-23 和homocysteine沒有下降。此外,血鋅狀態或銅鋅比與較低水平的cystatin C密切相關。這表明充鋅可以降低血管鈣化危險因素,有潛力治療血管鈣化。
Patients undergoing long-term hemodialysis (HD) are known to have abnormal blood concentrations of antioxidant minerals; concurrent oxidative stress can contribute to increased vascular calcification. The first stage of present study aims to evaluate the associations between circulating antioxidant minerals and clinical biomarkers of vascular calcification in HD patients. Blood biochemical parameters, antioxidant minerals (selenium (Se), zinc (Zn), copper (Cu), and magnesium (Mg)), and several promoters and inhibitors of calcification (matrix Gla protein (MGP), fibroblast growth factor-23 (FGF-23), matrix metalloproteinases (MMP-2 and -9), and tissue inhibitors of metalloproteinase (TIMP-1 and -2)) were determined in HD patients (n = 62) and age- and sex-matched healthy individuals (n = 30). Compared with healthy subjects, HD patients had significantly lower plasma concentrations of Se and Zn, increased Cu and Mg, and higher levels of oxidative stress and inflammatory markers (Cu/Zn ratios, malondialdehyde (MDA), advanced glycation end products (AGEs), and C-reactive protein (CRP)). We observed that HD patients had significantly lower concentrations of MGP and higher levels of FGF-23, MMP-2 and -9, TIMP-1 and -2, and MMP-2/TIMP-2 and MMP-9/TIMP-1 ratios. We also observed significant relationships between the concentrations of these minerals and calcification biomarkers in HD patients. These results suggest that changes in the homeostasis of antioxidant minerals (Se, Zn, Cu, and Mg) may contribute to the effects of oxidative stress and inflammatory status, thereby participating in the mechanism for accelerated vascular calcification in patients undergoing long-term HD.
The second stage of present study aims to evaluate the effect of prolonged antioxidant zinc (Zn) supplementation on some potential biomarkers of vascular calcification in subjects with chronic kidney disease. Patients on long-term hemodialysis or peritoneal dialysis (n=32) were treated by Zn gluconate with a daily dose of 78 mg for six months. Age- and sex-matched healthy individuals served as a control group. A number of biochemical markers were measured at baseline and again at end of experimental period. Compared with baseline values, post-supplementation plasma Zn concentration was significantly higher. Zn supplementation markedly reduce oxidative stress and inflammatory markers (malondialdehyde, copper to zinc ratio, C-reactive protein, tumor necrosis factor-, and interleukin-1); additionally, these patients who received Zn have obviously lower plasma concentrations of osteopontin and cystatin C, but not fibroblast growth factor 23 and homocysteine. Furthermore, plasma Zn status or copper to zinc ratio was closely associated with lower levels of cystatin C. It is suggested that low dose Zn supplementation can potentially decrease risk factors, thereby representing a potential therapeutic strategy in vascular calcification.
謝誌 I
中文摘要 II
英文摘要 IV
目次 VI
圖次 IX
表次 XI
第一章 緒論
第一節 研究背景與動機 1
第二節 研究目的 5
第三節 研究問題 6
第四節 研究假設 7
第二章 文獻查證
第一節 慢性腎臟病-礦物質和骨頭代謝的異常 8
第二節 慢性腎臟病的血管鈣化 25
第三節 微量元素 40
第四節 其他的微量營養素 47
第三章 研究方法
第一節 研究設計 55
第二節 研究對象及場所 56
第三節 研究測量工具 57
第四節 研究步驟 61
第五節 研究倫理 63
第六節 資料分析與統計方法 64
第四章 研究結果
第一節 研究對象基本資料及特性 (第ㄧ階段) 65
第二節 血液透析患者的抗氧化礦物質和氧化壓力、發炎指標和血管鈣化促進劑和抑制劑的關係 67
第三節 研究對象基本資料及特性 (第二階段) 75
第四節 補充鋅後氧化壓力、發炎指標和血管鈣化促進劑/抑制劑的差異 77
第五章 討論
第一節 血液透析患者的抗氧化礦物質和氧化壓力、發炎指標和 血管鈣化促進劑/抑制劑的關係 84
第二節 補充鋅後氧化壓力、發炎指標和血管鈣化促進劑/抑制劑的差異 88
第六章 結論與建議 92
限制 93
參考文獻 94
1. Briasoulis A, Bakris GL: Chronic kidney disease as a coronary artery disease risk equivalent. Curr Cardiol Rep 2013; 15:340.
2. Anavekar NS, Pfeffer MA: Cardiovascular risk in chronic kidney disease. Kidney Int Suppl 2004; 66(Suppl 92):S11-5.
3. Palit S, Kendrick J. Vascular calcification in chronic kidney disease: role of disordered mineral metabolism. Curr Pharm Des 2014;20:5829–5833
4. Karwowsk W, Naumnik B, Szczepański M, Myśliwiec M. The mechanism of vascular calcification - a systematic review. Med Sci Monit 2012;18:RA1–RA11
5. Jono S, Shioi A, Ikari Y, Nishizawa Y. Vascular calcification in chronic kidney disease. J Bone Miner Metab 2006;24:176–181
6. Chen NX, Moe SM. Vascular calcification: pathophysiology and risk factors. Curr Hypertens Rep 2012;14:228–237
7. Nasrallah MM, El-Shehaby AR, Salem MM, Osman NA, EI Sheikh E, El Din UAAS. Fibroblast growth factor-23(FGF-23) is independently correlated to aortic calcification in haemodialysis patients. Nephrol Dial Transplant 2010;25:2679–2685
8. Felsenfeld AJ, Levine BS, Rodriguez M. Pathophysiology of calcium, phosphorus, and magnesium dysregulation in chronic kid ney disease. Semin Dial 2015;28:564–577
9. Julien M, Magne D, Masson M, Rolli-Derkinderen M, Chassande O, Cario- Toumaniantz C et al. Phosphate stimulates matrix Gla protein expression in chondrocytes through the extracellular signal regulated kinase signaling pathway. Endocrinology 2007;148:530–537
10. Hecht E, Freise C, Websky KV, Nasser H, Kretzschmar N,Stawowy P et al. The matrix metalloproteinases 2 and 9 initiate uraemic vascular calcifications. Nephrol Dial Transplant 2016;31:789–797
11. Tóth A, Balogh E, Jeney V. Regulation of vascular calcification by reactive oxygen species. Anti-oxidants (Basel). 2020;9:963.
12. Wang CL, Lin KP, Hsu GW, Liu KL, Guo CH. Altered mineral metabolism and disequilibrium between calcification promoters and inhibitors in chronic hemodialysis patients. Biol Trace Elem Res. 2020;193:14-22.
13. NasrAllah MM, El-Shehaby AR, Osman NA, Fayad T, Nassef A, Salem MM et al. The association between fibroblast growth factor-23 and vascular calcification is mitigated by inflammation markers. Nephron Extra 2013;3:106–112
14. Pawlak K, Mysliwiec M, Pawlak D. Peripheral blood level alterations of MMP-2 and MMP-9 in patients with chronic kidneydisease on conservative treatment and on hemodialysis. Clin Biochem 2011;44:838–843
15. Oncel M, Akbulut S, Toka Ozer T, et al. Adipocytokines and inflammatory markers in patients on continuous ambulatory peritoneal dialysis and hemo-dialysis. Ren Fail. 2016;38:1071-1075
16. Roy N, Rosas SE. IL-6 is associated with progression of coronary artery calcification and mortality in incident dialysis patients. Am J Nephrol. 2021;52:745-752.
17. Takahashi H, Ishii H, Aoyama T, et al. Association of cardiac valvular calcifications and C-reactive protein with cardiovascular mortality in incident hemodialysis patients: a Japanese cohort study. Am J Kidney Dis. 2013;61:254-261.
18. Guo CH, Wang CL. Effects of zinc supplementation on plasma copper/zinc ratio, oxidative stress, and immunological status in hemodialysis patients. Int J Med Sci 2013;10:79–89
19. Zheltova AA, Kharitonova MV, Iezhitsa IN, et al. Magnesium deficiency and oxidative stress: an update. BioMedicine 2016;6:20
20. Guo CH, Wang CL, Chen PC, et al. Linkage of some trace elements, peripheral blood lymphocytes, inflammation, and oxidative stress in ESRD patients undergoing either hemodialysis or peritoneal dialysis. Perit Dial Int 2011;31:583–591
21. de Roij van Zuijdewijn CLM, MPC G, Bots ML, et al. Serum magnesium and sudden death in European hemodialysis patients. PLoS One 2015;10:e0143104
22. Molnar AO, Biyani M, Hammond I, et al. Lower serum magnesium is associated with vascular calci fication in peritoneal dialysis patients: a cross sectional study. BMC Nephrol 2017;18:129
23. Muslimovic A, Tulumovic D, Hasanspahic S, et al. Serum cystatin C - marker of inflammation and cardiovascular morbidity in chronic kidney disease stages 1-4. Mater Sociomed. 2015;27:75-78.
24. Dandana A, Gammoudi I, Chalghoum A, et al. Clinical utility of serum cystatin C in predicting coronary artery disease in patients without chronic kidney disease. J Clin Lab Anal. 2014; 28:191-197.
25. van Guldener C. Why is homocysteine elevated in renal failure and what can be expected from homocysteine-lowering? Nephrol Dial Transplant. 2006;21:1161-1166.
26. Karger AB, Steffen BT, Nomura SO, et al. Association between homocysteine and vascular calcification incidence, prevalence, and progression in the MESA cohort. J Am Heart Assoc. 2020;9:e013934.
27. Cianciolo G, De Pascalis A, Di Lullo L, et al. Folic acid and homocysteine in chronic kidney disease and cardiovascular disease progression: Which comes first? Cardiorenal Med. 2017; 7:255-266.
28. Vossen LM, Kroon AA, Schurgers LJ, et al. Pharmacological and nutritional modulation of vascular calcification. Nutrients. 2019;12:100.
29. Damianaki K, Lourenco JM, Braconnier P, et al. Renal handling of zinc in chronic kidney disease patients and the role of circulating zinc levels in renal function decline. Nephrol Dial Transplant. 2020;35:1163-1170.
30. Wang LJ, Wang MQ, Hu R, et al. Effect of zinc supplementation on maintenance hemodialysis patients: A systematic review and meta-analysis of 15 randomized controlled trials. Biomed Res Int. 2017; 2017: 1024769.
31. Voelkl J, Tuffaha R, Luong TTD, et al. Zinc inhibits phosphate-induced vascular calcification through TNFAIP3-mediated suppression of NF-κB. J Am Soc Nephrol. 2018; 29: 1636-1648.
32. 財團法人國家衛生研究院、台灣腎臟醫學會(2020).2020台灣腎病年報.取自https://www.tsn.org.tw/UI/L/TWRD/ebook_2020%E5%B9%B4%E5%A0
%B1.pdf
33. Moe S, Drüeke T, Cunningham J, et al: Definition, evaluation
and classification of renal osteodystrophy: a position statement from kidney disease: improving global Qutcomes (KDIGO). Kidney Int 2006;69:1945-1953
34. Hamdy NA, Kanis JA, Beneton MN, et al. Effect of alfacalcidol on natural course of renal bone disease in mild to moderate renal failure. BMJ 1995;310:358–363.
35. Coen G, Ballanti P, Bonucci E, et al. Renal osteodystrophy in predialysis and hemodialysis patients: comparison of histologic patterns and diagnostic predictivity of intact PTH. Nephron 2002;91:103–111.
36. Qunibi WY, Abouzahr F, Mizani MR, et al. Cardiovascular calcification in Hispanic Americans (HA) with chronic kidney disease (CKD) due to type 2 diabetes. Kidney Int 2005;68:271–277.
37. Qunibi WY. Cardiovascular calcification in nondialyzed patients with chronic kidney disease. Semin Dial 2007;20:134–138.
38. Budoff MJ, Rader DJ, Reilly MP, et al. Relationship of estimated GFR and coronary artery calcification in the CRIC (Chronic Renal Insufficiency Cohort)
39. Hruska KA, Mathew S, Lund R, et al. Hyperphosphatemia of chronic kidney disease. Kidney Int 2008;74(2):148–157.
40. Kalantar-Zadeh K, Gutekunst L, Mehrotra R, et al. Understanding sources of dietary phosphorus in the treatment of patients with chronic kidney disease. Clin J Am Soc Nephrol 2010;5:519–530.
41. Uribarri J. Phosphorus additives in food and their effect in dialysis patients. Clin J Am Soc Nephrol 2009;4: 1290–1292.
42. Weinman EJ, Light PD, Suki WN. Gastrointestinal phosphate handling in CKD and its association with cardiovascular disease. Am J Kidney Dis 2013;62:1006–1011.
43. Marks J, Debnam ES, Unwin RJ. The role of the gastrointestinal tract in phosphate homeostasis in health and chronic kidney disease. Curr Opin Nephrol Hypertens 2013;22:481–487.
44. Laflamme GH, Jowsey J. Bone and soft tissue changes with oral phosphate supplements. J Clin Invest 1972;51:2834–2840.
45. Jowsey J, Reiss E, Canterbury JM. Long-term effects of high phosphate intake on parathyroid hormone levels and bone metabolism. Acta Orthop Scand 1974;45:801–808.
46. Slatopolsky E, Finch J, Denda M, et al. Phosphorus restriction prevents parathyroid gland growth. High phosphorus directly stimulates PTH secretion in vitro. J Clin Invest 1996;97:2534–2540.
47. Tanaka Y, Deluca HF. The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys 1973;154:566–574.
48. Almaden Y, Hernandez A, Torregrosa V, et al. High phosphate level directly stimulates parathyroid hormone secretion and synthesis by human parathyroid tissue in vitro. J Am Soc Nephrol 1998;9:1845–1852.
49. Almaden Y, Canalejo A, Hernandez A, et al. Direct effect of phosphorus on PTH secretion from whole rat parathyroid glands in vitro. J Bone Miner Res 1996;11:970–976.
50. Kilav R, Silver J, Naveh-Many T. Parathyroid hormone gene expression in hypophosphatemic rats. J Clin Invest 1995;96:327–333.
51. Yalcindag C, Silver J, Naveh-Many T. Mechanism of increased parathyroid hormone mRNA in experimental uremia: roles of protein RNA binding and RNA degradation. J Am Soc Nephrol 1999;10:2562–2568.
52. Sela-Brown A, Naveh-Many T, Silver J. Transcriptional and post- transcriptional regulation of PTH gene expression by vitamin D, calcium and phosphate. Miner Electrolyte Metab 1999;25:342–344.
53. Sela-Brown A, Silver J, Brewer G, et al. Identification of AUF1 as a parathyroid hormone mRNA 3’-untranslated region-binding protein that determines parathyroid hormone mRNA stability. J Biol Chem 2000;275:7424–7429.
54. Hoenderop JG, Nilius B, Bindels RJ. Calcium absorption across epithelia. Physiol Rev 2005;85:373-422.
55. Bronner F, Pansu D, Stein WD. An analysis of intestinal calcium transport across the rat intestine. Am J Physiol 1986;250(5 Pt 1):G561-9.
56. Kumar R. Vitamin D and calcium transport. Kidney Int 1991;40:1177-1189.
57. Kumar R, Thompson JR. The regulation of parathyroid hormone secretion and synthesis. J Am Soc Nephrol 2011;22:216–224.
58. Brown EM. Four-parameter model of the sigmoidal relationship between parathyroid hormone release and extracellular calcium concentration in normal and abnormal parathyroid tissue. J Clin Endocrinol Metab 1983;56:572-581.
59. Talmage RV, Mobley HT. Calcium homeostasis: reassessment of the actions of parathyroid hormone. Gen Comp Endocrinol 2008;156:1–8.
60. de Groot T, Lee K, Langeslag M, et al. Parathyroid hormone activates TRPV5 via PKA-dependent phosphorylation. J Am Soc Nephrol 2009;20:1693-1704.
61. Slatopolsky E, Brown A, Dusso A. Role of phosphorus in the pathogenesis of secondary hyperparathyroidism. Am J Kidney Dis 2001;37(Suppl 2):S54–S57.
62. Vassalotti JA, Uribarri J, Chen SC, et al. Trends in mineral metabolism: Kidney Early Evaluation Program (KEEP) and the National Health and Nutrition Examination Survey (NHANES) 1999–2004. Am J Kidney Dis 2008;51:S56–S68.
63. Pitts TO, Piraino BH, Mitro R, et al. Hyperparathyroidism and 1,25-dihydroxyvitamin D deficiency in mild, moderate, and severe renal failure. J Clin Endocrinol Metab 1988;67:876-881.
64. Gutierrez O, Isakova T, Rhee E, et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol 2005;16:2205-2215.
65. Silver J, Levi R. Cellular and molecular mechanisms of secondary hyperparathyroidism. Clin Nephrol 2005;63:119-126.
66. Brown EM, Gamba G, Riccardi D, et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 1993;366:575–580.
67. Li YC, Amling M, Pirro AE, et al. Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology 1998;139:4391–4396.
68. Gkika D, Hsu YJ, van der Kemp AW, et al. Critical role of the epithelial Ca2+ channel TRPV5 in active Ca2+ reabsorption as revealed by TRPV5/calbindin-D28K knockout mice. J Am Soc Nephrol 2006;17:3020–3027
69. Lieben L, Carmeliet G. Vitamin D signaling in osteocytes: effects on bone and mineral homeostasis. Bone 2013;54:237–243.
70. Qunibi W, Abdellatif A, Sankar S, et al. Treatment of vitamin D deficiency in CKD patients with ergocalciferol: are current KDOQI treatment guidelines adequate? Clin Nephrol 2010;73:276–285.
71. Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res 2004;19:429–435.
72. Taal MW, Thurston V, McIntyre NJ, et al. The impact of vitamin D status on the relative increase in fibroblast growth factor 23 and parathyroid hormone in chronic kidney disease. Kidney Int 2014;86:407–413.
73. Garrett G, Sardiwal S, Lamb EJ, et al. PTH—a particularly tricky hormone: why measure it at all in kidney patients? Clin J Am Soc Nephrol 2013;8:299–312.
74. Habener JF, Rosenblatt M, Potts JT Jr. Parathyroid hormone: biochemical aspects of biosynthesis, secretion, action, and metabolism. Physiol Rev 1984;64:985–1053.
75. Kumar R. Metabolism of 1,25-dihydroxyvitamin D3. Physiol Rev 1984;64:478–504
76. Klahr S, Slatopolsky E. Toxicity of parathyroid hormone in uremia. Annu Rev Med. 1986;37:71–78.
77. Burnett-Bowie SM, Henao MP, Dere ME, et al. Effects of hPTH(1-34) infusion on circulating serum phosphate, 1,25-dihydroxyvitamin D, and FGF23 levels in healthy men. J Bone Miner Res 2009;24:1681–1685.
78.Wesseling-Perry K, Harkins GC, Wang HJ, et al. The calcemic response to continuous parathyroid hormone (PTH)(1-34) infusion in end-stage kidney disease varies according to bone turnover: a potential role for PTH(7-84). J Clin Endocrinol Metab 2010;95:2772–2780.
79. Lavi-Moshayoff V, Wasserman G, Meir T, et al. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol 2010;299:F882–F889.
80.Kawata T, Imanishi Y, Kobayashi K, et al. Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J Am Soc Nephrol 2007;18:2683–2688.
81. Lopez I, Rodriguez-Ortiz ME, Almaden Y, et al. Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo. Kidney Int 2011;80:475–482.
82. Block GA, Klassen PS, Lazarus JM, et al. Mineral metabolism, mortality, and morbidity in maintenance hemodialysis. J Am Soc Nephrol 2004;15:2208–2218
83. Kalantar-Zadeh K, Kuwae N, Regidor DL, et al. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int 2006;70:771–780.
84. Young EW, Albert JM, Satayathum S, et al. Predictors and consequences of altered mineral metabolism: the Dialysis Outcomes And Practice Patterns Study. Kidney Int 2005;67:1179–1187.
85. Tentori F, Wang M, Bieber BA, et al. Recent changes in therapeutic approaches and association with outcomes among patients with secondary hyperparathyroidism on chronic hemodialysis: the DOPPS study. Clin J Am Soc Nephrol 2015;710:98–109.
86. Liu S, Gupta A, Quarles LD. Emerging role of fibroblast growth factor 23 in a bone-kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization. Curr Opin Nephrol Hypertens 2007;16:329–335.
87. Liu S, Quarles LD. How fibroblast growth factor 23 works. J Am Soc Nephrol 2007;18:1637–1647.
88.Quinn SJ, Thomsen AR, Pang JL, et al. Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. Am J Physiol Endocrinol Metab 2013;304:E310–E20.
89. Miyamoto K, Ito M, Tatsumi S, et al. New aspect of renal phosphate reabsorption: the type IIc sodium-dependent phosphate transporter. Am J Nephrol 2007;27:503–515.
90. Saito H, Kusano K, Kinosaki M, et al. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem 2003;278:2206–2211.
91. Hu MC, Shiizaki K, Kuro-o M, et al. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol 2013;75:503–533.
92. Rhee Y, Bivi N, Farrow E, et al. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 2011;49:636–643.
93. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest 2007;117:4003–4008.
94. Krajisnik T, Bjorklund P, Marsell R, et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol 2007;195:125–131.
95. Komaba H, Goto S, Fujii H, et al. Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int 2010;77:232–238.
96. Canalejo R, Canalejo A, Martinez-Moreno JM, et al. FGF23 fails to inhibit uremic parathyroid glands. J Am Soc Nephrol 2010;21:1125–1135.
97. Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 2006;444:770–774.
98. Galitzer H, Ben-Dov IZ, Silver J, et al. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int 2010;77:211–218.
99. Forster RE, Jurutka PW, Hsieh JC, et al. Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells. Biochem Biophys Res Commun 2011;414:557–562.
100.Tsujikawa H, Kurotaki Y, Fujimori T, et al. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol 2003;17:2393–2403.
101.Kuro-o M. Klotho as a regulator of fibroblast growth factor signaling and phosphate/calcium metabolism. Curr Opin Nephrol Hypertens 2006;15:437–441.
102. Kuro-o M. Klotho in health and disease. Curr Opin Nephrol Hypertens 2012;21:362–368.
103. Isakova T, Ix JH, Sprague SM, et al. Rationale and approaches to phosphate and fibroblast growth factor 23 reduction in CKD. J Am Soc Nephrol 2015;26(10):2328–2339.
104. Hu MC, Shi M, Zhang J, et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 2011;22:124–136.
105.Ozkok A, Kekik C, Karahan GE, et al. FGF-23 associated with the progression of coronary artery calcification in hemodialysis patients. BMC Nephrol 2013;14:241–247.
106. Scialla JJ, Lau WL, Reilly MP, et al. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int 2013;83:1159–1168.
107. Lim K, Lu TS, Molostvov G, et al. Vascular Klotho deficiency potentiates the development of human artery calcification and mediates resistance to fibroblast growth factor 23. Circulation 2012;125:2243–2255.
108. Braun J, Oldendorf M, Moshage W, et al. Electron beam computed tomography in the evaluation of cardiac calcification in chronic dialysis patients. Am J Kidney Dis 1996;27:394 -401..
109. Goodman WG, Goldin J, Kuizon BD, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 2000; 342:1478-1483.
110. Chertow GM, Burke SK, Raggi P. Treat to Goal Working Group. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int 2002;62:245-252.
111. Goldsmith DJ, Covic A, Sambrook PA, et al. Vascular calcification in long-term haemodialysis patients in a single unit: a retrospective analysis. Nephron 1997;77:37-43.
112. McCullough PA, Sandberg KR, Dumler F, et al. Determinants of coronary vascular calcification in patients with chronic kidney disease and end-stage renal disease: a systematic review. J Nephrol 2004;17(2):205-215.
113. Merjanian R, Budoff M, Adler S, et al. Coronary artery, aortic wall, and valvular calcification in nondialyzed individuals with type 2 diabetes and renal disease. Kidney Int 2003;64:263-271.
114. Lamprea-Montealegre JA, McClelland RL, Astor BC, et al. Chronic kidney disease, plasma lipoproteins, and coronary artery calcium incidence: the Multi-Ethnic Study of Atherosclerosis. Arterioscler Thromb Vasc Biol 2013;33:652-658.
115. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 2009; S1.
116. Kramer H, Toto R, Peshock R, et al. Association between chronic kidney disease and coronary artery calcification: the Dallas Heart Study. J Am Soc Nephrol 2005;16:507-513.
117. Qunibi WY, Abouzahr F, Mizani MR, et al. Cardiovascular calcification in Hispanic Americans (HA) with chronic kidney disease (CKD) due to type 2 diabetes. Kidney Int 2005;68:271-277.
118. Russo D, Palmiero G, De Blasio AP, et al. Coronary artery calcification in patients with CRF not undergoing dialysis. Am J Kidney Dis 2004; 44:1024.
119. Wang XR, Zhang JJ, Xu XX, et al. Prevalence of coronary artery calcification and its association with mortality, cardiovascular events in patients with chronic kidney disease: a systematic review and meta-analysis. Ren Fail 2019;41:244-256.
120. Leu HJ, Brunner U. [Calcified and ossified phlebosclerosis]. Vasa 1992;21:11-14.
121. Vervloet M, Cozzolino M. Vascular calcification in chronic kidney disease: different bricks in the wall? Kidney Int 2017;91:808-817.
122. Jablonski KL, Chonchol M. Vascular calcification in end-stage renal disease. Hemodial Int 2013;17 Suppl 1(01):S17-21.
123. Shantouf R, Kovesdy CP, Kim Y, et al. Association of serum alkaline phosphatase with coronary artery calcification in maintenance hemodialysis patients. Clin J Am Soc Nephrol 2009;4:1106-1114.
124. Ahmed S, O'Neill KD, Hood AF, et al. Calciphylaxis is associated with hyperphosphatemia and increased osteopontin expression by vascular smooth muscle cells. Am J Kidney Dis 2001;37:1267-1276.
125. Moe SM, O'Neill KD, Duan D, et al. Medial artery calcification in ESRD patients is associated with deposition of bone matrix proteins. Kidney Int 2002;61:638-647.
126. Cozzolino M, Gallieni M, Brancaccio D. Vascular calcification in uremic conditions: new insights into pathogenesis. Semin Nephrol 2006;26:33-37.
127. Fukagawa M, Kazama JJ. The making of a bone in blood vessels: from the soft shell to the hard bone. Kidney Int 2007;72:533-534.
128. Cianciolo G, Galassi A, Capelli I, et al. Klotho-FGF23, Cardiovascular Disease, and Vascular Calcification: Black or White? Curr Vasc Pharmacol 2018;16:143-156.
129. Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM. Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res 2011;109:697-711.
130. Huang M, Zheng L, Xu H, et al. Oxidative stress contributes to vascular calcification in patients with chronic kidney disease. J Mol Cell Cardiol 2020;138:256-268.
131. Jono S, McKee MD, Murry CE, et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ Res 2000;87:E10-17.
132. Huybers S, Bindels RJ. Vascular calcification in chronic kidney disease: new developments in drug therapy. Kidney Int 2007;72:663-665.
133. Nakahara T, Kawai-Kowase K, Matsui H, et al. Fibroblast growth factor 23 inhibits osteoblastic gene expression and induces osteoprotegerin in vascular smooth muscle cells. Atherosclerosis 2016;253:102-110.
134. Hu MC, Shi M, Zhang J, et al. Klotho deficiency causes vascular calcification in chronic kidney disease. J Am Soc Nephrol 2011;22:124-136.
135. Mencke R, Hillebrands JL, NIGRAM consortium. The role of the anti-ageing protein Klotho in vascular physiology and pathophysiology. Ageing Res Rev 2017;35:124-146.
136. Kapustin AN, Davies JD, Reynolds JL, et al. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res 2011; 109:e1-12.
137. Houben E, Neradova A, Schurgers LJ, Vervloet M. The influence of phosphate, calcium and magnesium on matrix Gla-protein and vascular calcification: a systematic review. G Ital Nefrol 2016;33:gin/33.6.5.
138. Reynolds JL, Joannides AJ, Skepper JN, et al. Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol 2004;15:2857-2867.
139. Alexander N Kapustin 1, John D Davies, Joanne L Reynolds, et al. Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res. 2011;109:e1-12.
140. Leon J Schurgers. Vitamin K: key vitamin in controlling vascular calcification in chronic kidney disease. Kidney Int. 2013;83:782-4.
141. Bernelot Moens SJ, Verweij SL, van der Valk FM, et al. Arterial and Cellular Inflammation in Patients with CKD. J Am Soc Nephrol 2017;28:1278-1285.
142. Smith ER, Ford ML, Tomlinson LA, et al. Serum calcification propensity predicts all-cause mortality in predialysis CKD. J Am Soc Nephrol 2014;25:339-348.
143. Modaresi, A., Nafar, M., & Sahraei, Z. J. I. j. o. k. d. Oxidative stress in chronic kidney disease. 2015;9:165-179.
144. Small, D. M., Coombes, J. S., Bennett, N., et al. Oxidative stress, anti-oxidant therapies and chronic kidney disease. Nephrology (Carlton), 2012;17:311-321.
145. Schieber, M., & Chandel, N. S. ROS function in redox signaling and oxidative stress. Current Biology, 2014;24:R453-462.
146. Daenen, K., Andries, A., Mekahli, D., et al. B. J. P. N. Oxidative stress in chronic kidney disease. 2019;34:975-991.
147. Sung, C. C., Hsu, Y. C., Chen, C. C., Lin, Y. F., & Wu, C. C. Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease. Oxidative Medicine and Cellular Longevity, 2013;2013:301982.
148. Circu, M. L., & Aw, T. Y. (2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Radical Biology and Medicine, 2010;48:749-762.
149. Bover J, Evenepoel P, Ureña-Torres P, et al. Pro: cardiovascular calcifications are clinically relevant. Nephrol Dial Transplant 2015;30:345-351.
150. Zoccali C, London G. Con: vascular calcification is a surrogate marker, but not the cause of ongoing vascular disease, and it is not a treatment target in chronic kidney disease. Nephrol Dial Transplant 2015;30:352-357.
151. Tabas I, Bornfeldt KE. Macrophage Phenotype and Function in Different Stages of Atherosclerosis. Circ Res 2016;118:653-667.
152. Watanabe S, Fujii H, Kono K, et al. Influence of oxidative stress on vascular calcification in the setting of coexisting chronic kidney disease and diabetes mellitus. Sci Rep 2020;10:20708.
153. Wei R, Enaka M, Muragaki Y. Activation of KEAP1/NRF2/P62 signaling alleviates high phosphate-induced calcification of vascular smooth muscle cells by suppressing reactive oxygen species production. Sci Rep 2019;9:10366.
154. Dimitrios Kirmizis, Aikaterini Papagianni, Anna-Maria Belechri, Dimitrios Memmos. Effects of vitamin E-coated membrane dialyser on markers of oxidative stress and inflammation in patients on chronic haemodialysisNephrol Dial Transplant. 2011;26:2296-2301..
155. Taki K, Takayama F, Tsuruta Y, Niwa T. Oxidative stress, advanced glycation endproduct, and coronary artery calcification in hemodialysis patients. Kidney Int, 2006;70:218-224.
156. Chen YH, Shi W, Liang XL, Liang YZ, Fu X. Effect of blood sample type on the measurement of advanced oxidation protein products as a biomarker of
inflammation and oxidative stress in hemodialysis patients. Biomarkers, 2011;16:129-17.
157. Yoshiyuki Morishita, Shiho Hanawa, Takuya Miki, et al., The association of plasma prorenin level with an oxidative stress marker, 8-OHdG, in nondiabetic hemodialysis patients, Clin Exp Nephrol. 2011;15:398-404.
158. Hong Xu, Makoto Watanabe, Abdul Rashid Qureshi, et al., Oxidative DNA damage and mortality in hemodialysis and peritoneal dialysis patients. Perit Dial Int. Mar-Apr 2015;35:206-15..
159. Nihi MM, Manfro RC, Martins C, Suliman M, Murayama Y, Riella MC, Lindholm B, Nascimento MM. Association between body fat, inflammation and oxidative stress in hemodialysis. J Bras Nefrol, 2010;32:9-15.157.
160. Dursun E, Ozben T, Süleymanlar G, Dursun B, Yakupoglu G. Effect of hemodialysis on the oxidative stress and antioxidants. Clin Chem Lab Med, 2002;40:1009-1013.
161. Ward RA, McLeish KR. Oxidant stress in hemodialysis patients: what are the determining factors? Artif Organs, 2003;27:230-236.
162. Himmelfarb J. Oxidative stress in hemodialysis. Contrib Nephrol, 2008;161:132-137
163. Maggini S, Wintergerst ES, Beveridge S, Hornig DH. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr, 2007;98 Suppl 1:S29-35.
164. Kuro-o M. Calciprotein particle (CPP): a true culprit of phosphorus woes? Nefrologia 2014;34:1-4.
165. Aghagolzadeh P, Bachtler M, Bijarnia R, et al. Calcification of vascular smooth muscle cells is induced by secondary calciprotein particles and enhanced by tumor necrosis factor-α. Atherosclerosis 2016;251:404-414.
166. Price PA, Lim JE. The inhibition of calcium phosphate precipitation by fetuin is accompanied by the formation of a fetuin-mineral complex. J Biol Chem 2003;278:22144-22152.
167. Price PA, Nguyen TM, Williamson MK. Biochemical characterization of the serum fetuin-mineral complex. J Biol Chem 2003;278:22153-22160.
168. Köppert S, Büscher A, Babler A, et al. Cellular Clearance and Biological Activity of Calciprotein Particles Depend on Their Maturation State and Crystallinity. Front Immunol 2018;9:1991.
169. Ketteler M, Bongartz P, Westenfeld R, et al. Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. Lancet 2003;361:827-833.
170. Stenvinkel P, Wang K, Qureshi AR, et al. Low fetuin-A levels are associated with cardiovascular death: Impact of variations in the gene encoding fetuin. Kidney Int 2005;67:2383.
171. Ketteler M, Wanner C, Metzger T, et al. Deficiencies of calcium-regulatory proteins in dialysis patients: a novel concept of cardiovascular calcification in uremia. Kidney Int Suppl 2003;S84-87.
172. Barreto DV, Barreto FC, Carvalho AB, et al. Coronary calcification in hemodialysis patients: the contribution of traditional and uremia-related risk factors. Kidney Int 2005;67:1576-1582.
173. Coen G, Manni M, Agnoli A, et al. Cardiac calcifications: Fetuin-A and other risk factors in hemodialysis patients. ASAIO J 2006;52:150-156.
174. Hermans MM, Brandenburg V, Ketteler M, et al. Association of serum fetuin-A levels with mortality in dialysis patients. Kidney Int 2007;72:202-207.
175. Viegas CSB, Santos L, Macedo AL, et al. Chronic Kidney Disease Circulating Calciprotein Particles and Extracellular Vesicles Promote Vascular Calcification: A Role for GRP (Gla-Rich Protein). Arterioscler Thromb Vasc Biol 2018;38:575-587.
176. Cranenburg EC, Vermeer C, Koos R, et al. The circulating inactive form of matrix Gla Protein (ucMGP) as a biomarker for cardiovascular calcification. J Vasc Res 2008;45:427.
177. van Ballegooijen AJ, Beulens JW. The Role of Vitamin K Status in Cardiovascular Health: Evidence from Observational and Clinical Studies. Curr Nutr Rep 2017; 6:197-205.
178. Siltari A, Vapaatalo H. Vascular Calcification, Vitamin K and Warfarin Therapy - Possible or Plausible Connection? Basic Clin Pharmacol Toxicol 2018;122:19-24.
179. Demer LL, Tintut Y. Inflammatory, metabolic, and genetic mechanisms of vascular calcification. Arterioscler Thromb Vasc Biol 2014;34:715-723.
180. Mazière C, Salle V, Gomila C, Mazière JC. Oxidized low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress. Biochem Biophys Res Commun 2013;440:295-299.
181. Pasch A, Farese S, Gräber S, et al. Nanoparticle-based test measures overall propensity for calcification in serum. J Am Soc Nephrol 2012;23:1744-1752.
182. Pasch A, Block GA, Bachtler M, et al. Blood Calcification Propensity, Cardiovascular Events, and Survival in Patients Receiving Hemodialysis in the EVOLVE Trial. Clin J Am Soc Nephrol 2017;12:315-322.
183. Keyzer CA, de Borst MH, van den Berg E, et al. Calcification Propensity and Survival among Renal Transplant Recipients. J Am Soc Nephrol 2016;27:239-248.
184. Podestà MA, Cucchiari D, Ciceri P, et al. Cardiovascular calcifications in kidney transplant recipients. Nephrol Dial Transplant 2021 Feb 23;gfab053.
185. Bundy JD, Cai X, Mehta RC, et al. Serum Calcification Propensity and Clinical Events in CKD. Clin J Am Soc Nephrol 2019;14:1562-1571.
186. Kim HJ, Kang E, Oh YK, et al. The association between soluble klotho and cardiovascular parameters in chronic kidney disease: results from the KNOW-CKD study. BMC Nephrol 2018;19:51.
187. O'Neill WC, Sigrist MK, McIntyre CW. Plasma pyrophosphate and vascular calcification in chronic kidney disease. Nephrol Dial Transplant 2010;25:187-191.
188. O'Neill WC, Lomashvili KA, Malluche HH, et al. Treatment with pyrophosphate inhibits uremic vascular calcification. Kidney Int 2011;79:512517.
189. Zannettino AC, Holding CA, Diamond P, et al. Osteoprotegerin (OPG) is localized to the Weibel-Palade bodies of human vascular endothelial cells and is physically associated with von Willebrand factor. J Cell Physiol 2005;204:714-723.
190. Collin-Osdoby P. Regulation of vascular calcification by osteoclast regulatory factors RANKL and osteoprotegerin. Circ Res 2004;95:1046-1057.
191. Stenvinkel P, Ketteler M, Johnson RJ, et al. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia--the good, the bad, and the ugly. Kidney Int 2005;67:1216-1233.
192. Moe SM, Reslerova M, Ketteler M, et al. Role of calcification inhibitors in the pathogenesis of vascular calcification in chronic kidney disease (CKD). Kidney Int 2005;67:2295-2304.
193. Goodman WG, Goldin J, Kuizon BD, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 2000;342:1478-1483.
194. Goldsmith DJ, Covic A, Sambrook PA, et al. P. Vascular calcification in long-term haemodialysis patients in a single unit: a retrospective analysis. Nephron 1997;77:37-41.
195. McCullough PA, Sandberg KR, Dumler F, et al. Determinants of coronary vascular calcification in patients with chronic kidney disease and end-stage renal disease: a systematic review. J Nephrol 2004;17:205-215.
196. Meema HE, Oreopoulos DG, deVeber GA. Arterial calcifications in severe chronic renal disease and their relationship to dialysis treatment, renal transplant, and parathyroidectomy. Radiology 1976;121:315-321.
197.Raggi P, Boulay A, Chasan-Taber S, et al. Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol 2002;39:695-701
198. O'Neill WC, Lomashvili KA, Malluche HH, et al. Treatment with pyrophosphate inhibits uremic vascular calcification. Kidney Int 2011;79:512-517. 199. Ishimura E, Okuno S, Kitatani K, et al. Significant association between the presence of peripheral vascular calcification and lower serum magnesium in hemodialysis patients. Clin Nephrol 2007;68:222-227.
200. Olszak IT, Poznansky MC, Evans RH, et al. Extracellular calcium elicits a chemokinetic response from monocytes in vitro and in vivo. J Clin Invest 2000;105:1299-1305.
202. Chertow GM, Raggi P, Chasan-Taber S, et al. Determinants of progressive vascular calcification in haemodialysis patients. Nephrol Dial Transplant 2004;19:1489-1496.
203. Block GA, Spiegel DM, Ehrlich J, et al. Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int 2005;68:1815-1824.
204. Di Iorio B, Bellasi A, Russo D, INDEPENDENT Study Investigators. Mortality in kidney disease patients treated with phosphate binders: a randomized study. Clin J Am Soc Nephrol 2012;7:487-493.
205. Block GA, Wheeler DC, Persky MS, et al. Effects of phosphate binders in moderate CKD. J Am Soc Nephrol 2012;23:1407-1415.
206. Block GA, Raggi P, Bellasi A, et al. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int 2007; 71:438-441.
207. Patel L, Bernard LM, Elder GJ. Sevelamer Versus Calcium-Based Binders for Treatment of Hyperphosphatemia in CKD: A Meta-Analysis of Randomized Controlled Trials. Clin J Am Soc Nephrol 2016;11:232-244.
209. Chertow GM, Burke SK, Dillon MA, et al. Long-term effects of sevelamer hydrochloride on the calcium x phosphate product and lipid profile of haemodialysis patients. Nephrol Dial Transplant 1999;14:2907-2914.
210. Burke SK, Dillon MA, Hemken DE, et al. Meta-analysis of the effect of sevelamer on phosphorus, calcium, PTH, and serum lipids in dialysis patients. Adv Ren Replace Ther 2003;10:133-145.
211. Katopodis KP, Andrikos EK, Gouva CD, et al. Sevelamer hydrochloride versus aluminum hydroxide: effect on serum phosphorus and lipids in CAPD patients. Perit Dial Int 2006;26:320-327.
212. Ferramosca E, Burke S, Chasan-Taber S, et al. Potential antiatherogenic and anti-inflammatory properties of sevelamer in maintenance hemodialysis patients. Am Heart J 2005;149:820-825.
213. Wada K, Wada Y. Evaluation of aortic calcification with lanthanum carbonate vs. calcium-based phosphate binders in maintenance hemodialysis patients with type 2 diabetes mellitus: an open-label randomized controlled trial. Ther Apher Dial 2014;18:353-360.
214. Toussaint ND, Lau KK, Polkinghorne KR, Kerr PG. Attenuation of aortic calcification with lanthanum carbonate versus calcium-based phosphate binders in haemodialysis: A pilot randomized controlled trial. Nephrology (Carlton) 2011;16:290-298.
215. Vervloet MG, van Ballegooijen AJ. Prevention and treatment of hyperphosphatemia in chronic kidney disease. Kidney Int 2018;93:1060-1072.
216. Chou FF, Chen JB, Huang SC, et al. Changes in serum FGF23 and Klotho levels and calcification scores of the abdominal aorta after parathyroidectomy for secondary hyperparathyroidism. Am J Surg 2019;218:609-612.
217. Bover J, Ureña P, Brandenburg V, et al. Adynamic bone disease: from bone to vessels in chronic kidney disease. Semin Nephrol 2014;34:626-640.
218. London GM, Marty C, Marchais SJ, et al. Arterial calcifications and bone histomorphometry in end-stage renal disease. J Am Soc Nephrol 2004;15:1943-1951.
219. Tomiyama C, Carvalho AB, Higa A, et al. Coronary calcification is associated with lower bone formation rate in CKD patients not yet in dialysis treatment. J Bone Miner Res 2010;25:499-504.
220. London GM, Marchais SJ, Guérin AP, et al. Association of bone activity, calcium load, aortic stiffness, and calcifications in ESRD. J Am Soc Nephrol 2008;19:1827-1835.
221. de Boer IH, Kestenbaum B, Shoben AB, et al. 25-hydroxyvitamin D levels inversely associate with risk for developing coronary artery calcification. J Am Soc Nephrol 2009;20:1805-1812.
222. London GM, Guérin AP, Verbeke FH, et al. Mineral metabolism and arterial functions in end-stage renal disease: potential role of 25-hydroxyvitamin D deficiency. J Am Soc Nephrol 2007;18:613-620.
223. Schurgers LJ, Barreto DV, Barreto FC, et al. The circulating inactive form of matrix gla protein is a surrogate marker for vascular calcification in chronic kidney disease: a preliminary report. Clin J Am Soc Nephrol 2010;5:568-575.
224. Krueger T, Westenfeld R, Ketteler M, et al. Vitamin K deficiency in CKD patients: a modifiable risk factor for vascular calcification? Kidney Int 2009;76:18-22.
225. Krueger T, Schlieper G, Schurgers L, et al. Vitamin K1 to slow vascular calcification in haemodialysis patients (VitaVasK trial): a rationale and study protocol. Nephrol Dial Transplant 2014;29:1633-1638.
226. Tantisattamo E, Han KH, O'Neill WC. Increased vascular calcification in patients receiving warfarin. Arterioscler Thromb Vasc Biol 2015;35:237-242.
227. Cranenburg EC, Brandenburg VM, Vermeer C, et al. Uncarboxylated matrix Gla protein (ucMGP) is associated with coronary artery calcification in haemodialysis patients. Thromb Haemost 2009;101:359-366.
228. Parker BD, Schurgers LJ, Vermeer C, et al. The association of uncarboxylated matrix Gla protein with mitral annular calcification differs by diabetes status: The Heart and Soul study. Atherosclerosis 2010;210:320-325.
229. Nigwekar SU, Bloch DB, Nazarian RM, et al. Vitamin K-Dependent Carboxylation of Matrix Gla Protein Influences the Risk of Calciphylaxis. J Am Soc Nephrol 2017;28:1717-1722.
230. Nigwekar SU, Thadhani R, Brandenburg VM. Calciphylaxis. N Engl J Med 2018;378:1704-1714.
231. De Vriese AS, Caluwé R, Pyfferoen L, et al. Multicenter Randomized Controlled Trial of Vitamin K Antagonist Replacement by Rivaroxaban with or without Vitamin K2 in Hemodialysis Patients with Atrial Fibrillation: the Valkyrie Study. J Am Soc Nephrol 2020;31:186-196.
232. Achenbach S, Ropers D, Pohle K, et al. Influence of lipid-lowering therapy on the progression of coronary artery calcification: a prospective evaluation. Circulation 2002;106:1077-1082.
233. Parhami F, Basseri B, Hwang J, et al. High-density lipoprotein regulates calcification of vascular cells. Circ Res 2002;91:570-576.
220. Ngom PT, Howie, S, Ota MO, Prentice AM. The potential role and possible immunological mechanisms of zinc adjunctive therapy for severe pneumonia in children. The Open Immunology Journal, 2011;4:1-10.
221.O'Dell BL. Role of zinc in plasma membrane function. J Nutr, 2000;130(5S Suppl):1432S- 1436S.
222.Roozbeh J, Hedayati P, Sagheb MM, et al. Behzadi S. Effect of zinc supplementation on triglyceride, cholesterol, LDL, and HDL levels in zinc-deficient hemodialysis patients. Ren Fail,2009;31:798–801.
223 Liuzzi JP, Lichten LA, Rivera S, et al. Interleukin-6 regulates the zinc transporter Zip14 in liver and contributes to the hypozincemia of the acute-phase response. Proc Natl Acad Sci USA, 2005;102:6843- 6848.
224. Haase H, Rink L. The immune system and the impact of zinc during aging. Immun Ageing, 2009;6:9.
225. Dashti-Khavidaki S, Khalili H, Vahedi SM, et al. Serum zinc concentrations in patients on maintenance hemodialysis and its relationship with anemia, parathyroid hormone concentrations and pruritus severity. Saudi J Kidney Dis Transpl,2010;21:641-645.
226. Guo CH, Chen PC, Yeh MW, et al. Cu/Zn ratios are associated with nutritional status, oxidative stress, inflammation, and immune abnormalities in patients on peritoneal dialysis. Clin Biochemy, 2011;44: 275-280.
227. Kreft B, Fischer A, Krüger S, et al. The impaired immune response to diphtheria vaccination in elderly chronic hemodialysis patients is related to zinc deficiency. Biogerontology, 2000;1:61-66.
228. Bilgic A, Akgul A, Sezer S, et al. Nutritional status and depression, sleep disorder, and quality of life in hemodialysis patients. J Ren Nutr, 2007;17:381-388.
229. Maes M. The cytokine hypothesis of depression: inflammation, oxidative & nitrosative stress (IO&NS) and leaky gut as new targets for adjunctive treatments in depression. Neuroendocrinol Lett, 2008;29:287-91.
230.Roozbeh J, Sharifian M, Ghanizadeh A, et al. Association of zinc deficiency and depression in the patients with end-stage renal disease on hemodialysis. J Ren Nutr, 2010;21:184-187.
231. Grzegorzewska AE, Mariak I. Zinc as a marker of nutrition in continuous ambulatory peritoneal dialysis patients. Adv Perit Dial, 2001;17:223-229
232. Navarro-Alarcon M, Reyers-Perez A, LopezGarcia H, et al. Longitudinal study of serum zinc and copper levels in hemodialysis patients and their relation to biochemical markers. Biol Trace Elem Res, 2006;113:209-222.
233. Nishiyama S, Kiwaki K, Miyazaki Y, et al. Zinc and IGF-I concentrations in pregnant women with anemia before and after supplementation with iron and/or zinc. J Am Coll Nutr, 1999;18:261-267.
234. Yamauchi M, Yamaguchi T, Nawata K, et al. Relationships between undercarboxylated osteocalcin and vitamin K intakes, bone turnover, and bone mineral density in healthy women. Clin Nutr, 2010;29:761-765.
235. Jern NA, VanBeber AD, Gorman MA, et al. The effects of zinc supplementation on serum zinc concentration and protein catabolic rate in hemodialysis patients. J Ren Nutr, 2000;10:148-153.
236. Candan F, Gültekin F, Candan F. Effect of vitamin C and zinc on osmotic fragility and lipid peroxidation in zinc-deficient haemodialysis patients. Cell Biochem Funct. 2002;20:95-98.
237.Rashidi AA, Salehi M, Piroozmand A, et al. Effects of zinc supplementation on serum zinc and C-reactive protein concentrations in hemodialysis patients. J Ren Nutr, 2009;19:475-478.
238. Chevalier CA, Liepa G, Murphy MD, et al. The effects of zinc supplementation on serum zinc and cholesterol concentrations in hemodialysis patients. J Ren Nutr, 2002;12:183-189.
239. Jalali GR, Roozbeh J, Mohammadzadeh A, et al.Impact of oral zinc therapy on the level of sex hormones in male patients on hemodialysis. Ren Fail, 2010;32:417-419.
240. Fukushima T, Horike H, Fujiki S, et al. Zinc deficiency anemia and effects of zinc therapy in maintenance hemodialysis patients. Ther Apher Dial, 2009;13:213-219.
241. Maggini S, Wintergerst ES, Beveridge S, et al. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr,2007;98 Suppl 1:S29-35.
242. Tonelli M, Wiebe N, Hemmelgarn B, et al. Trace elements in hemodialysis patients: a systematic review and meta- analysis. BMC Med, 2009;7:25.
243. Veighey K, Booth J, Davenport A. Does the choice of phosphate binder affect trace element levels in chronic kidney disease patients treated by regular haemodialysis? Nephrol Dial Transplant, 2011;26:1006-1010.
244. Granata S, Zaza G, Simone S, et al. Mitochondrial dysregulation and oxidative stress in patients with chronic kidney disease. BMC Genomics, 2009;10:38
245 Bober J, Kwiatkowska E, Kedzierska K, et al. Influence of glucose in the dialysate on the activity of erythrocyte-glutathione-peroxidase and blood selenium concentration in hemodialyzed patients. Arch Med Res, 2007;38:330-336.
246. Panichi V, Taccola D, Rizza GM, et al. Ceruloplasmin and acute phase protein levels are associated with cardiovascular disease in chronic dialysis patients. J Nephrol, 2004;17:715-720.
247 Bo S, Durazzo M, Gambino R, et al. Associations of dietary and serum copper with inflammation, oxidative stress, and metabolic variables in adults. J Nutr, 2008;138:305-310.
248. Ghayour-Mobarhan M, Taylor A, Kazemi-Bajestani SM, et al. Serum zinc and copper status in dyslipidaemic patients with and without established coronary artery disease. Clin Lab, 2008;54:321-329.
249. Davis CD, Johnson WT. Dietary copper and dimethylhydrazine affect protein kinase C isozyme protein and mRNA expression and the formation of aberrant crypts in colon of rats. Biofactors, 2001;15:11-26.
250. Srikanth R, Mendoza VL, Bridgewater JD, et al. Copper binding to beta-2- microglobulin and its pre-amyloid oligomers. Biochemistry, 2009;48:9871-9881
251. Mendoza PD, Fenves AZ, Punar M, et al.. Subcutaneous beta2-microglobulin amyloid shoulder nodulesin a long-term hemodialysis patient. Proc (Bayl Univ Med Cent), 2010;23:139-141.
252. Filiopoulos V, Hadjiyannakos D, Takouli L, et al. Inflammation and oxidative stress in end-stage renal disease patients treated with hemodialysis or peritoneal dialysis. Int J Artif Organs, 2009;32:872-882
253. Srikanth R, Mendoza VL, Bridgewater JD, et al. Copper binding to beta-2- microglobulin and its pre-amyloid oligomers. Biochemistry, 2009;48:9871-9881.
254. Kinsman GD, Howard AN, Stone DL, et al. Studies in copper status and atherosclerosis. Biochem Soc Trans, 1990;1:1186
255. Ford ES. Serum copper concentration and coronary heart disease among US adults. Am J Epidemiol, 2000;151:1182-1188.
256. Overvad K, Wang DY, Olsen J, Allen DS, Thorling EB, Bulbrook RD, Hayward JI. Copper in human mammary carcinogenesis: a case-cohort study. Ann J Epidemiol, 1993;137:409-414
257. Rayman MP. The importance of selenium to human health. Lancet, 2000;356: 233–241.
258. Kocabaş CN, Adalioglu G, Coşkun T, Tuncer A, Sekerel BE. The relationship between serum selenium levels and frequent wheeze in children. Turk J Pediatr, 2006;48(4): 308- 312
259. Adamowicz A, Trafikowska U, Trafikowska A, et al. Effect of erythropoietin therapy and selenium supplementation on selected antioxidant parameters in blood of uremic patients on long-term hemodialysis. Med Sci Monit, 2002;8:CR202-205.
260. Zagrodzki P, Bartoń H, Walas S, et al. Selenium status indices, laboratory data, and selected biochemical parameters in end-stage renal disease patients. Biol Trace Elem Res, 2007;116:29-41.
261. Tonelli M, Wiebe N, Hemmelgarn B, et al. Trace elements in hemodialysis patients: a systematic review and meta- analysis. BMC Med, 2009;7:25.
262. Pakfetrat M, Malekmakan L, Hasheminasab M. Diminished selenium levels in hemodialysis and continuous ambulatory peritoneal dialysis patients. Biol Trace Elem Res, 2010;137:335-339.
263. Fujishima Y, Ohsawa M, Itai K, et al. Serum selenium levels in hemodialysis patients are significantly lower than those in healthy controls. Blood Purif,2011; 32:43-47.
264. Andrew NH, Engel B, Hart K, et al. Micronutrient intake in haemodialysis patients. J Human Nutr Diet, 2008;21:375-376.
265. Walston J, Xue Q, Semba RD, et al. Serum antioxidants, inflammation, and total mortality in older women. Am J Epidemiol,2006;163:18-26.
266. Ferms GAA. Differential effects of statins on serum CRP levels: implications of recent clinical trials. Atherosclerosis, 2003;169:349–352.
267. Taccone-Gallucci M, Noce A, Bertucci P, et al. Chronic treatment with statins increases the availability of selenium in the antioxidant defence systems of hemodialysis patients. J Trace Elems Med Biol, 2010;24:27-30.
268. Viron B. The point about...uremia and cancer. Nephrologie,2002;23:231-236.
269. Fujishima Y, Ohsawa M, Itai K, et al. Serum selenium levels are inversely associated with death risk among hemodialysis patients. Nephrol Dial Transplant, 2011;26:3331–3338,
270. McGrath LT, Douglas AF, McClean E, et al. Oxidative stress and erythrocyte membrane fluidity in patients undergoing regular dialysis. Clin Chim Acta, 1995;235:179-188.
271. Kupka R, Msamanga GI, Spiegelman D, et al. Selenium status is associated with accelerated HIV disease progression among HIV-1-infected pregnant women in Tanzania. J Nutr, 2004;134:2556-2560
272. Schrauzer GN, White DA. Selenium in human nutrition: dietary intakes and effects of supplementation. Bioinorg Chem. 1978;8:303-318
273. Zachara BA, Gromadzinska J, Palus J, et al. The effect of selenium supplementation in the prevention of DNA damage in white blood cells of hemodialyzed patients: A pilot study. Biol Trace Elem Res, Biol Trace Elem Res. 2011;142:274-83
274. Zachara BA, Gromadzinska J, Zbrog Z, et al. Selenium supplementation to chronic kidney disease patients on hemodialysis does not induce the synthesis of plasma glutathione peroxidase. Acta Biochim Pol, 2009;56:183-187.
275. Whitin JC, Tham DM, Bhamre S, et al. Plasma glutathione peroxidase and its relationship to renal proximal tubule function. Mol Genet Metab, 1998;65:238-245.
276. Zagrodzki P, Bartoń H, Walas S, et al. Selenium status indices, laboratory data, and selected biochemical parameters in end-stage renal disease patients. Biol Trace Elem Res,2007;116:29-41.
277. Celiker A, Giray B, Başay T, et al. The effect of recombinant human erythropoietin on serum selenium levels in hemodialysis patients. J Trace Elem Med Biol,2001;15:215- 220.
278. DiSilvestro, RA. Selenium. In: “Handbook of Minerals as Nutritional Supplements”. Boca Raton: CRC Press.2005; pp. 193-218.
279. Chih-Hung Guo, Pei-Chung Chen, Wang-Sheng Ko. Status of essential trace minerals and oxidative stress in viral hepatitis C patients with nonalcoholic fatty liver disease.Int J Med Sci. 2013;10:730-7.
280. F Fabrizi, V Dixit, P Messa. Impact of hepatitis C on survival in dialysis patients: a link with cardiovascular mortality?J Viral Hepat. 2012;19:601-607.
281. Girelli D, Olivieri O, Stanzial AM, et al. Low platelet glutathione peroxidase activity and serum selenium concentration in patients with chronic renal failure: relations to dialysis treatments, diet and cardiovascular complications. Clin Sci (Lond), 1993;84:611-617.
282. Neve J. Selenium as a risk factor for cardiovascular diseases. J Cardiovasc Risk,1996;3:42-47.
283. Panicker S, Swathy SS, John F, et al. Impact of selenium on NFκB translocation in isoproterenol-induced myocardial infarction in rats. Biol Trace Elem Res, 2010;138:202-211.
284. Ter Braake AD, Tinnemans PT, Shanahan CM, et al. Magnesium prevents vascular calcification in vitro by inhibition of hydroxyapatite crystal formation. Sci Rep 2018;8:2069.
285. Ter Braake AD, Smit AE, Bos C, et al. Magnesium prevents vascular calcification in Klotho deficiency. Kidney Int 2020;97:487.
286. Kris-Etherton PM, Harris WS, Appel LJ. Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation, 2002;106:2747–2757.
287. Pooya Sh, Jalali MD, Jazayery AD, et al. The efficacy of omega-3 fatty acid supplementation on plasma homocysteine and malondialdehyde levels of type 2 diabetic patients. Nutr Metab Cardiovasc Dis, 2010;20:326-331.
288. Lauretani F, Maggio M, Pizzarelli F, et al. Omega-3 and renal function in older adults. Curr Pharm Des, 2009;15:4149-4156.
289. Soumura M, Kume S, Isshiki K, et al. Oleate and eicosapentaenoic acid attenuate palmitate-induced inflammation and apoptosis in renal proximal tubular cell. Biochem Biophys Res Commun, 2010;402:265-271.
290. Peake JM, Gobe GC, Fassett RG, et al. The effects of dietary fish oil on inflammation, fibrosis and oxidative stress associated with obstructive renal injury in rats. Mol Nutr Food Res. 2011;55:400-410.
291. Siener R, Jansen B, Watzer B, et al. Effect of n-3 fatty acid supplementation on urinary risk factors for calcium oxalate stone formation. J Urol, 2011;185:719-724.
292. Saifullah A, Watkins BA, Saha C, et al. Oral fish oil supplementation raises blood omega-3 levels and lowers C-reactive protein in haemodialysis patients--a pilot study. Nephrol Dial Transplant, 2007;22:3561-3567.
293. Nakamura N, Fujita T, Kumasaka R, et al. Serum lipid profile and plasma fatty acid composition in hemodialysis patients- comparison with chronic kidney disease patients. In Vivo, 2008;22:609-611.
294.. Faber J, Berkhout M, Vos AP, et al. Supplementation with a Fish Oil-Enriched, High-Protein Medical Food Leads to Rapid Incorporation of EPA into White Blood Cells and Modulates Immune Responses within One Week in Healthy Men and Women. J Nutr, 2011;141:964-970.
295. Perunicic-Pekovic GB, Rasic ZR, Pljesa SI, et al. Effect of n-3 fatty acids on nutritional status and inflammatory markers in haemodialysis patients. Nephrology (Carlton). 2007;12:331-336.
296. Svensson M, Christensen JH, Sølling J, et al. The effect of n-3 fatty acids on plasma lipids and lipoproteins and blood pressure in patients with CRF. Am J Kidney Dis, 2004;44:77-83.
297. Taziki O, Lessan-Pezeshki M, Akha O, et al. The effect of low dose omega-3 on plasma lipids in hemodialysis patients. Saudi J Kidney Dis Transpl, 2007;18:571-576.
298. Ando M, Sanaka T, Nihei H. Eicosapentanoic acid reduces plasma levels of remnant lipoproteins and prevents in vivo peroxidation of LDL in dialysis patients. J Am Soc Nephrol, 1999;10:2177-2184.
299. Ya-Ling Lin, Chia-Liang Wang, Kai-Li Liu, et al. Fatty Acids Improve Chronic Kidney Disease-Associated Pruritus and Inflammation. Medicina (Kaunas). 2022;58):796.
300. Jakubowski H. The pathophysiological hypothesis of homocysteine thiolactone- mediated vascular disease. J Physiol Pharmacol, 2008;59(Suppl 9):155-167.
301. Obeid R, Herrmann W. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett, 2006;580:2994-3005.
302. Paoli P, Sbrana F, Tiribilli B, et al. Protein N-homocysteinylation induces the formation of toxic amyloid-like protofibrils. J Mol Biol, 2010;400:889-907.
303. Davis CD and Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood), 2004;229:988-995.
304. Jamal SA, Leiter RE, Bauer DC. Hyperhomocysteinaemia and aortic calcification are associated with fractures in patients on haemodialysis. QAM 2005;98:575-579.
305. Tamura T, Johnston KE, Bergman SM. Homocysteine and folate concentrations in blood from patients treated with hemodialysis. J Am Soc Nephrol, 1996;7:2414-2418.
306. Stanford JL, Molina H, Phillips J, et al. Oral folate reduces plasma homocyst(e)ine levels in hemodialysis patients with cardiovascular disease. Cardiovasc Surg,2000;8:567-571.
307. Bachman J, Tepel M, Raidt H, et al. W. Hyperhomocysteinemia and the risk of vascular disease in hemodialysis patients. J Am Soc Nephrol, 1995;6:121–125.
308. Heinz J, Kropf S, Luley C, et al. Homocysteine as a risk factor for cardiovascular disease in patients treated by dialysis: a meta-analysis. Am J Kidney Dis, 2009;54:478- 489.
309. Leblanc M, Pichette V, Geadah D, et al. Folic acid and pyridoxal-5'-phosphate losses during high-efficiency hemodialysis in patients without hydrosoluble vitamin supplementation. J Ren Nutr, 2000;10:196-201.
310. Tremblay R, Bonnardeaux A, Geadah D, et al. Hyperhomocysteinemia in hemodialysis patients: effects of 12-month supplementation with hydrosoluble vitamins. Kidney Int, 2000;58:851-888.
311. Heinz J, Kropf S, Luley C, et al. Homocysteine as a risk factor for cardiovascular disease in patients treated by dialysis: a meta-analysis. Am J Kidney Dis, 2009;54:478- 489.
312. Koulouridis E, Tzilianos M, Katsarou A, et al. Homocysteine and C-reactive protein levels in haemodialysis patients. Int Urol Nephrol. 2001;33:207-215.
313. Kaji E, Kato J, Saito S, et al. Serum folate and homocysteine levels are associated with colon tumorigenesis in end-stage renal disease patients. Nutr Cancer. 2011;63:202-211.
314. Kayabasi H, Sit D, Atay AE, et al. Parameters of oxidative stress and echocardiographic indexes in patients on dialysis therapy. Ren Fail, 2010;32:328-334
315. Stanford JL, Molina H, Phillips J, et al. Oral folate reduces plasma homocyst(e)ine levels in hemodialysis patients with cardiovascular disease. Cardiovasc Surg, 2000;8:567-571.
316. Bostom AG, Shemin D, Lapane KL, et al. High dose B-vitamin treatment of hyperhomocysteinemia in dialysis patients. Kidney Int, 1996;49:147-152.
317. Chiarello PG, Vannucchi MT, Moysés Neto M, et al. Hyperhomocysteinemia and oxidative stress in hemodialysis: effects of supplementation with folic acid. Int J Vitam Nutr Res, 2003;73:431-438.
318. Baragetti I, Raselli S, Stucchi A, et al. Improvement of endothelial function in uraemic patients on peritoneal dialysis: a possible role for 5-MTHF administration 2007;22:3292-27
319. Cianciolo G, La Manna G, Colì L, et al. 5-methyltetrahydrofolate administration is associated with prolonged survival and reduced inflammation in ESRD patients. Am J Nephrol, 2008;28:941-948.
320. Apeland T, Mansoor MA, Seljeflot I, et al. Homocysteine, malondialdehyde and endothelial markers in dialysis patients during low-dose folinic acid therapy. J Intern Med, 2002;252:456-464.
321. De Vecchi AF, Bamonti-Catena F, Finazzi S, et al. Homocysteine, vitamin B12, and serum and erythrocyte folate in peritoneal dialysis and hemodialysis patients. Perit Dial Int, 2000;20:169-173.
322.Maggini S, Wintergerst ES, Beveridge S, et al. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr, 2007;Suppl 1:S29-35.
323.Marar O, Senturk S, Agha A, et al. The prevalence of vitamin B12 deficiency in patients with type 2 diabetes mellitus on metformin. RCSI Student Medical Journal 2011;4:16-20
324.Herrmann W, Obeid R. Hyperhomocysteinemia and response of methionine cycle intermediates to vitamin treatment in renal patients. Clin Chem Lab Med, 2005;43:1039-1047.
325. Herrmann W, Schorr H, Geisel J, et al. Homocysteine, cystathionine,
methylmalonic acid and B-vitamins in patients with renal disease. Clin Chem Lab
Med, 2001;39:739-746
326.Pastore A, De Angelis S, Casciani S, et al. Effects of folic acid before and after vitamin B12 on plasma homocysteine concentrations in hemodialysis patients with known MTHFR genotypes. Clin Chem, 2006;52:145-148.
327. Stopper H, Treutlein AT, Bahner U, et al. Reduction of the genomic damage level in haemodialysis patients by folic acid and vitamin B12 supplementation. Nephrol Dial Transplant, 2008;23:3272-3279.
328. Azadibakhsh N, Hosseini RS, Atabak S, et al. Efficacy of folate and vitamin B12 in lowering homocysteine concentrations in hemodialysis patients. Saudi J Kidney Dis Transpl, 2009;20:779-788
329. Stenvinkel P. Anaemia and inflammation: what are the implications for the nephrologist? Nephrol Dial Transplant, 2003;18( Suppl 8):viii17-22.
330. Turgut A, Özler A, Görük NY, et al. Copper, ceruloplasmin and oxidative stress in patients with advanced-stage endometriosis. Eur Rev Med Pharmacol Sci 2013;17:1472–1478
331. Malavolta M, Giacconi R, Piacenza F, et al. Plasma copper/zinc ratio: an inflammatory/nutritional biomarker as predictor of all-cause mor tality in elderly population. Biogerontology 2010;11:309–319
332. Gaier ED, Kleppinger A, Ralle M, et al. High serum Cu and Cu/Zn ratios correlate with impair ments in bone density, physical performance and overall health in a population of elderly men with frailty characteristics. Exp Gerontol 2012;47:491–496
333. Nagane NS, Ganu JV, Jagtap PE. Study of oxidative stress in pre- and post-hemodialysis in chronic renal failure patients. Biomed Res 2013;24:498–502
334. Wang Z, Yu C, Li XH, et al. The prognostic value of oxidative stress and inflammation in Chinese hemodialysis patients. Ren Fail 2017;39:54–58
335. Spittle MA, Hoenich NA, Handelman GJ, et al. Oxidative stress and inflammation in hemodial ysis patients. Am J Kidney Dis 2001;38:1408–1413
336. Filiopoulos V, Hadjiyannakos D, Vlassopoulos D. Optimal plasma and dialysate magnesium concentrations in hemodialysis patients: the unsettled issues. Am J Kidney Dis 2016;67:341–347
337. Cunningham J, Rodríguez M, Messa P Magnesium in chronic kidney disease stages 3 and 4 and in dialysis patients. Clin Kidney J 2012;5(Suppl 1):i39–i51
338. Ishimura E, Okuno S, Yamakawa T, et al. Serum magnesium concentration is a significant predictor of mor tality in maintenance hemodialysis patients. Magnes Res 2007;20:237–244
339. Ohya M, Negi S, Sakaguchi T, et al. Significance of serum magnesium as an independent correl ative factor on the parathyroid hormone level in uremic in uremic patients. J Clin Endocrinol Metab 2014;99:3873–3878
340. Kosedo I, Tokushige A, Takumi T, et al. Use of proton pump inhibitors is associated with an increase in adverse cardiovascular events in patients with hemodialysis: Insight from the kids registry. M.Eur J Intern Med. 2020;72:79-87.
341. Teppei Okamoto, Shingo Hatakeyama, Shogo Hosogoe, et al. Proton pump inhibitor as an independent factor of progression of abdominal aortic calcification in patients on maintenance hemodialysis..PLoS One. 2018 Jul 3;13(7):e0199160.
342. Mohamad Alhosaini, James S Walter, Sanjay Singh, Robert S Dieter, Annming Hsieh, David J Leehey Hypomagnesemia in hemodialysis patients: role of proton pump inhibitors. Am J Nephrol. 2014;39(3):20420-9.
343. Mikolasevic I, Milic S, Stimac D, et al. Is there a relationship between hypomagnesemia and proton-pump inhibitors in patients on chronic hemodialysis? Med. 2016;30:99-103.
344. Hughes J, Y Y Chiu D, Kalra PA, et al. Prevalence and outcomes of proton pump inhibitor associated hypomagnesemia in chronic kidney disease. PLoS One. 2018 May 25;13(5):e0197400.
345. Geoghegan M, McAuley D, Eaton S, et al. Selenium in critical illness. Curr Opin Crit Care. 2006;12:136-141.
346. Li S, Tang T, Guo P, et al. A meta-analysis of randomized controlled trials: Efficacy of selenium treatment for sepsis..Medicine (Baltimore). 2019 Mar;98:e14733.
347. Allingstrup M, Afshari A. Selenium supplementation for critically ill adults. Cochrane Database Syst Rev. 2015(7):CD003703.
348. Fujishima Y, Ohsawa M, Itai K, et al. Serum selenium levels are inversely associated with death risk among hemodialysis patients.. Nephrol Dial Transplant. 2011;26:3331-3338.
350. Stupin A, Cosic A, Novak S, et al. Reduced dietary selenium impairs vascular function by in creasing oxidative stress in Sprague-Dawley rat aortas. Int JEnviron Res Public Health 2017;14:591
351. Liu H, Li X, Qin F, Huang K. Selenium suppresses oxidative-stress-enhanced vascular smooth muscle cell calcifica tion by inhibiting the activation of the PI3K/AKT and ERK signal ing pathways and endoplasmic reticulum stress. J Biol Inorg Chem 2014;19:375–388
352. Barroso CF, Pires LV, Santos LB, et al. Selenium Nutritional Status and Glutathione Peroxidase Activity and Its Relationship with Hemodialysis Time in Individuals Living in a Brazilian Region with Selenium-Rich Soil. Biol Trace Elem Res. 2021;199:2535-2542.
353.Iskra M, Patelski J, Majewski W. Relationship of calcium,magnesium, zinc and copper concentrations in the arterial wall andserum in atherosclerosis obliterans and aneurysm. J Trace Elem Med Biol 1997;11:248–252
354. Sun W, Sun M, Zhang M, et al. Correlation between conjunctival and corneal calcification and car diovascular calcification in patients undergoing maintenance hemo dialysis. Hemodial Int 2015;19:270–278
355. Ter Braake AD, Shanahan CM, de Baaij JHF. Magnesium counteracts vascular calcification: passive interference or active modulation? Arterioscler Thromb Vasc Biol 2017;37:1431–1445
356. Schurgers LJ, Barreto DV, Barreto FC, et al. The circulating inactive form of matrix Gla protein is a surrogatmarker for vascular calcification in chronic kidney disease: a preliminary report. Clin J Am Soc Nephrol 2010;5:568–575
357. Schurgers LJ, Cranenburg EC, Vermeer C. Matrix Gla-pro tein: the calcification inhibitor in need of vitamin K. Thromb Haemost 2008;100:593–603
358. Yao Y, Bennett BJ, Wang X, et al. Inhibition of bone morphogenetic proteins protects against atherosclerosis and vascular calcification. Circ Res 2010;107:485–494
359. Epstein M. Matrix Gla-protein (MGP) not only inhibits cal cification in large arteries but also may be renoprotective: connecting the dots. EBioMedicine 2016;4:16–17
360. Quarles LD. Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res 2012;318:1040–1048
361.NasrAllah MM, El-Shehaby AR, Osman NA, et al. The association between fibroblast growth factor-23 and vascular calcification is mitigated by inflammation markers. Nephron Extra 2013;3:106–112
362.Quarles LD. Skeletal secretion of FGF-23 regulates phos phate and vitamin D metabolism. Nat Rev Endocrinol 2012;8:276–286
363. Shimada T, Yamazaki Y, Takahashi M. Vitamin D receptor independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Phys 2005;289:1088–1095
364. Silver J, Naveh-Many T. FGF-23 and secondary hyperpara thyroidism in chronic kidney disease. Nat Rev Nephrol 2013;9:641–649
365. Filler G, Liu D, Huang SH, et al. Impaired GFR is the most important determinant for FGF-23 in crease in chronic kidney disease. Clin Biochem 2011;44:435–437
366. Suzuki T, Kajita Y, Katsumata S, et al. Zinc deficiency increases serum concentrations of parathyroid hor mone through a decrease in serum calcium and induces bone fra gility in rats. J Nutr Sci Vitaminol (Tokyo) 2015;61:382–390
367. Silva AP, Gundlach K, Büchel J, et al. Low magnesium levels and FGF-23 dysregulation pre dict mitral valve calcification as well as intima media thickness in predialysis diabetic patients. Int J Endocrinol 2015:1–10
368. Iguchi A, Watanabe Y, Iino N, et al. Serum magnesium concentration is inversely associated with fibro blast growth factor 23 in haemo- dialysis patients. Nephrology 2014;19:667–671
369. Dimas G, Iliadis F, Grekas D. Matrix metalloproteinases, atherosclerosis, proteinuria and kidney disease: linkage-based ap proaches. Hippokratia 2013;17:292–297
370. Marson BP, Poli de Figueiredo CE, Tanus-Santos JE. Imbalanced matrix metallo- proteinases in cardiovascular compli cations of end-stage kidney disease: a potential pharmacological target. Basic Clin Pharmacol Toxicol 2012;110:409–415
371. Musial K, Zwolinska D. Matrix metalloproteinases and sol uble Fas/FasL system as novel regulators of apoptosis in children and young adults on chronic dialysis. Apoptosis 2011;16:653–659
372. Park JM, Kim A, Oh JH, Chung AS. Methylseleninic acid inhibits PMA-stimulated pro-MMP-2 activation mediated by MT1-MMP expression and further tumor invasion through suppression of NF-kappaB activation. Carcino-genesis 2007;28:837–847
373. Guo H, Lee JD, Uzui H, et al. Effects of folic acid and magnesium on the production of homocysteine-induced extracellular matrix metalloproteinase-2 in cultured rat vascular smooth muscle cells. Circ J 2006;70:141–146
374. Ranasinghe P, Wathurapatha WS, Ishara MH, et al. Effects of zinc supplementation on serum lipids: a systematic review and meta-analysis. Nutr Metab (Lond). 2015; 12: 26. 26.
375. Reina de la Torre ML, Navarro-Alarcón M, del Moral LM, et al. Serum Zn levels and Cu/Zn ratios worsen in hemodialysis patients, implying increased cardiovascular risk: a 2-year longitudinal study. Biol Trace Elem Res. 2014; 158: 129-135.
376. Zuo S, Liu M, Liu Y, et al. Association between the blood copper-zinc (Cu/Zn) ratio and anemia in patients undergoing maintenance hemodialysis. Biol Trace Elem Res. 2022;200: 2629-2638.
377. Hajji M, Khedher R, Mrad M, et al. Effects of zinc supplementation on serum copper to zinc and CRP to albumin ratios in hemodialysis patients. J Med Biochem. 2021;40: 193-198.
378. Durham AL, Speer MY, Scatena M, et al. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res. 2018;114:590-600.
379. Sanchis P, Ho CY, Liu Y, et al. Arterial "inflammaging" drives vascular calcification in children on dialysis. Kidney Int. 2019;95:958-972.
380. Musgrove J, Wolf M. Regulation and Effects of FGF23 in Chronic Kidney Disease. Annu Rev Physiol. 2020;82:365-390.
381. Sugiyama H, Miyoshi T, Osawa K, et al. Serum cystatin C levels are associated with coronary artery calcification in women without chronic kidney disease. J Cardiol. 2017;70:559-564.
382. Bundy JD, Chen J, Yang W, et al. CRIC Study Investigators. Risk factors for progression of coronary artery calcification in patients with chronic kidney disease: The CRIC study. Atherosclerosis. 2018;271:53-60.
383. Kimmel M, Butscheid M, Brenner S, et al. Improved estimation of glomerular filtration rate by serum cystatin C in preventing contrast induced nephropathy by N-acetylcysteine or zinc--preliminary results. Nephrol Dial Transplant. 2008;23:1241-1245.
384. Aleksander Druck, Dimpi Patel, Vinod Bansal, et al. Osteopontin Levels in Patients With Chronic Kidney Disease Stage 5 on Hemodialysis Directly Correlate With Intact Parathyroid Hormone and Alkaline Phosphatase. Clin Appl Thromb Hemost. 2019 Jan-Dec;25:1076029619896621.
385. Lok ZSY, Lyle AN..Osteopontin in Vascular Disease.Arterioscler Thromb Vasc Biol. 2019;39:613-622
386. Golüke NMS, Schoffelmeer MA, De Jonghe A, et al. Serum biomarkers for arterial calcification in humans: A systematic review. Bone Rep. 2022 Jun 18;17:101599.
387. Al-Sakarneh NA, Mashal RH. Evaluation of zinc and homocysteine status in pregnant women and their association with pre-eclampsia in Jordan. Prev Nutr Food Sci. 2021;26:21-29.
388. Li T, Chen Y, Li J, et al. Serum homocysteine concentration is significantly associated with inflammatory/immune factors. PLoS One. 2015; 10: e0138099.
389. Yang Q, Lu Y, Deng Y, et al. Homocysteine level is positively and independently associated with serum creatinine and urea nitrogen levels in old male patients with hypertension. Sci Rep. 2020;10:18050.
390. Vázquez-Lorente H, Herrera-Quintana L, Molina-López J, et al. Effect of zinc supplementation on circulating concentrations of homocysteine, vitamin B12, and folate in a postmenopausal population. J Trace Elem Med Biol. 2022;71:126942.
391. Pakfetrat M, Shahroodi JR, Zolgadr AA, et al. Effects of zinc supplement on plasma homocysteine level in end-stage renal disease patients: a double-blind randomized clinical trial. Biol Trace Elem Res. 2013;153:11-5.
392. van Guldener C. Why is homocysteine elevated in renal failure and what can be expected from homocysteine-lowering? Nephrol Dial Transplant. 2006;21:1161-1166.
393. Sonmez Ozkarakaya I, Celik B, Karakukcu C, et al. Effect of zinc supplementation on hemogram parameters and circulating concentrations of homocysteine, vitamin B12, and folate in zinc-deficient children and adolescents. J Trace Elem Med Biol. 2021;65:126724.
394. Heidarian E, Amini M, Parham M, et al. Effect of zinc supplementation on serum homocysteine in type 2 diabetic patients with microalbuminuria. Rev Diabet Stud. 2009;6:64-70.
395. Ducros V, Andriollo-Sanchez M, Arnaud J, et al. Zinc supplementation does not alter plasma homocysteine, vitamin B12 and red blood cell folate concentrations in French elderly subjects. J Trace Elem Med Biol. 2009;23:15-20.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊