跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/16 17:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:秦浩洋
研究生(外文):Hao-Yang Chin
論文名稱:人類微小病毒B19抗體與抗磷脂質抗體對血栓形成之研究
論文名稱(外文):The study of human parvovirus B19 antibodies and antiphospholipid antibodies on thrombosis
指導教授:徐再靜
指導教授(外文):Tsai-Ching Hsu
口試委員:曾博修陳得源
口試日期:2023-07-17
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:54
中文關鍵詞:人類微小病毒抗磷脂質抗體抗體血栓
外文關鍵詞:human parvovirus B19antiphospholipidantibodiesthrombosis
DOI:10.6834/csmu202300236
相關次數:
  • 被引用被引用:0
  • 點閱點閱:21
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
抗磷脂抗體症候群是一種自體免疫疾病,在抗磷脂抗體存在的情況下會造成血栓或妊娠流產。目前許多證據支持感染與抗磷脂抗體症候群之間的關聯。近年來人類微小病毒B19感染與抗磷脂抗體症候群的密切關係受到關注,尤其是臨床上患者抗磷脂抗體表現和血栓形成,但是詳細致病機制並不清楚。根據先前的研究,發現B19V-VP1u抗體如同抗磷脂抗體對生物體有著類似的致病功能,可活化內皮細胞及增加黏附因子表現和具有相似抗磷脂抗體的免疫識別區。抗磷脂抗體已知是造成抗磷脂抗體症候群病徵的重要原因,許多研究證實顯示抗磷脂抗體會透過活化內皮細胞誘發嗜中性白血球聚集而造成嗜中性球胞外陷阱,進而使血栓產生。狹窄下腔靜脈血栓動物模型已廣泛應用於抗磷脂抗體造成血栓之研究,因此本論文利用狹窄血栓動物模型來瞭解B19V-VP1u抗體對血栓形成之影響機制。結果發現B19V-VP1u抗體與抗磷脂抗體具有類似的功能可透過嗜中性球胞外陷阱機制造成血栓產生。
Antiphospholipid antibody syndrome (APS) is an autoimmune disease that can cause thrombosis or pregnancy loss in the presence of antiphospholipid antibodies (aPLs). Currently, there is mounting evidence supporting the association between infection and APS. In recent years, the close relationship between human parvovirus B19 (B19V) infection and APS has garnered attention, particularly regarding the clinical manifestations of APS in patients and thrombus formation. However, the detailed pathogenic mechanisms remain unclear. According to previous studies, it has been found that B19V-VP1u antibodies, like aPL antibodies, possess similar pathogenic functions, such as activating endothelial cells, increasing adhesion factor expression, prolonged aPTT and thrombocytopenia in mice, and having immunorecognition domains similar to aPL. Recently, numerous studies have shown that aPLs activate endothelial cells and induce neutrophil aggregation, leading to NETosis and subsequent thrombus formation. The inferior vena cava (IVC) stenosis model mimics human deep vein thrombosis (DVT) and is used in thrombosis caused by aPL antibodies. Therefore, this study utilized the DVT animal model to understand the mechanism of B19V-VP1u antibodies on thrombus formation. The results revealed that B19V-VP1u antibodies have similar functionality to aPL antibodies and can induce thrombus formation through NETosis.
目 錄
致謝 --------------------------------------------------------------------------------I
中文摘要 -------------------------------------------------------------------------II
Abstract -------------------------------------------------------------------------- III
壹、 緒論 1
貳、 研究動機 27
參、 材料與方法 28
肆、 結果 34
伍、 討論 38
陸、 參考文獻 40
柒、 圖表 50
1.Svenungsson E, Antovic, A. The antiphospholipid syndrome - often overlooked cause of vascular occlusions? J Intern Med. 2020;287(4):349-72.
2.Conley C. A haemorrhagic disorder caused by circulating anticoagulant in patients with disseminated lupus erythematosus. J Clin Invest. 1952;31:621-2.
3.Nilsson IM, Åstedt B, Hedner U, Berezin D. Intrauterine death and circulating anticoagulant (“antithromboplastin”). Acta Medica Scandinavica. 1975;197(1‐6):153-9.
4.Hughes GR, Harris NN, Gharavi AE. The anticardiolipin syndrome. J Rheumatol. 1986;13(3):486-9.
5.Alarcón-Segovia D, Delezé M, Oria CV, Sánchez-Guerrero J, Gómez-Pacheco L, Cabiedes J, Fernández L, Ponce de León S. Antiphospholipid antibodies and the antiphospholipid syndrome in systemic lupus erythematosus. A prospective analysis of 500 consecutive patients. Medicine (Baltimore). 1989;68(6):353-65.
6.Asherson RA. The catastrophic antiphospholipid syndrome. J Rheumatol. 1992;19(4):508-12.
7.Petri M. Epidemiology of the antiphospholipid antibody syndrome. Journal of autoimmunity. 2000;15(2):145-51.
8.Duarte-Garcia A, Pham M, Crowson C, Moder K, Pruthi R, Warrington K, Matteson E. Epidemiology of antiphospholipid syndrome: a population-based study. 2019, Archives of Disease in childhood.
9.Yao WC, Leong KH, Chiu LT, Chou PY, Wu LC, Chou CY, Kuo CF, Tsai SY. The trends in the incidence and thrombosis-related comorbidities of antiphospholipid syndrome: a 14-year nationwide population-based study. Thromb J. 2022;20(1):50.
10.Wilson WA, Gharavi AE, Koike T, Lockshin MD, Branch DW, Piette JC, Brey R, Derksen R, Harris EN, Hughes GR, Triplett DA, Khamashta MA. International consensus statement on preliminary classification criteria for definite antiphospholipid syndrome: report of an international workshop. Arthritis Rheum. 1999;42(7):1309-11.
11.Sammaritano LR. Antiphospholipid syndrome. Best Pract Res Clin Rheumatol. 2020;34(1):101463.
12.Petri M. Antiphospholipid syndrome. Transl Res. 2020;225:70-81.
13.Watanabe K. [Clinical diagnosis of thrombosis and blood coagulation tests]. Rinsho Byori. 1998;46(3):235-44.
14.Favaloro EJ, Wong RC, Silvestrini R, McEvoy R, Jovanovich S, Roberts-Thomson P. A multilaboratory peer assessment quality assurance program-based evaluation of anticardiolipin antibody, and beta2-glycoprotein I antibody testing. Semin Thromb Hemost. 2005;31(1):73-84.
15.Chee YL. Coagulation. J R Coll Physicians Edinb. 2014;44(1):42-5.
16.Akhter E, Shums Z, Norman GL, Binder W, Fang H, Petri M. Utility of antiphosphatidylserine/prothrombin and IgA antiphospholipid assays in systemic lupus erythematosus. J Rheumatol. 2013;40(3):282-6.
17.Sène D, Piette JC, Cacoub P. Antiphospholipid antibodies, antiphospholipid syndrome and infections. Autoimmunity reviews. 2008;7(4):272-7.
18.Petri M. Update on anti-phospholipid antibodies in SLE: the Hopkins’ Lupus Cohort. Lupus. 2010;19(4):419-23.
19.Asherson RA, Cervera R, Piette JC, Font J, Lie J, Burcoglu A, Lim K, Muñoz-Rodríguez FJ, Levy RA, Boué F. Catastrophic antiphospholipid syndrome: clinical and laboratory features of 50 patients. Medicine. 1998;77(3):195-207.
20.Rodríguez-Pintó I, Moitinho M, Santacreu I, Shoenfeld Y, Erkan D, Espinosa G, Cervera R. Catastrophic antiphospholipid syndrome (CAPS): Descriptive analysis of 500 patients from the International CAPS Registry. Autoimmun Rev. 2016;15(12):1120-4.
21.Sebastiani GD, Iuliano A, Cantarini L, Galeazzi M. Genetic aspects of the antiphospholipid syndrome: An update. Autoimmun Rev. 2016;15(5):433-9.
22.Wilson W, Pérez MC, Michalski JP, Armatis PE. Cardiolipin antibodies and null alleles of C4 in black Americans with systemic lupus erythematosus. The Journal of Rheumatology. 1988;15 12:1768-72.
23.Hirose N, Williams R, Alberts AR, Furie RA, Chartash EK, Jain RI, Sison C, Lahita RG, Merrill JT, Cucurull E, Gharavi AE, Sammaritano LR, Salmon JE, Hashimoto S, Sawada T, Chu CC, Gregersen PK, Chiorazzi N. A role for the polymorphism at position 247 of the beta2-glycoprotein I gene in the generation of anti-beta2-glycoprotein I antibodies in the antiphospholipid syndrome. Arthritis Rheum. 1999;42(8):1655-61.
24.Blank M, Krause I, Fridkin M, Keller N, Kopolovic J, Goldberg I, Tobar A, Shoenfeld Y. Bacterial induction of autoantibodies to beta2-glycoprotein-I accounts for the infectious etiology of antiphospholipid syndrome. J Clin Invest. 2002;109(6):797-804.
25.Meroni PL, Peyvandi F, Foco L, Bernardinelli L, Fetiveau R, Mannucci PM, Tincani A. Anti-beta 2 glycoprotein I antibodies and the risk of myocardial infarction in young premenopausal women. J Thromb Haemost. 2007;5(12):2421-8.
26.Gómez-Puerta JA, Cervera R, Espinosa G, Aguiló S, Bucciarelli S, Ramos-Casals M, Ingelmo M, Asherson RA, Font J. Antiphospholipid Antibodies Associated with Malignancies: Clinical and Pathological Characteristics of 120 Patients. Seminars in Arthritis and Rheumatism. 2006;35(5):322-32.
27.Bauersachs R, Lindhoff-Last E, Ehrly AM, Kuhl H. Significance of hereditary thrombophilia for risk of thrombosis with oral contraceptives. Zentralbl Gynakol. 1996;118(5):262-70.
28.Mehndiratta MM, Garg S, Gurnani M. Cerebral venous thrombosis--clinical presentations. J Pak Med Assoc. 2006;56(11):513-6.
29.de Groot PG, Meijers JC. β(2) -Glycoprotein I: evolution, structure and function. J Thromb Haemost. 2011;9(7):1275-84.
30.Williams FM, Parmar K, Hughes GR, Hunt BJ. Systemic endothelial cell markers in primary antiphospholipid syndrome. Thromb Haemost. 2000;84(5):742-6.
31.Zhang J, McCrae KR. Annexin A2 mediates endothelial cell activation by antiphospholipid/anti-beta2 glycoprotein I antibodies. Blood. 2005;105(5):1964-9.
32.Espinola RG, Liu X, Colden-Stanfield M, Hall J, Harris EN, Pierangeli SS. E-Selectin mediates pathogenic effects of antiphospholipid antibodies. J Thromb Haemost. 2003;1(4):843-8.
33.Branch DW, Rodgers GM. Induction of endothelial cell tissue factor activity by sera from patients with antiphospholipid syndrome: a possible mechanism of thrombosis. Am J Obstet Gynecol. 1993;168(1 Pt 1):206-10.
34.Hamid C, Norgate K, D'Cruz DP, Khamashta MA, Arno M, Pearson JD, Frampton G, Murphy JJ. Anti-beta2GPI-antibody-induced endothelial cell gene expression profiling reveals induction of novel pro-inflammatory genes potentially involved in primary antiphospholipid syndrome. Ann Rheum Dis. 2007;66(8):1000-7.
35.Mineo C. Inhibition of nitric oxide and antiphospholipid antibody-mediated thrombosis. Curr Rheumatol Rep. 2013;15(5):324.
36.Wu M, Barnard J, Kundu S, McCrae KR. A novel pathway of cellular activation mediated by antiphospholipid antibody-induced extracellular vesicles. J Thromb Haemost. 2015;13(10):1928-40.
37.Coughlin SR. Thrombin signalling and protease-activated receptors. Nature. 2000;407(6801):258-64.
38.Pan L, Kreisle R, Shi, Y. Expression of endothelial cell IgG Fc receptors and markers on various cultures. Chinese medical journal. 1999;112(2):157-61.
39.Mayadas TN, Cullere X, Lowell, CA. The multifaceted functions of neutrophils. Annual Review of Pathology: Mechanisms of Disease. 2014;9:181-218.
40.Yalavarthi S, Gould TJ, Rao AN, Mazza LF, Morris AE, Núñez-Álvarez C, Hernández-Ramírez D, Bockenstedt PL, Liaw PC, Cabral AR, Knight JS. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015;67(11):2990-3003.
41. Bravo-Barrera J, Kourilovitch M, Galarza-Maldonado C. Neutrophil Extracellular Traps, Antiphospholipid Antibodies and Treatment. Antibodies (Basel). 2017;6(1):4.
42.Knight JS, Kanthi, Y. Mechanisms of immunothrombosis and vasculopathy in antiphospholipid syndrome. Semin Immunopathol. 2022;44(3):347-62.
43.Ekdahl KN, Persson B, Mohlin C, Sandholm K, Skattum L, Nilsson B. Interpretation of Serological Complement Biomarkers in Disease. Front Immunol. 2018;9:2237.
44.Davis WD, Brey RL. Antiphospholipid antibodies and complement activation in patients with cerebral ischemia. Clin Exp Rheumatol. 1992;10(5):455-60.
45.Holers VM, Girardi G, Mo L, Guthridge JM, Molina H, Pierangeli SS, Espinola R, Xiaowei LE, Mao D, Vialpando CG, Salmon JE. Complement C3 activation is required for antiphospholipid antibody-induced fetal loss. J Exp Med. 2002;195(2):211-20.
46.Raskob GE, Silverstein R, Bratzler DW, Heit JA, White RH. Surveillance for deep vein thrombosis and pulmonary embolism: recommendations from a national workshop. Am J Prev Med. 2010;38(4 Suppl):S502-9.
47.Lee CH, Lin LJ, Cheng CL, Kao Yang YH, Chen JY, Tsai LM. Incidence and cumulative recurrence rates of venous thromboembolism in the Taiwanese population. J Thromb Haemost. 2010;8(7):1515-23.
48.Henke PK, Mitsuya M, Luke CE, Elfline MA, Baldwin JF, Deatrick KB, Diaz JA, Sood V, Upchurch GR, Wakefield TW, Hogaboam C, Kunkel SL. Toll-like receptor 9 signaling is critical for early experimental deep vein thrombosis resolution. Arterioscler Thromb Vasc Biol. 2011;31(1):43-9.
49.Wakefield TW, Strieter RM, Wilke CA, Kadell AM, Wrobleski SK, Burdick MD, Schmidt R, Kunkel SL, Greenfield LJ. Venous thrombosis-associated inflammation and attenuation with neutralizing antibodies to cytokines and adhesion molecules. Arterioscler Thromb Vasc Biol. 1995;15(2):258-68.
50.Diaz JA, Obi AT, Myers DD, Jr., Wrobleski SK, Henke PK, Mackman N, Wakefield TW. Critical review of mouse models of venous thrombosis. Arterioscler Thromb Vasc Biol. 2012;32(3):556-62.
51.Myers DD, Hawley AE, Farris DM, Wrobleski SK, Thanaporn P, Schaub RG, Wagner DD, Kumar A, Wakefield TW. P-selectin and leukocyte microparticles are associated with venous thrombogenesis. J Vasc Surg. 2003;38(5):1075-89.
52.Singh I, Burnand KG, Collins M, Luttun A, Collen D, Boelhouwer B, Smith A. Failure of thrombus to resolve in urokinase-type plasminogen activator gene-knockout mice: rescue by normal bone marrow-derived cells. Circulation. 2003;107(6):869-75.
53.Alvarado CM, Diaz JA, Hawley AE, Wrobleski SK, Sigler RE, Myers DD Jr. Male mice have increased thrombotic potential: sex differences in a mouse model of venous thrombosis. Thromb Res. 2011;127(5):478-86.
54.Brill A, Fuchs TA, Chauhan AK, Yang JJ, De Meyer SF, Köllnberger M, Wakefield TW, Lämmle B, Massberg S, Wagner DD. von Willebrand factor-mediated platelet adhesion is critical for deep vein thrombosis in mouse models. Blood. 2011;117(4):1400-7.
55.Diaz JA, Saha P, Cooley B, Palmer OR, Grover SP, Mackman N, Wakefield TW, Henke PK, Smith A, Lal BK. Choosing a mouse model of venous thrombosis: a consensus assessment of utility and application. J Thromb Haemost. 2019;17(4):699-707.
56.Singh I, Smith A, Vanzieleghem B, Collen D, Burnand K, Saint-Remy JM, Jacquemin M. Antithrombotic effects of controlled inhibition of factor VIII with a partially inhibitory human monoclonal antibody in a murine vena cava thrombosis model. Blood. 2002;99(9):3235-40.
57.Northeast AD, Soo KS, Bobrow LG, Gaffney PJ, Burnand KG. The tissue plasminogen activator and urokinase response in vivo during natural resolution of venous thrombus. Journal of vascular surgery. 1995;22(5):573-9.
58.Humphries J, Gossage JA, Modarai B, Burnand KG, Sisson TH, Murdoch C, Smith A. Monocyte urokinase-type plasminogen activator up-regulation reduces thrombus size in a model of venous thrombosis. J Vasc Surg. 2009;50(5):1127-34.
59.Thomas G, Brill A, Mezouar S, Crescence L, Gallant M, Dubois C, Wagner, D. Tissue factor expressed by circulating cancer cell‐derived microparticles drastically increases the incidence of deep vein thrombosis in mice. Journal of Thrombosis and Haemostasis. 2015;13(7):1310-9.
60.Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF, Bhandari AA, Wagner DD. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012;10(1):136-44.
61.Nomura K, Miyashita T, Yamamoto Y, Munesue S, Harashima A, Takayama H, Fushida S, Ohta T. Citrullinated Histone H3: Early Biomarker of Neutrophil Extracellular Traps in Septic Liver Damage. J Surg Res. 2019;234:132-8.
62.Meng H, Yalavarthi S, Kanthi Y, Mazza LF, Elfline MA, Luke CE, Pinsky DJ, Henke PK, Knight JS. In Vivo Role of Neutrophil Extracellular Traps in Antiphospholipid Antibody-Mediated Venous Thrombosis. Arthritis Rheumatol. 2017;69(3):655-67.
63.Ponomaryov T, Payne H, Fabritz L, Wagner DD, Brill A. Mast Cells Granular Contents Are Crucial for Deep Vein Thrombosis in Mice. Circ Res. 2017;121(8):941-50.
64.Wang H, Wang Q, Wang J, Guo C, Kleiman K, Meng H, Knight JS, Eitzman, DT. Proprotein convertase subtilisin/kexin type 9 (PCSK9) Deficiency is Protective Against Venous Thrombosis in Mice. Sci Rep. 2017;7(1):14360.
65.Yadav V, Chi L, Zhao R, Tourdot BE, Yalavarthi S, Jacobs BN, Banka A, Liao H, Koonse S, Anyanwu AC, Visovatti SH, Holinstat MA, Kahlenberg JM, Knight JS, Pinsky DJ, Kanthi Y. Ectonucleotidase tri(di)phosphohydrolase-1 (ENTPD-1) disrupts inflammasome/interleukin 1β-driven venous thrombosis.
J Clin Invest. 2019;129(7):2872-2877.
66. Michels A, Dwyer CN, Mewburn J, Nesbitt K, Kawecki C, Lenting P, Swystun LL, Lillicrap D. von Willebrand Factor Is a Critical Mediator of Deep Vein Thrombosis in a Mouse Model of Diet-Induced Obesity. Arterioscler Thromb Vasc Biol. 2020;40(12):2860-74.
67.Münzer P, Negro R, Fukui S, di Meglio L, Aymonnier K, Chu L, Cherpokova D, Gutch S, Sorvillo N, Shi L, Magupalli VG, Weber ANR, Scharf RE, Waterman CM, Wu H, Wagner DD. NLRP3 Inflammasome Assembly in Neutrophils Is Supported by PAD4 and Promotes NETosis Under Sterile Conditions. Front Immunol. 2021;12:683803.
68.Lapointe C, Vincent L, Giguère H, Auger-Messier M, Schwertani A, Jin D, Takai S, Pejler G, Sirois MG, Tinel H, Heitmeier S, D'Orléans-Juste P. Chymase Inhibition Resolves and Prevents Deep Vein Thrombosis Without Increasing Bleeding Time in the Mouse Model. J Am Heart Assoc. 2023;12(4):e028056.
69.Zuo Y, Estes SK, Ali RA, Gandhi AA, Yalavarthi S, Shi H, Sule G, Gockman K, Madison JA, Zuo M, Yadav V, Wang J, Woodard W, Lezak SP, Lugogo NL, Smith SA, Morrissey JH, Kanthi Y, Knight JS. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med. 2020;12(570).
70.Wilcox T, Smilowitz NR, Seda B, Xia Y, Hochman J, Berger JS. Sex Differences in Thrombosis and Mortality in Patients Hospitalized for COVID-19. Am J Cardiol. 2022;170:112-7.
71.Cossart YE, Field AM, Cant B, Widdows D. Parvovirus-like particles in human sera. Lancet. 1975;1(7898):72-3.
72.Chaitanya KV. Structure and Organization of Virus Genomes. Genome and Genomics. 2019:1-30.
73.Deiss V, Tratschin JD, Weitz M, Siegl G. Cloning of the human parvovirus B19 genome and structural analysis of its palindromic termini. Virology. 1990;175(1):247-54.
74.Vassilopoulos D, Calabrese, LH. Virally associated arthritis 2008: clinical, epidemiologic, and pathophysiologic considerations. Arthritis Research & Therapy. 2008;10(5):215.
75.Wawina TB, Tshiani OM, Ahuka SM, Pukuta ES, Aloni MN, Kasanga CJ, Muyembe JT. Detection of human parvovirus B19 in serum samples from children under 5 years of age with rash-fever illnesses in the Democratic Republic of the Congo. Int J Infect Dis. 2017;65:4-7.
76.Heegaard ED, Brown, KE. Human parvovirus B19. Clin Microbiol Rev. 2002;15(3):485-505.
77.Stramer SL, Dodd, RY. Transfusion-transmitted emerging infectious diseases: 30 years of challenges and progress. Transfusion. 2013;53(10 Pt 2):2375-83.
78.Arabzadeh SA, Alizadeh F, Tavakoli A, Mollaei H, Bokharaei-Salim F, Karimi G, Farahmand M, Mortazavi HS, Monavari SH. Human parvovirus B19 in patients with beta thalassemia major from Tehran, Iran. Blood Res. 2017;52(1):50-4.
79.Takahashi T, Ozawa K, Takahashi K, Asano S, Takaku F. Susceptibility of human erythropoietic cells to B19 parvovirus in vitro increases with differentiation. Blood. 1990;75(3):603-10.
80.Leisi R, Ruprecht N, Kempf C, Ros C. Parvovirus B19 uptake is a highly selective process controlled by VP1u, a novel determinant of viral tropism. J Virol. 2013;87(24):13161-7.
81.Guan W, Cheng F, Yoto Y, Kleiboeker S, Wong S, Zhi N, Pintel DJ, Qiu J. Block to the production of full-length B19 virus transcripts by internal polyadenylation is overcome by replication of the viral genome. J Virol. 2008;82(20):9951-63.
82.Wong S, Zhi N, Filippone C, Keyvanfar K, Kajigaya S, Brown KE, Young NS. Ex vivo-generated CD36+ erythroid progenitors are highly permissive to human parvovirus B19 replication. J Virol. 2008;82(5):2470-6.
83.Chen AY, Guan W, Lou S, Liu Z, Kleiboeker S, Qiu J. Role of erythropoietin receptor signaling in parvovirus B19 replication in human erythroid progenitor cells. J Virol. 2010;84(23):12385-96.
84.Wolfisberg R, Ruprecht N, Kempf C, Ros C. Impaired genome encapsidation restricts the in vitro propagation of human parvovirus B19. J Virol Methods. 2013;193(1):215-25.
85.Leisi R, Von Nordheim M, Ros C, Kempf C. The VP1u Receptor Restricts Parvovirus B19 Uptake to Permissive Erythroid Cells. Viruses. 2016;8(10).
86.Gallinella G, Manaresi E, Zuffi E, Venturoli S, Bonsi L, Bagnara GP, Musiani M, Zerbini M. Different patterns of restriction to B19 parvovirus replication in human blast cell lines. Virology. 2000;278(2):361-7.
87.Mitchell LA. Parvovirus B19 nonstructural (NS1) protein as a transactivator of interleukin-6 synthesis: common pathway in inflammatory sequelae of human parvovirus infections? J Med Virol. 2002;67(2):267-74.
88.Ganaie SS, Qiu J. Recent Advances in Replication and Infection of Human Parvovirus B19. Front Cell Infect Microbiol. 2018;8:166.
89.Cotmore SF, McKie VC, Anderson LJ, Astell CR, Tattersall P. Identification of the major structural and nonstructural proteins encoded by human parvovirus B19 and mapping of their genes by procaryotic expression of isolated genomic fragments. J Virol. 1986;60(2):548-57.
90.Halder S, Ng R, Agbandje-McKenna M. Parvoviruses: structure and infection. Future Virology. 2012;7(3):253-78.
91.Zádori Z, Szelei J, Lacoste MC, Li Y, Gariépy S, Raymond P, Allaire M, Nabi IR, Tijssen P. A viral phospholipase A2 is required for parvovirus infectivity. Dev Cell. 2001;1(2):291-302.
92.Chipman PR, Agbandje-McKenna M, Kajigaya S, Brown KE, Young NS, Baker TS, Rossmann MG. Cryo-electron microscopy studies of empty capsids of human parvovirus B19 complexed with its cellular receptor. Proc Natl Acad Sci U S A. 1996;93(15):7502-6.
93.Agbandje-McKenna M, Chapman MS, Correlating structure with function in the viral capsid. 2006: Edward Arnold, New York, New York.
94.Gurda BL, Parent KN, Bladek H, Sinkovits RS, DiMattia MA, Rence C, Castro A, McKenna R, Olson N, Brown K, Baker TS, Agbandje-McKenna M. Human bocavirus capsid structure: insights into the structural repertoire of the parvoviridae. J Virol. 2010;84(12):5880-9.
95.Brown KE, Anderson SM, Young NS. Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science. 1993;262(5130):114-7.
96.Weigel-Kelley KA, Yoder MC, Srivastava A. Recombinant human parvovirus B19 vectors: erythrocyte P antigen is necessary but not sufficient for successful transduction of human hematopoietic cells. J Virol. 2001;75(9):4110-6.
97.Weigel-Kelley KA, Yoder MC, Chen L, Srivastava A. Role of integrin cross-regulation in parvovirus B19 targeting. Hum Gene Ther. 2006;17(9):909-20.
98.Munakata Y, Saito-Ito T, Kumura-Ishii K, Huang J, Kodera T, Ishii T, Hirabayashi Y, Koyanagi Y, Sasaki T. Ku80 autoantigen as a cellular coreceptor for human parvovirus B19 infection. Blood. 2005;106(10):3449-56.
99.Kantola K, Hedman L, Allander T, Jartti T, Lehtinen P, Ruuskanen O, Hedman K, Söderlund-Venermo M. Serodiagnosis of human bocavirus infection. Clin Infect Dis. 2008;46(4):540-6.
100.Klasse PJ, Sattentau QJ. Occupancy and mechanism in antibody-mediated neutralization of animal viruses. J Gen Virol. 2002;83(Pt 9):2091-108.
101.Klasse PJ. Neutralization of Virus Infectivity by Antibodies: Old Problems in New Perspectives. Adv Biol. 2014;2014.
102.Burton DR. Antibodies, viruses and vaccines. Nat Rev Immunol. 2002;2(9): 706-13.
103.Pronovost PH. Parvovirus B19. N Engl J Med. 2004;350(19):2006-7.
104.Lin CY, Chiu CC, Cheng J, Lin CY, Shi YF, Tsai CC, Tzang BS, Hsu TC. Antigenicity analysis of human parvovirus B19-VP1u protein in the induction of anti-phospholipid syndrome. Virulence. 2018;9(1):208-16.
105.Bircher C, Bieri J, Assaraf R, Leisi R, Ros C. A Conserved Receptor-Binding Domain in the VP1u of Primate Erythroparvoviruses Determines the Marked Tropism for Erythroid Cells. Viruses. 2022;14(2):420.
106. Castanet J, Taillan B, Garnier G, Ragoin O, Ortonne JP, Dujardin P. Gloves and socks" papular purpura associated with antiphospholipid antibodies. Presse Med. 1993;22(34):1747.
107.Von Landenberg P, Lehmann HW, Knöll A, Dorsch S, Modrow S. Antiphospholipid antibodies in pediatric and adult patients with rheumatic disease are associated with parvovirus B19 infection. Arthritis Rheum. 2003;48(7):1939-47.
108.Asano Y, Sarukawa M, Idezuki T, Harada S, Kaji K, Nakasu I, Igarashi A. Multiple small pulmonary emboli associated with transient antiphospholipid syndrome in human Parvovirus B19 infection. Clin Rheumatol. 2006;25(4):585-7.
109.Loizou S, Cazabon JK, Walport MJ, Tait D, So AK. Similarities of specificity and cofactor dependence in serum antiphospholipid antibodies from patients with human parvovirus B19 infection and from those with systemic lupus erythematosus. Arthritis Rheum. 1997;40(1):103-8.
110.Reitblat T, Drogenikov, T, Sigalov I, Oren S, London D. Transient anticardiolipin antibody syndrome in a patient with parvovirus B19 infection. Am J Med. 2000;109(6):512-3.
111.Chou TN, Hsu TC, Chen RM, Lin LI, Tsay GJ. Parvovirus B19 infection associated with the production of anti-neutrophil cytoplasmic antibody (ANCA) and anticardiolipin antibody (aCL). Lupus. 2000;9(7):551-4.
112.Tzang BS, Tsay GJ, Lee YJ, Li C, Sun YS, Hsu TC. The association of VP1 unique region protein in acute parvovirus B19 infection and anti-phospholipid antibody production. Clin Chim Acta. 2007;378(1-2):59-65.
113.Tzang BS, Tsai CC, Chiu CC, Shi JY, Hsu TC. Up-regulation of adhesion molecule expression and induction of TNF-alpha on vascular endothelial cells by antibody against human parvovirus B19 VP1 unique region protein. Clin Chim Acta. 2008;395(1-2):77-83.
114.Su CC, Hsu TC, Hsiao CH, Chiu CC, Tzang BS. Effects of antibodies against human parvovirus B19 on angiogenic signaling. Mol Med Rep. 2020;21(3): 1320-1327.
115. Hung KC, Huang ZY, Yow JL, Hsu TC, Tzang, BS. Effect of N‑terminal region of human parvovirus B19‑VP1 unique region on cardiac injury in naïve mice. Mol Med Rep. 2021;24(5).
116.Inc. AB. IgG Concentration Calculator. 2023 2023-06-23; Available from: https://www.aatbio.com/tools/calculate-IgG-concentration.
117.Au - Payne H and Au - Brill, A. Stenosis of the Inferior Vena Cava: A Murine Model of Deep Vein Thrombosis. JoVE. 2017(130):e56697.
電子全文 電子全文(網際網路公開日期:20280811)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top