跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/16 01:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭佩燁
研究生(外文):KUO, PEI-YEH
論文名稱:氧化石墨烯結合奈米金粒子應用組織修復之研究
論文名稱(外文):Exploration of Graphene Oxide-Gold Nanoparticles for Tissue Repair
指導教授:劉百栓劉百栓引用關係洪慧珊洪慧珊引用關係
指導教授(外文):LIU, BAI-SHUANHUNG, HUEY-SHAN
口試委員:張振榮林靜瑩湯正明洪慧珊劉百栓
口試委員(外文):ZHANG, ZHEN-RONGLIN, JING-YINGTANG, ZHENG-MINGHUNG,HUEY-SHANLIU, BAI-SHUAN
口試日期:2023-06-09
學位類別:碩士
校院名稱:中臺科技大學
系所名稱:醫學影像暨放射科學系暨研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:144
中文關鍵詞:氧化石磨烯奈米金粒子抗炎牛主動脈內皮細胞再生醫學
外文關鍵詞:graphene oxidegold nanoparticlesAnti-inflammatorybovine aortic endothelial cellsregenerative medicine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
一種簡單的表面製造方法,包括金奈米粒子(Au)和氧化石墨烯
(GO)的薄塗層,被用來提高生物材料應用的生物相容性和生物能力。
通過掃描電子顯微鏡(SEM)、紫外可見光譜(UV-Vis)和傅里葉變換紅
外光譜(FTIR)對由 GO 和 Au(GO-Au)組成的奈米複合材料進行了表
徵。通過牛主動脈內皮細胞(BAEC)、巨噬細胞(RAW 264.7)和間葉幹
細胞(MSC)在體外對材料表面的反應來評估奈米複合材料的生物相容
性。在 GO-Au 奈米複合材料上的 BAEC,尤其是含有 12.2 ppm 的 Au 的奈
米複合材料,表現出細胞增殖、黏附以及基質金屬蛋白酶-9(MMP-9)的
蛋白表達水平的明顯增加,這可能是促進 BAEC在 GO-Au 奈米複合材料上
遷移的原因,另外在西方點墨法的結果中表示在抗凋亡蛋白 Cyclin D1 和
Bcl-2 顯著表達。此外,GO-Au 12.2 ppm 還能通過 ELISA 實驗明顯抑制
RAW 264.7 巨噬細胞中促炎症因子(TNF-α、IL-1β 和 IL-6)的表達。另外
在 MSC 中 GO-Au 12.2 ppm 可以增強血管和神經的分化。最後再動物實驗
中,發現 GO-Au 12.2 ppm 有較少的纖維性被膜厚度、膠原沉積、凋亡細胞
的表現量、M1 巨噬細胞極化和較高的 M2 極化以及內皮化。研究結果表
示,GO-Au 12.2 ppm 奈米複合材料薄膜塗層可以在臨床上作為有效的抗炎
和組織修復的生物性材料。
A simple surface fabrication method involving thin coatings of gold
nanoparticles (Au) and graphene oxide (GO) has been used to enhance
biocompatibility and biocompetence for biomaterial applications. The
nanocomposite materials consisting of GO and Au (GO-Au) were characterized
by scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UVVis), and Fourier transform infrared spectroscopy (FTIR). The biocompatibility
of the nanocomposite materials was evaluated by the in vitro responses of bovine
aortic endothelial cells (BAEC), macrophages (RAW 264.7) and mesenchymal
stem cells (MSC) to the material surface. BAEC on GO-Au nanocomposites,
especially those containing 12.2 ppm Au, showed a significant increase in cell
proliferation, adhesion, and protein expression levels of matrix metalloproteinase9 (MMP-9), which may be responsible for promoting BAEC migration on GOAu nanocomposites, in addition to the results of the Western dot-ink method
indicating that in the anti-apoptotic Cyclin D1 and Bcl-2 proteins were
significantly expressed. In addition, GO-Au 12.2 ppm also significantly inhibited
the expression of pro-inflammatory factors (IL-1β and IL-6) in RAW 264.7
macrophages by ELISA assay. In addition, GO-Au 12.2 ppm enhanced vascular
and neural differentiation in MSC. Finally, in animal experiments, GO-Au 12.2
ppm had less fibrous tegument thickness, collagen deposition, apoptotic cell
expression, M1 macrophage polarization and higher M2 polarization and
endothelialization. Our findings suggest that GO-Au 12.2 ppm nanocomposite
film coatings can be used clinically as an effective anti-inflammatory and tissue
repair biologic material.
總目錄
致謝........................................................................................................................I
中文摘要..............................................................................................................II
英文摘要............................................................................................................ III
總目錄.................................................................................................................IV
圖目錄.................................................................................................................VI
表目錄..............................................................................................................VIII
英文縮寫表.......................................................................................................VII
第一章、前言....................................................................................................... 1
第一節、 緒論 .................................................................................................. 1
第二節、 研究背景 .......................................................................................... 2
研究動機與目的................................................................................................. 13
第二章、研究方法............................................................................................. 15
第一節、 研究流程圖...................................................................................... 15
第二節、 實驗材料.......................................................................................... 16
第三節、實驗方法........................................................................................... 20
(一)、 氧化石墨烯和奈米金粒子薄膜複合物基材配製..................... 20
V
(二)、 氧化石墨烯結合金奈米粒子之基材鑑定 ................................. 22
(三)、氧化石墨烯結合金奈米粒子之生物相容性測試...................... 25
(四)、 氧化石墨烯結合金奈米粒子之生物功能性測試..................... 28
(五)、氧化石墨烯結合金奈米粒子之動物實驗測試.......................... 34
第三節、統計方法........................................................................................... 37
第三章 研究結果................................................................................................ 38
第一節、氧化石墨烯結合金奈米粒子之基材鑑定 ..................................... 38
第二節、氧化石墨烯結合金奈米粒子之生物相容性測試 ......................... 40
第三節、氧化石墨烯結合金奈米粒子之生物功能性測試 ......................... 44
第四節、氧化石墨烯結合金奈米粒子之動物實驗測試 ............................. 46
第四章 討論........................................................................................................ 48
第五章、 結論.................................................................................................... 60
參考文獻............................................................................................................. 62
1. Damodharan, J., Nanomaterials in medicine–An overview. Materials Today:
Proceedings, 2021. 37: p. 383-385.
2. Labhasetwar, V. and D.L. Leslie-Pelecky, Biomedical applications of nanotechnology.
2007.
3. Kunrath, M.F. and M.M. Campos, Metallic-nanoparticle release systems for
biomedical implant surfaces: effectiveness and safety. Nanotoxicology, 2021. 15(6): p.
721-739.
4. Tang, L., P. Thevenot, and W. Hu, Surface chemistry influences implant
biocompatibility. Current topics in medicinal chemistry, 2008. 8(4): p. 270-280.
5. Vishwakarma, A., et al., Engineering immunomodulatory biomaterials to tune the
inflammatory response. Trends in biotechnology, 2016. 34(6): p. 470-482.
6. Gautam, S., et al., Recent advancements in nanomaterials for biomedical implants.
Biomedical Engineering Advances, 2022: p. 100029.
7. Carrel, A. and C.A. Lindbergh, The culture of whole organs. Science, 1935. 81(2112):
p. 621-623.
8. Engel, E., et al., Nanotechnology in regenerative medicine: the materials side. Trends
in biotechnology, 2008. 26(1): p. 39-47.
9. Terzic, A. and T.J. Nelson. Regenerative medicine primer. in Mayo Clinic
Proceedings. 2013. Elsevier.
10. Pandya, A., et al., Nanobiomaterials for regenerative medicine, in Nanotechnology in
Medicine and Biology. 2022, Elsevier. p. 141-187.
11. Atala, A., Regenerative medicine strategies. Journal of pediatric surgery, 2012. 47(1):
p. 17-28.
12. Mitchell, A.C., et al., Engineering growth factors for regenerative medicine
applications. Acta biomaterialia, 2016. 30: p. 1-12.
13. Pina, S., et al., Scaffolding strategies for tissue engineering and regenerative medicine
applications. Materials, 2019. 12(11): p. 1824.
14. Samadian, H., et al., Natural polymers-based light-induced hydrogels: Promising
biomaterials for biomedical applications. Coordination Chemistry Reviews, 2020.
420: p. 213432.
15. Bhatia, S. and S. Bhatia, Natural polymers vs synthetic polymer. Natural Polymer
Drug Delivery Systems: Nanoparticles, Plants, and Algae, 2016: p. 95-118.
16. Vroman, I. and L. Tighzert, Biodegradable polymers. Materials, 2009. 2(2): p. 307-
344.
17. Simionescu, B.C. and D. Ivanov, Natural and synthetic polymers for designing
composite materials, in Handbook of bioceramics and biocomposites. 2016, Springer.
p. 233-286.

63
18. Hung, H.-S., et al., Evaluation of cellular uptake mechanisms for AuNP-collagenAvemar nanocarrier on transformed and non-transformed cell lines. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 2019. 580: p. 123791.
19. Silva, G.A., Introduction to nanotechnology and its applications to medicine. Surgical
neurology, 2004. 61(3): p. 216-220.
20. McNeil, S.E., Nanotechnology for the biologist. Journal of leukocyte biology, 2005.
78(3): p. 585-594.
21. Haleem, A., et al., Applications of Nanotechnology in Medical field. Global Health
Journal, 2023.
22. Misra, R., S. Acharya, and S.K. Sahoo, Cancer nanotechnology: application of
nanotechnology in cancer therapy. Drug discovery today, 2010. 15(19-20): p. 842-850.
23. Saini, R., S. Saini, and S. Sharma, Nanotechnology: the future medicine. Journal of
cutaneous and aesthetic surgery, 2010. 3(1): p. 32.
24. Cormode, D.P., et al., Nanotechnology in medical imaging: probe design and
applications. Arteriosclerosis, thrombosis, and vascular biology, 2009. 29(7): p. 992-
1000.
25. Rosen, J.E., et al., Nanotechnology and diagnostic imaging: new advances in contrast
agent technology. J Nanomed Nanotechnol, 2011. 2(5): p. 115-126.
26. Ray, S.C., Application and uses of graphene oxide and reduced graphene oxide.
Applications of graphene and graphene-oxide based nanomaterials, 2015. 6(8): p. 39-
55.
27. Jiříčková, A., et al., Synthesis and applications of graphene oxide. Materials, 2022.
15(3): p. 920.
28. Chung, C., et al., Biomedical applications of graphene and graphene oxide. Accounts
of chemical research, 2013. 46(10): p. 2211-2224.
29. Wojtoniszak, M., et al., Synthesis, dispersion, and cytocompatibility of graphene oxide
and reduced graphene oxide. Colloids and Surfaces B: Biointerfaces, 2012. 89: p. 79-
85.
30. Shih, C.-J., et al., Understanding the pH-dependent behavior of graphene oxide
aqueous solutions: a comparative experimental and molecular dynamics simulation
study. Langmuir, 2012. 28(1): p. 235-241.
31. Hu, W., et al., Graphene-based antibacterial paper. ACS nano, 2010. 4(7): p. 4317-
4323.
32. Lee, J.H., et al., Reduced graphene oxide-coated hydroxyapatite composites stimulate
spontaneous osteogenic differentiation of human mesenchymal stem cells. Nanoscale,
2015. 7(27): p. 11642-11651.
33. Zhou, X., et al., 3D bioprinted graphene oxide-incorporated matrix for promoting
chondrogenic differentiation of human bone marrow mesenchymal stem cells. Carbon,
2017. 116: p. 615-624.

64
34. Hussein, K.H., et al., Ultrasonicated graphene oxide enhances bone and skin wound
regeneration. Materials Science and Engineering: C, 2019. 94: p. 484-492.
35. Bigall, N.C., et al., Magnetic nanocarriers with tunable pH dependence for controlled
loading and release of cationic and anionic payloads. Advanced Materials, 2011.
23(47): p. 5645-5650.
36. Wu, Y., et al., Gold nanoparticles in biological optical imaging. Nano Today, 2019. 24:
p. 120-140.
37. Narang, J., et al., Electrochemical impediometric detection of anti-HIV drug taking
gold nanorods as a sensing interface. Biosensors and Bioelectronics, 2015. 66: p. 332-
337.
38. Haume, K., et al., Gold nanoparticles for cancer radiotherapy: a review. Cancer
nanotechnology, 2016. 7: p. 1-20.
39. Nagi, N.M., Y.A. Khair, and A.M. Abdalla, Capacity of gold nanoparticles in cancer
radiotherapy. Japanese Journal of Radiology, 2017. 35: p. 555-561.
40. Yeh, Y.-C., B. Creran, and V.M. Rotello, Gold nanoparticles: preparation, properties,
and applications in bionanotechnology. Nanoscale, 2012. 4(6): p. 1871-1880.
41. Tian, E.-K., et al., Gold nanoparticle: Recent progress on its antibacterial applications
and mechanisms. Journal of Nanomaterials, 2021. 2021: p. 1-18.
42. Tan, H.-L., S.-Y. Teow, and J. Pushpamalar, Application of metal nanoparticle–
hydrogel composites in tissue regeneration. Bioengineering, 2019. 6(1): p. 17.
43. Yadid, M., R. Feiner, and T. Dvir, Gold nanoparticle-integrated scaffolds for tissue
engineering and regenerative medicine. Nano letters, 2019. 19(4): p. 2198-2206.
44. Elahi, N., M. Kamali, and M.H. Baghersad, Recent biomedical applications of gold
nanoparticles: A review. Talanta, 2018. 184: p. 537-556.
45. Pandey, P.A., et al., Physical vapor deposition of metal nanoparticles on chemically
modified graphene: observations on metal–graphene interactions. Small, 2011. 7(22):
p. 3202-3210.
46. Hammami, I. and N.M. Alabdallah, Gold nanoparticles: Synthesis properties and
applications. Journal of king Saud university-science, 2021. 33(7): p. 101560.
47. Yah, C.S., The toxicity of Gold Nanoparticles in relation to their physiochemical
properties. Biomedical Research (0970-938X), 2013. 24(3).
48. Ahmed, S., et al., A review on plants extract mediated synthesis of silver nanoparticles
for antimicrobial applications: a green expertise. Journal of advanced research, 2016.
7(1): p. 17-28.
49. Jamkhande, P.G., et al., Metal nanoparticles synthesis: An overview on methods of
preparation, advantages and disadvantages, and applications. Journal of drug delivery
science and technology, 2019. 53: p. 101174.
50. Hung, H.-S. and S.-H. Hsu, Surface modification by nanobiomaterials for vascular
tissue engineering applications. Current Medicinal Chemistry, 2020. 27(10): p. 1634-

65
1646.
51. Chen, Y.-W., et al., Functional engineered mesenchymal stem cells with fibronectingold composite coated catheters for vascular tissue regeneration. Nanomedicine:
Nanotechnology, Biology and Medicine, 2018. 14(3): p. 699-711.
52. Hsieh, S.-C., et al., Prominent vascularization capacity of mesenchymal stem cells in
collagen–gold nanocomposites. ACS applied materials & interfaces, 2016. 8(42): p.
28982-29000.
53. Hung, H.-S., et al., Nanogold-carried graphene oxide: Anti-inflammation and
increased differentiation capacity of mesenchymal stem cells. Nanomaterials, 2021.
11(8): p. 2046.
54. Hung, H.-S., et al., Inflammatory modulation of polyethylene Glycol-AuNP for
regulation of the neural differentiation capacity of mesenchymal stem cells. Cells,
2021. 10(11): p. 2854.
55. Hung, H.-S., et al., Regulation of human endothelial progenitor cell maturation by
polyurethane nanocomposites. Biomaterials, 2014. 35(25): p. 6810-6821.
56. Al-Omar, M.S., et al., Gold nanoparticles and graphene oxide flakes enhance cancer
cells’ phagocytosis through granzyme-perforin-dependent biomechanism.
Nanomaterials, 2021. 11(6): p. 1382.
57. Sumpio, B.E., J.T. Riley, and A. Dardik, Cells in focus: endothelial cell. The
international journal of biochemistry & cell biology, 2002. 34(12): p. 1508-1512.
58. Pober, J.S. and W.C. Sessa, Evolving functions of endothelial cells in inflammation.
Nature Reviews Immunology, 2007. 7(10): p. 803-815.
59. Pearson, J., Normal endothelial cell function. Lupus, 2000. 9(3): p. 183-188.
60. Conlon, P.J., et al., Acute renal failure following cardiac surgery. Nephrology, dialysis,
transplantation: official publication of the European Dialysis and Transplant
Association-European Renal Association, 1999. 14(5): p. 1158-1162.
61. Banerjee, P.P., et al., Cytotoxic effect of graphene oxide-functionalized gold
nanoparticles in human breast cancer cell lines. The Nucleus, 2019. 62: p. 243-250.
62. Luo, Y., X. Wang, and Y. Cao, Transcriptomic analysis suggested the involvement of
impaired lipid droplet biogenesis in graphene oxide-induced cytotoxicity in human
umbilical vein endothelial cells. Chemico-Biological Interactions, 2021. 333: p.
109325.
63. Yu, W., et al., Progress in the functional modification of graphene/graphene oxide: A
review. RSC advances, 2020. 10(26): p. 15328-15345.
64. Gonçalves, R. and D.M. Mosser, The isolation and characterization of murine
macrophages. Current protocols in immunology, 2015. 111(1): p. 14.1. 1-14.1. 16.
65. Zhang, X., R. Goncalves, and D.M. Mosser, The isolation and characterization of
murine macrophages. Current protocols in immunology, 2008. 83(1): p. 14.1. 1-14.1.
14.

66
66. Schleicher, U. and C. Bogdan, Generation, culture and flow-cytometric
characterization of primary mouse macrophages. Macrophages and Dendritic Cells:
Methods and Protocols, 2009: p. 203-224.
67. Hannoodee, S. and D.N. Nasuruddin, Acute inflammatory response, in StatPearls
[Internet]. 2021, StatPearls Publishing.
68. Frangogiannis, N.G., C.W. Smith, and M.L. Entman, The inflammatory response in
myocardial infarction. Cardiovascular research, 2002. 53(1): p. 31-47.
69. Schaffer, C.J. and L.B. Nanney, Cell biology of wound healing. International review of
cytology, 1996. 169: p. 151-181.
70. Kadhim, R.J., E.H. Karsh, and M.S. Jabir. Anti-inflammatory activity of gold and
graphene oxide nanoparticles in-vitro study. in AIP Conference Proceedings. 2020.
AIP Publishing LLC.
71. Lategan, K., et al., Effects of graphene oxide nanoparticles on the immune system
biomarkers produced by RAW 264.7 and human whole blood cell cultures.
Nanomaterials, 2018. 8(2): p. 125.
72. Wang, L., et al., PEGylated reduced-graphene oxide hybridized with Fe 3 O 4
nanoparticles for cancer photothermal-immunotherapy. Journal of Materials Chemistry
B, 2019. 7(46): p. 7406-7414.
73. Zakrzewski, W., et al., Stem cells: past, present, and future. Stem cell research &
therapy, 2019. 10: p. 1-22.
74. Kolios, G. and Y. Moodley, Introduction to stem cells and regenerative medicine.
Respiration, 2013. 85(1): p. 3-10.
75. Preston, S., et al., The new stem cell biology: something for everyone. Molecular
Pathology, 2003. 56(2): p. 86.
76. Sakthiswary, R. and A.A. Raymond, Stem cell therapy in neurodegenerative diseases:
From principles to practice. Neural regeneration research, 2012. 7(23): p. 1822.
77. Uccelli, A., L. Moretta, and V. Pistoia, Mesenchymal stem cells in health and disease.
Nature reviews immunology, 2008. 8(9): p. 726-736.
78. Wang, Y., et al., Safety of mesenchymal stem cells for clinical application. Stem cells
international, 2012. 2012.
79. Minguell, J.J., A. Erices, and P. Conget, Mesenchymal stem cells. Experimental
biology and medicine, 2001. 226(6): p. 507-520.
80. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells.
science, 1999. 284(5411): p. 143-147.
81. Oswald, J., et al., Mesenchymal stem cells can be differentiated into endothelial cells
in vitro. Stem cells, 2004. 22(3): p. 377-384.
82. Hung, H.-S., et al., Neural differentiation potential of mesenchymal stem cells
enhanced by biocompatible chitosan-gold nanocomposites. Cells, 2022. 11(12): p.
1861.

67
83. Han, Y., et al., Mesenchymal stem cells for regenerative medicine. Cells, 2019. 8(8): p.
886.
84. Almalki, S.G. and D.K. Agrawal, Key transcription factors in the differentiation of
mesenchymal stem cells. Differentiation, 2016. 92(1-2): p. 41-51.
85. Janeczek Portalska, K., et al., Endothelial differentiation of mesenchymal stromal
cells. 2012.
86. Ma, S., et al., Immunobiology of mesenchymal stem cells. Cell Death &
Differentiation, 2014. 21(2): p. 216-225.
87. Jain, K.G., et al., Culture & differentiation of mesenchymal stem cell into osteoblast
on degradable biomedical composite scaffold: In vitro study. The Indian journal of
medical research, 2015. 142(6): p. 747.
88. Williams, J.M., et al., Bone tissue engineering using polycaprolactone scaffolds
fabricated via selective laser sintering. Biomaterials, 2005. 26(23): p. 4817-4827.
89. Rohner, D., et al., In vivo efficacy of bone‐marrow‐coated polycaprolactone scaffolds
for the reconstruction of orbital defects in the pig. Journal of Biomedical Materials
Research Part B: Applied Biomaterials: An Official Journal of The Society for
Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for
Biomaterials and the Korean Society for Biomaterials, 2003. 66(2): p. 574-580.
90. Damaraju, S.M., et al., Three-dimensional piezoelectric fibrous scaffolds selectively
promote mesenchymal stem cell differentiation. Biomaterials, 2017. 149: p. 51-62.
91. Motamedi, A.S., et al., Piezoelectric electrospun nanocomposite comprising Au
NPs/PVDF for nerve tissue engineering. Journal of Biomedical Materials Research
Part A, 2017. 105(7): p. 1984-1993.
92. Shen, C.-C., et al., Physical gold nanoparticle-decorated polyethylene glycolhydroxyapatite composites guide osteogenesis and angiogenesis of mesenchymal stem
cells. Biomedicines, 2021. 9(11): p. 1632.
93. Anderson, J.M., A. Rodriguez, and D.T. Chang. Foreign body reaction to biomaterials.
in Seminars in immunology. 2008. Elsevier.
94. Luttikhuizen, D.T., M.C. Harmsen, and M.J.V. Luyn, Cellular and molecular dynamics
in the foreign body reaction. Tissue engineering, 2006. 12(7): p. 1955-1970.
95. Yang, M.-Y., et al., Engineered Pullulan-Collagen-Gold Nano Composite Improves
Mesenchymal Stem Cells Neural Differentiation and Inflammatory Regulation. Cells,
2021. 10(12): p. 3276.
96. Basova, T.V., et al., The use of noble metal coatings and nanoparticles for the
modification of medical implant materials. Materials & Design, 2021. 204: p. 109672.
97. Gulati, K., et al., Double-edged sword: Therapeutic efficacy versus toxicity
evaluations of doped titanium implants. Drug Discovery Today, 2021. 26(11): p. 2734-
2742.
98. Guo, B., et al., Haemostatic materials for wound healing applications. Nature Reviews

68
Chemistry, 2021. 5(11): p. 773-791.
99. Böttcher-Haberzeth, S., T. Biedermann, and E. Reichmann, Tissue engineering of skin.
Burns, 2010. 36(4): p. 450-460.
100. Weng, T., et al., Regeneration of skin appendages and nerves: current status and
further challenges. Journal of translational medicine, 2020. 18(1): p. 1-17.
101. Zhan, X., et al., Antibacterial Properties of Gold Nanoparticles in the Modification of
Medical Implants: A Systematic Review. Pharmaceutics, 2022. 14(12): p. 2654.
102. Neupane, M.P., et al., Titania nanotubes supported gelatin stabilized gold nanoparticles
for medical implants. Journal of Materials Chemistry, 2011. 21(32): p. 12078-12082.
103. Velu, R., et al., A comprehensive review on bio-nanomaterials for medical implants
and feasibility studies on fabrication of such implants by additive manufacturing
technique. Materials, 2019. 13(1): p. 92.
104. Tang, C.-M., Y.-H. Tian, and S.-H. Hsu, Poly (vinyl alcohol) nanocomposites
reinforced with bamboo charcoal nanoparticles: mineralization behavior and
characterization. Materials, 2015. 8(8): p. 4895-4911.
105. Alvarez, M.M., et al., Delivery strategies to control inflammatory response:
Modulating M1–M2 polarization in tissue engineering applications. Journal of
Controlled Release, 2016. 240: p. 349-363.
106. Badylak, S.F. and T.W. Gilbert. Immune response to biologic scaffold materials. in
Seminars in immunology. 2008. Elsevier.
107. Mazzoni, E., et al., Bioactive materials for soft tissue repair. Frontiers in
bioengineering and biotechnology, 2021. 9: p. 613787.
108. Liu, X., et al., Chitosan-based biomaterials for tissue repair and regeneration. Chitosan
for biomaterials II, 2011: p. 81-127.
109. Chocholata, P., V. Kulda, and V. Babuska, Fabrication of scaffolds for bone-tissue
regeneration. Materials, 2019. 12(4): p. 568.
110. Basha, R.Y., S.K. TS, and M. Doble, Design of biocomposite materials for bone tissue
regeneration. Materials Science and Engineering: C, 2015. 57: p. 452-463.
111. Amini, S., et al., Natural and synthetic polymeric scaffolds used in peripheral nerve
tissue engineering: Advantages and disadvantages. Polymers for Advanced
Technologies, 2021. 32(6): p. 2267-2289.
112. Liang, A., et al., The surface-plasmon-resonance effect of nanogold/silver and its
analytical applications. TrAC Trends in Analytical Chemistry, 2012. 37: p. 32-47.
113. Liu, X., et al., SPR quantitative analysis of direct detection of atrazine traces on Aunanoparticles: Nanoparticles size effect. Sensors and Actuators B: Chemical, 2015.
218: p. 1-7.
114. Mondal, M.K., et al., Selective reduction technique (SRT): a robust method to
synthesize bioactive Ag/Au doped graphene oxide. Materials & Design, 2016. 102: p.
186-195.

69
115. Tabassum, S., et al., Synergic effect of plasmonic gold nanoparticles and graphene
oxide on the performance of glucose sensing. New Journal of Chemistry, 2019.
43(47): p. 18925-18934.
116. Khalilzadeh, B., et al., Reduced graphene oxide decorated with gold nanoparticle as
signal amplification element on ultra-sensitive electrochemiluminescence
determination of caspase-3 activity and apoptosis using peptide based biosensor.
BioImpacts: BI, 2016. 6(3): p. 135.
117. Hurtado, R.B., et al., One-step synthesis of reduced graphene oxide/gold nanoparticles
under ambient conditions. Arabian Journal of Chemistry, 2020. 13(1): p. 1633-1640.
118. Nandhakumar, M., et al., An enduring in vitro wound healing phase recipient by
bioactive glass-graphene oxide nanocomposites. Scientific Reports, 2022. 12(1): p.
16162.
119. Pillai, K.C., et al., Selective and low potential electrocatalytic oxidation of NADH
using a 2, 2-diphenyl-1-picrylhydrazyl immobilized graphene oxide-modified glassy
carbon electrode. Journal of Solid State Electrochemistry, 2018. 22: p. 3393-3408.
120. Zheng, W., et al., Enhancing chloride ion penetration resistance into concrete by using
graphene oxide reinforced waterborne epoxy coating. Progress in Organic Coatings,
2020. 138: p. 105389.
121. Jang, W., et al., PVdF/graphene oxide hybrid membranes via electrospinning for water
treatment applications. Rsc Advances, 2015. 5(58): p. 46711-46717.
122. Ayyaru, S. and Y.-H. Ahn, Application of sulfonic acid group functionalized graphene
oxide to improve hydrophilicity, permeability, and antifouling of PVDF
nanocomposite ultrafiltration membranes. Journal of Membrane Science, 2017. 525: p.
210-219.
123. Rosa, V., et al., Graphene oxide-based substrate: physical and surface characterization,
cytocompatibility and differentiation potential of dental pulp stem cells. Dental
Materials, 2016. 32(8): p. 1019-1025.
124. Sadeghianmaryan, A., et al., Electrospinning of scaffolds from the
polycaprolactone/polyurethane composite with graphene oxide for skin tissue
engineering. Applied Biochemistry and Biotechnology, 2020. 191: p. 567-578.
125. Li, Y., et al., Facile synthesis of gold nanoparticles-graphene oxide films and their
excellent surface-enhanced Raman scattering activity. Monatshefte für ChemieChemical Monthly, 2016. 147: p. 677-683.
126. Kim, S., et al., Smooth vertical surface climbing with directional adhesion. IEEE
Transactions on robotics, 2008. 24(1): p. 65-74.
127. Abaricia, J.O., et al., Surface characteristics on commercial dental implants
differentially activate macrophages in vitro and in vivo. Clinical oral implants
research, 2021. 32(4): p. 487-497.
128. Raj, S. and D. Kumar, Biochemical toxicology: heavy metals and nanomaterials.

70
Biochemical Toxicology: Heavy Metals and Nanomaterials, 2020. 139(10.5772).
129. Haudenschild, C.C., Morphology of vascular endothelial cells in culture. Biology of
endothelial cells, 1984: p. 129-140.
130. Bisi, S., et al., Membrane and actin dynamics interplay at lamellipodia leading edge.
Current opinion in cell biology, 2013. 25(5): p. 565-573.
131. Zimmermann, J. and M. Falcke, Formation of transient lamellipodia. PLoS one, 2014.
9(2): p. e87638.
132. Stricker, J., T. Falzone, and M.L. Gardel, Mechanics of the F-actin cytoskeleton.
Journal of biomechanics, 2010. 43(1): p. 9-14.
133. Mattila, P.K. and P. Lappalainen, Filopodia: molecular architecture and cellular
functions. Nature reviews Molecular cell biology, 2008. 9(6): p. 446-454.
134. Mellor, H., The role of formins in filopodia formation. Biochimica et Biophysica Acta
(BBA)-Molecular Cell Research, 2010. 1803(2): p. 191-200.
135. Ruggeri, Z.M. and J. Ware, von Willebrand factor. The FASEB journal, 1993. 7(2): p.
308-316.
136. Reininger, A., Function of von Willebrand factor in haemostasis and thrombosis.
Haemophilia, 2008. 14: p. 11-26.
137. Albelda, S.M., et al., Molecular and cellular properties of PECAM-1
(endoCAM/CD31): a novel vascular cell-cell adhesion molecule. The Journal of cell
biology, 1991. 114(5): p. 1059-1068.
138. Matsuda, Y., M. Hagio, and T. Ishiwata, Nestin: a novel angiogenesis marker and
possible target for tumor angiogenesis. World journal of gastroenterology: WJG, 2013.
19(1): p. 42.
139. Veselska, R., et al., Nestin expression in the cell lines derived from glioblastoma
multiforme. BMC cancer, 2006. 6: p. 1-12.
140. Katsetos, C.D., M.M. Herman, and S.J. Mörk, Class III β‐tubulin in human
development and cancer. Cell motility and the cytoskeleton, 2003. 55(2): p. 77-96.
141. Middeldorp, J. and E. Hol, GFAP in health and disease. Progress in neurobiology,
2011. 93(3): p. 421-443.
142. Jurga, A.M., et al., Beyond the GFAP-astrocyte protein markers in the brain.
Biomolecules, 2021. 11(9): p. 1361.
143. Tykhomyrov, А., A. Pavlova, and V. Nedzvetsky, Glial fibrillary acidic protein
(GFAP): on the 45th anniversary of its discovery. Neurophysiology, 2016. 48: p. 54-
71.
144. Caplan, A.I., Adult mesenchymal stem cells for tissue engineering versus regenerative
medicine. Journal of cellular physiology, 2007. 213(2): p. 341-347.
145. Wang, L., et al., Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by
erythropoietin-activated endothelial cells promote neural progenitor cell migration.
Journal of Neuroscience, 2006. 26(22): p. 5996-6003.

71
146. Mountain, D.J., et al., Interleukin-1β increases expression and activity of matrix
metalloproteinase-2 in cardiac microvascular endothelial cells: role of PKCα/β1 and
MAPKs. American Journal of Physiology-Cell Physiology, 2007. 292(2): p. C867-
C875.
147. Fingleton, B., Matrix metalloproteinases as regulators of inflammatory processes.
Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2017. 1864(11): p.
2036-2042.
148. Yabluchanskiy, A., et al., Matrix metalloproteinase-9: Many shades of function in
cardiovascular disease. Physiology, 2013. 28(6): p. 391-403.
149. Zhang, H., et al., MMP9 protects against LPS-induced inflammation in osteoblasts.
Innate immunity, 2020. 26(4): p. 259-269.
150. Sheetz, M.P., et al. Cell migration as a five-step cycle. in Biochemical Society
Symposium. 1999.
151. Yamada, K.M. and M. Sixt, Mechanisms of 3D cell migration. Nature Reviews
molecular cell biology, 2019. 20(12): p. 738-752.
152. Hnasko, T.S. and R.M. Hnasko, The western blot. ELISA: Methods and Protocols,
2015: p. 87-96.
153. Zhang, R., et al., β-actin as a loading control for plasma-based Western blot analysis of
major depressive disorder patients. Analytical biochemistry, 2012. 427(2): p. 116-120.
154. Gilda, J.E. and A.V. Gomes, Stain-Free total protein staining is a superior loading
control to β-actin for Western blots. Analytical biochemistry, 2013. 440(2): p. 186-188.
155. Manetto, V., et al., Bcl-2 and Bax expression in thyroid tumours An
immunohistochemical and Western blot analysis. Virchows Archiv, 1997. 430: p. 125-
130.
156. Robin, A.Y., et al., Ensemble properties of Bax determine its function. Structure, 2018.
26(10): p. 1346-1359. e5.
157. Brady, H.J. and G. Gil-Gómez, Molecules in focus Bax. The pro-apoptotic Bcl-2
family member, Bax. The international journal of biochemistry & cell biology, 1998.
30(6): p. 647-650.
158. Hockenbery, D., et al., Bcl-2 is an inner mitochondrial membrane protein that blocks
programmed cell death. Nature, 1990. 348: p. 334-336.
159. Lindsten, T., W.-X. Zong, and C.B. Thompson, Defining the role of the Bcl-2 family
of proteins in the nervous system. The Neuroscientist, 2005. 11(1): p. 10-15.
160. Roberts, A.W., Therapeutic development and current uses of BCL-2 inhibition.
Hematology 2014, the American Society of Hematology Education Program Book,
2020. 2020(1): p. 1-9.
161. Reed, J., Mechanisms of Bcl-2 family protein function and dysfunction in health and
disease. Behring Institute Mitteilungen, 1996(97): p. 72-100.
162. De Jong, J., et al., Correlation of cyclin D1 and Rb gene expression with apoptosis in

72
invasive breast cancer. Molecular Pathology, 1998. 51(1): p. 30.
163. Ohno, T., et al., Modifiers of the jumonji mutation downregulate cyclin D1 expression
and cardiac cell proliferation. Biochemical and biophysical research communications,
2004. 317(3): p. 925-929.
164. Yata, V.K., Engineered nanostructured materials: benefits and risks. Environmental
Chemistry Letters, 2019. 17(4): p. 1523-1527.
165. Li, C., et al., Improvement of enzyme-linked immunosorbent assay for the multicolor
detection of biomarkers. Chemical Science, 2016. 7(5): p. 3011-3016.
166. Sakamoto, S., et al., Enzyme-linked immunosorbent assay for the
quantitative/qualitative analysis of plant secondary metabolites. Journal of natural
medicines, 2018. 72: p. 32-42.
167. Del Giudice, M. and S.W. Gangestad, Rethinking IL-6 and CRP: Why they are more
than inflammatory biomarkers, and why it matters. Brain, behavior, and immunity,
2018. 70: p. 61-75.
168. Zhang, Y., et al., TNF-α promotes early atherosclerosis by increasing transcytosis of
LDL across endothelial cells: crosstalk between NF-κB and PPAR-γ. Journal of
molecular and cellular cardiology, 2014. 72: p. 85-94.
169. Dinarello, C.A. and J.W. van der Meer. Treating inflammation by blocking interleukin1 in humans. in Seminars in immunology. 2013. Elsevier.
170. Altin, J.G. and E.K. Sloan, The role of CD45 and CD45‐associated molecules in T cell
activation. Immunology and cell biology, 1997. 75(5): p. 430-445.
171. Trowbridge, I.S. and M.L. Thomas, CD45: an emerging role as a protein tyrosine
phosphatase required for lymphocyte activation and development. Annual review of
immunology, 1994. 12(1): p. 85-116.
172. Fuchs, A.-K., et al., Carboxyl-and amino-functionalized polystyrene nanoparticles
differentially affect the polarization profile of M1 and M2 macrophage subsets.
Biomaterials, 2016. 85: p. 78-87.
173. Zhao, J., L. Wang, and Y. Li, Electroacupuncture alleviates the inflammatory response
via effects on M1 and M2 macrophages after spinal cord injury. Acupuncture in
Medicine, 2017. 35(3): p. 224-230.
174. Chen, Y., et al., Casein Kinase 2 Interacting Protein-1 regulates M1 and M2
inflammatory macrophage polarization. Cellular Signalling, 2017. 33: p. 107-121.
175. Yunna, C., et al., Macrophage M1/M2 polarization. European journal of
pharmacology, 2020. 877: p. 173090.
176. Atri, C., F.Z. Guerfali, and D. Laouini, Role of human macrophage polarization in
inflammation during infectious diseases. International journal of molecular sciences,
2018. 19(6): p. 1801.
177. Wolf, M.T., et al., Macrophage polarization in response to ECM coated polypropylene
mesh. Biomaterials, 2014. 35(25): p. 6838-6849.

73
178. Zare, P., et al., Graphene oxide: Opportunities and challenges in biomedicine.
Nanomaterials, 2021. 11(5): p. 1083.
179. Algadi, H.E., Effects of graphene oxide nanoparticles on the immune system
biomarkers produced by RAW 264.7. 2019.
180. Su, J., et al., Graphene oxide coated titanium surfaces with osteoimmunomodulatory
role to enhance osteogenesis. Materials Science and Engineering: C, 2020. 113: p.
110983.
181. Li, J., et al., N-acetyl cysteine-loaded graphene oxide-collagen hybrid membrane for
scarless wound healing. Theranostics, 2019. 9(20): p. 5839.
182. Feito, M.J., et al., Characterization of M1 and M2 polarization phenotypes in
peritoneal macrophages after treatment with graphene oxide nanosheets. Colloids and
Surfaces B: Biointerfaces, 2019. 176: p. 96-105.
183. Lin, R.-H., et al., Favorable Biological Performance Regarding the Interaction
between Gold Nanoparticles and Mesenchymal Stem Cells. International Journal of
Molecular Sciences, 2022. 24(1): p. 5.
184. Chang, K.-B., et al., Functionalized collagen-silver nanocomposites for evaluation of
the biocompatibility and vascular differentiation capacity of mesenchymal stem cells.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 624: p.
126814.
185. Chen, C., Y. Xi, and Y. Weng, Progress in the Development of Graphene-Based
Biomaterials for Tissue Engineering and Regeneration. Materials, 2022. 15(6): p.
2164.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊