跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/01/20 17:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉于脩
研究生(外文):Yuxiu Liu
論文名稱:以乳化聚合法製備改質型黏土/ 壓克力樹脂奈米複材及其性質探討
論文名稱(外文):Preparation and Characterization of Poly(methylmethacrylate) /Modified Clay Nanocomposites by Emulsion polymerization
指導教授:蔡宗燕
指導教授(外文):Tsung-Yen Tsai
口試委員:葉瑞銘江姿萱
口試委員(外文):Jui-Ming YehTzu-Hsuan Chiang
口試日期:2022-07-25
學位類別:碩士
校院名稱:中原大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:175
中文關鍵詞:聚甲基丙烯酸甲酯天然黏土奈米複材乳化聚合
外文關鍵詞:poly methyl methacrylateclaynanocompositesemulsion polymerization
DOI:10.6840/cycu202201642
相關次數:
  • 被引用被引用:1
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以乳化聚合法合成聚甲基丙烯酸甲酯/改質型黏土奈米級複合材料探討其不同改質型黏土對奈米複材之機械性質、熱性質及光學性質等影響。天然蒙脫土進行有機化改質,其改質目的是提升無機層材與高分子基材的相容性,利用 X 光繞射儀(X-ray Diffraction, XRD)觀察無機層材之層間距變化,傅立葉轉換紅外線光譜儀(Fourier Transform Infrared, FT-IR)鑑定改質蒙脫土層間之有機與無機的官能基,證明有機改質劑的長碳鏈存在無機層材的層間或表面。以熱重分析儀(Thermogravimetry Analyzer, TGA)定量分析改質蒙脫土中改質劑的插層量,並了解其熱穩定性。
以不同的天然黏土與改質劑合成的改質土( CL120-CPB、CL120-CPS、CL88-CPB、CL88-CPS )進行乳化聚合法製備聚甲基丙烯酸甲酯/黏土奈米級複合材料。以 XRD 及穿透式電子顯微鏡(Transmission electron microscopy, TEM)觀察其分散性,而以四種有機改質型黏土製備奈米複材中,3 phr的添加量為部份脫層部份插層之分散型態;其熱裂解溫度(Decomposed temperature, T5d)最高提升 28℃,自 294.2℃提高至322.5℃,而 EP-CL88-CPS-5 phr其玻璃轉移溫度(Glass transition temperature, Tg)提升7℃,自120℃提高至 127 ℃; 在光學性質方面,添加5 phr黏土後其複材的穿透度均可在94%以上,而EP-CL88-CPS-5 phr其紫外光吸收能力最好,與純的聚甲基丙烯酸甲酯相比,當波長為 320 nm 時,降低約25%,自 86%降低至61%;在機械性質方面,EP-CL88-CPB-5 phr其儲存模數提高,從 1872 MPa 增加至2857 Mpa(提升了52.6%),鉛筆硬度方面,純的聚甲基丙烯酸甲酯鉛筆硬度為 2H-3H,而EP-CL88-CPB-3 phr和EP-CL88-CPS-3 phr 其鉛筆硬度自2H-3H 提升達到4H-5H;在耐磨耗性方面,EP-CL88-CPS-3 phr和EP-CL88-CPB-3 phr重量損失最少,耐磨耗性最好,在老化測試方面,經照紫外光波長375 nm,2小時,前後儲存模數比較,EP-CL88-CPS-3 phr對紫外光的阻隔最好,衰退比從35%下降至13%,在氣體阻隔方面,以CL88-CPS-3 phr分散性最好,氧氣阻氣性自0.8733 barrer 降至0.2784 barrer,改善68.1%,氮氣阻氣性自0.7764 barrer 降至0.1426 barrer,改善81.6%,氧氣與氮氣之 BIF值分別為3.13和5.44倍。
故本論文發表,從文獻與專利報導中,超越其機械性質,紫外光阻抗,耐候性與表面硬度的同步提升。

In this study, polymethyl methacrylate/modified clay nanocomposites were synthesized by emulsion polymerization method to investigate the effects of different modified clays on the thermal, mechanical, and optical properties of nanocomposites. The organic modification has improved the compatibility of inorganic layered materials and polymer substrates. Clay modification and modifier amount quantitatively analyzed by X-ray diffraction (XRD) and thermogravimetry analyzer (TGA), respectively. Furthermore, Fourier Transform Infrared (FT-IR) was used to identify the organic and inorganic functional groups between the layers of the modified montmorillonite.
Polymethylmethacrylate (EPMMA)/modified clay were prepared by emulsion polymerization with four types of modified clays (CL120-CPB, CL120-CPS, CL88-CPB, CL88-CPS) with different phr (1, 3 and 5 phr) loading. The dispersibility of CL120-CPB, CL120-CPS, CL88-CPB and CL88-CPS nanocomposites were observed by XRD and Transmission electron microscopy (TEM). The EPMMA/ modified clay-3 phr performed the partial delaminated apart and partial intercalated nanocomposites in the nanocomposite matrix observed. Their thermal cracking temperature (Decomposition temperature, T5d) increased the most by 28 °C, from 294.2 °C to 322.5 °C, while the glass transition temperature (Tg) of EP-CL88-CPS-5 phr increased by 7 °C, from 120 °C to 127 °C. In terms of optical properties, in the visible light range (550 nm) the nanocomposite 5 phr modified clay loaded samples % transmission (%T) above 94%. In the wavelength 320 nm %T is reduced 25%. The mechanical properties, EP-CL88-CPB-5 phr, which performed the best storage modulus, has increased from 1872 MPa to 2857 MPa (increasing of 52.6%). The pencil hardness of pure EPMMA pencil hardness is 2H-3H, while the pencil hardness of EP-CL88-CPB-3 phr and CL88-CPS-3 phr are increased to 4H-5H. Furthermore, the wear test, EP-CL88-CPS-3 phr and EP-CL88-CPB-3 phr have the least weight loss during the abrasion test, For the aging test, compared with the storage modulus of EP-CL88-CPS-5 phr, which were irradiated at 375 nm for 2 h were reduced ratio from 35% to 15%. In terms of gas barrier, CL88-CPS-3 phr has the best phr dispersion, the oxygen gas barrier property is reduced from 0.8733 barrer to 0.2784 barrer, an improvement of 68.1%, and the nitrogen gas barrier property is reduced from 0.7764 barrer to 0.1426 barrer, an improvement of 81.6%. BIF of oxygen and nitrogen are increased by 3.13 and 5.44 times, respectively.
From this work it is concluded that surpasses EPMMA composites mechanical properties, UV light resistance, weather resistance and surface hardness.

目錄
摘要 I
Abstract III
謝誌 V
目錄 VII
圖目錄 X
表目錄 XV
第一章 緒論 1
1.1 文獻回顧 1
1.2 專利檢索 6
1.3 商情報導 10
1.3.1 平板顯示器與導光板 12
1.3.2 太陽能電池產業 13
1.3.3 油漆與塗料 14
1.3.4 醫療用途 14
1.4 研究動機 15
第二章 理論基礎 17
2.1 壓克力簡介 17
2.1.1 壓克力的性質 18
2.1.2 壓克力之聚合原理 20
2.1.3 壓克力之聚合反應法 22
2.2 無機層狀材料之蒙脫土介紹 27
2.2.1 天然蒙脫土之介紹 27
2.2.2 蒙脫土之有機化改質 30
2.2.3 界面活性劑 32
2.3 有機/無機混成之奈米級複合材料 34
2.3.1 有機/無機混成之奈米級複材簡介 34
2.3.2 有機/無機混成之奈米複材之製備方法 35
2.3.3 有機/無機混成之奈米複材之分散型態 38
第三章 實驗內容 40
3.1 實驗藥品 40
3.2 實驗設備 44
3.3 檢測設備 45
3.4 實驗方法 50
3.4.1 天然黏土之椰油醯胺丙基羫基磺基甜菜和椰油醯胺丙基二甲基甜菜鹼鹼改質 50
3.4.2 乳化聚合法製備壓克力樹脂/無機層材奈米複合材料 53
3.4.3 製備壓克力樹脂/無機層材奈米複合材料薄膜 55
3.4.4 索式萃取 56
3.4.5 樣品名稱說明 57
第四章 結果與討論 58
4.1 改質型無機層狀材料之結構鑑定與性質探討 58
4.1.1 無機層材之改質製程探討 58
4.1.2 改質型黏土的插層型態探討 73
4.1.2.1改質型黏土的層間距變化 73
4.1.2.2改質型黏土的熱性質分析 80
4.1.2.3黏土改質前後之表面型態討論 88
4.2 奈米級複合材料之性質探討 95
4.2.1 奈米複材製程條件探討 95
4.2.2 奈米複材之分散性鑑定 97
4.2.3 奈米級複材之熱性質探討 114
4.2.4 奈米複材之分子量比較 124
4.2.5 奈米複材之光學性質鑑定 126
4.2.6 奈米複材之機械性質鑑定 136
4.2.7 奈米複材之老化測試 140
4.2.8 奈米複材之表面硬度鑑定 143
4.2.9 奈米複材之耐磨耗測試 144
4.2.10 奈米複材之阻氣性鑑定 146
4.3 比較前導研究結果 149
第五章 結論 150
第六章 未來展望 153
第七章 參考文獻 154


圖目錄
圖1-1 Poly(methyl methacrylate) 相關文獻 3
圖1-2 台灣專利件數歷年趨勢分析圖 6
圖1-3 台灣公司別專利趨勢分析圖 8
圖1-4 美國專利件數歷年趨勢分析圖 8
圖1-5 美國公司別專利趨勢分析圖 9
圖1-6 PMMA 市場產品分析圖 10
圖1-7 PMMA 需求分布 11
圖1-8 PMMA 全球產能分佈表 11
圖1-9 導光板示意圖 13
圖1-10 太陽能電池示意圖 13
圖1-11 假牙和骨骼示意圖 15
圖2-1 天然蒙脫土之結構 28
圖2-2 改質劑於黏土中的排列方式(a) monolayers (b) bilayers (c) pseudo bilayers (d,e) paraffin-type arrangements 32
圖2-3 反應驅動力概念之示意圖 37
圖2-4 界面活性劑微胞法 37
圖2-5 黏土分散在高分子之示意圖 39
圖3-1 天然黏土CL120之有機改質化流程圖 51
圖3-2 天然黏土CL88之有機改質化流程圖 52
圖3-3 乳化聚合法製備 PMMA/clay複材流程圖 54
圖3-4 製備 PMMA/clay複材薄膜流程圖 55
圖3-5 索式萃取裝置圖 56
圖4-1 CL120-CPB(1.2倍CEC值) pH: 4、pH: 4.2、pH: 4.5、pH: 5 之 XRD 圖譜 60
圖4-2 CL120-CPS(1.2倍CEC值) pH: 4、pH: 4.2、pH: 4.5、pH: 5 之 XRD 圖譜 60
圖4-3 CL88-CPB(1.2倍CEC值) pH: 4、pH: 4.2、pH: 4.5、pH: 5 之 XRD圖譜 61
圖4-4 CL88-CPS(1.2倍CEC值) pH: 4、pH: 4.2、pH: 4.5、pH: 5 之 XRD 圖譜 61
圖4-5 純的CL120之SEM圖(a) 30K (b) 50K 63
圖4-6 純的CL88之SEM圖(a) 30K (b) 50K 63
圖4-7 CL120-CPB (1.2倍CEC值) pH: 4、pH: 4.2、pH: 4.5、pH: 5之SEM圖(a) 30K (b) 50K 64
圖4-8 CL120-CPS (1.2倍CEC值) pH: 4、pH: 4.2、pH: 4.5、pH: 5 之 SEM 圖 (a) 30K (b) 50K 65
圖4-9 CL88-CPB (1.2倍CEC值) pH: 4、pH: 4.2、pH: 4.5、pH: 5 之 SEM 圖 (a) 30K (b) 50K 66
圖4-10 CL88-CPS (1.2倍CEC值) pH: 4、pH: 4.2、pH: 4.5、pH: 5 之 SEM 圖 (a) 30K (b) 50K 67
圖4-11 CPB改質劑示意圖與簡易圖示 74
圖4-12 CPS改質劑示意圖與簡易圖示 74
圖4-13 CL120-CPB天然黏土改質示意圖 75
圖4-14 CL120-CPS天然黏土改質示意圖 75
圖4-15 CL88-CPB天然黏土改質示意圖 76
圖4-16 CL88-CPS天然黏土改質示意圖 76
圖4-17 CL120, CL120-CPB和CL120-CPS以兩倍CEC值改質量之XRD 圖譜 78
圖4-18 CL88, CL88-CPB和CL88-CPS以兩倍CEC值改質量之 XRD 圖譜 78
圖4-19 CL120-CPB和CL88-CPB以兩倍CEC值改質量之 XRD 圖譜 79
圖4-20 CL88-CPS和CL88-CPS以兩倍CEC值改質量之 XRD 圖譜 79
圖4-21 CL120天然黏土之 TGA和DTG圖譜 81
圖4-22 CL88天然黏土之 TGA和DTG圖譜 81
圖4-23 CPS之 TGA和DTG圖譜 82
圖4-24 CPB之 TGA和DTG圖譜 83
圖4-25 CL120-CPB(1.5倍CEC值)天然黏土之 TGA和DTG圖譜 84
圖4-26 CL120-CPB(2倍CEC值)天然黏土之 TGA和DTG圖譜 84
圖4-27 CL120-CPS(1.5倍CEC值)天然黏土之 TGA和DTG圖譜 85
圖4-28 CL120-CPS(2倍CEC值)天然黏土之 TGA和DTG圖譜 85
圖4-29 CL88-CPB(1.5倍CEC值)天然黏土之 TGA和DTG圖譜 86
圖4-30 CL88-CPB(2倍CEC值)天然黏土之 TGA和DTG圖譜 86
圖4-31 CL88-CPS(1.5倍CEC值)天然黏土之 TGA和DTG圖譜 87
圖4-32 CL88-CPS(2倍CEC值)天然黏土之 TGA和DTG圖譜 87
圖4-33 純CL120 之 SEM 圖 (a) 30K (b) 50K 88
圖4-34 CL120-CPB (兩倍CEC值) 之 SEM 圖 (a) 30K (b) 50K 89
圖4-35 CL120-CPS (兩倍CEC值)之 SEM 圖 (a) 30K (b) 50K 89
圖4-36 純CL88 之 SEM 圖 (a) 30K (b) 50K 89
圖4-37 CL88-CPB (兩倍CEC值)之 SEM 圖 (a) 30K (b) 50K 90
圖4-38 CL88-CPS (兩倍CEC值)之 SEM 圖 (a) 30K (b) 50K 90
圖4-39 CPB之 FT-IR 圖 93
圖4-40 CPS之 FT-IR 圖 93
圖4-41 CL120,CL120-CPB和CL120-CPS之 FT-IR 圖 94
圖4-42 CL88,CL88-CPB和CL88-CPS之 FT-IR 圖 94
圖4-43 EP-CL120-CPB 之 XRD 圖譜 98
圖4-44 EP-CL120-CPS之 XRD 圖譜 99
圖4-45 EP-CL88-CPB之 XRD 圖譜 100
圖4-46 EP-CL88-CPS之 XRD 圖譜 101
圖4-47 EP-CL120-CPB-1phr 複材(a)25K(b)50K 之 TEM圖 104
圖4-48 EP-CL120-CPB-3phr 複材(a)25K(b)50K 之 TEM 圖 104
圖4-49 EP-CL120-CPB-5phr 複材(a)25K(b)50K 之 TEM 圖 104
圖4-50 EP-CL120-CPS-1phr 複材(a)25K(b)50K 之 TEM 圖 105
圖4-51 EP-CL120-CPS-3phr 複材(a)25K(b)50K 之 TEM 圖 105
圖4-52 EP-CL120-CPS--5phr 複材(a)25K(b)50K 之 TEM 圖 105
圖4-53 EP-CL88-CPB-1phr 複材(a)25K(b)50K 之 TEM 圖 106
圖4-54 EP-CL88-CPB -3phr 複材(a)25K(b)50K 之 TEM 圖 106
圖4-55 EP-CL88-CPB -5phr 複材(a)25K(b)50K 之 TEM 圖 106
圖4-56 EP-CL88-CPS -1 phr 複材(a)25K(b)50K 之 TEM 圖 107
圖4-57 EP-CL88-CPS -3 phr 複材(a)25K(b)50K 之 TEM 圖 107
圖4-58 EP-CL88-CPS -5 phr 複材(a)25K(b)50K 之 TEM 圖 107
圖4-59 EPMMA 在150K 之SEM 圖 109
圖4-60 EP-CL120-CPB複材(a)1 phr(b)3 phr(c)5 phr在150K之SEM 圖 110
圖4-61 EP-CL120-CPS複材(a)1 phr(b)3 phr(c)5 phr在150K 之SEM 圖 111
圖4-62 EP-CL88-CPB複材(a)1 phr(b)3 phr(c)5 phr在150K 之SEM 圖 112
圖4-63 EP-CL88-CPS 複材(a)1 phr(b)3 phr(c)5 phr在150K 之SEM 圖 113
圖4-64 EP-CL120-CPB之TGA 116
圖4-65 EP-CL120-CPS之TGA 116
圖4-66 EP-CL88-CPB之TGA 117
圖4-67 EP-CL88-CPS之TGA 117
圖4-68 EP-CL120-CPB 之DSC圖譜 119
圖4-69 EP-CL120-CPS 之DSC圖譜 119
圖4-70 EP-CL88-CPB 之DSC圖譜 120
圖4-71 EP-CL88-CPS 之DSC圖譜 120
圖4-72 EP-CL120-CPB 之Tanget Delta 圖譜 122
圖4-73 EP-CL120-CPS之Tanget Delta 圖譜 122
圖4-74 EP-CL88-CPB 之Tanget Delta 圖譜 123
圖4-75 EP-CL88-CPS 之Tanget Delta 圖譜 123
圖4-76 E-PMMA/clay 奈米複材之薄膜樣品圖 128
圖4-77 EP-CL120-CPB UV-Vis穿透光譜圖 131
圖4-78 EP-CL120-CPS UV-Vis穿透光譜圖 131
圖4-79 EP-CL88-CPB UV-Vis穿透光譜圖 132
圖4-80 EP-CL88-CPS UV-Vis穿透光譜圖 132
圖4-81 EP-CL120-CPB UV-Vis吸收光譜圖 133
圖4-82 EP-CL120-CPS UV-Vis吸收光譜圖 133
圖4-83 EP-CL88-CPB UV-Vis吸收光譜圖 134
圖4-84 EP-CL88-CPS UV-Vis吸收光譜圖 134
圖4-85 有機改質劑CPS之UV-Visible吸收圖譜 135
圖4-86 有機改質劑CPB之UV-Visible吸收圖譜 135
圖4-87 EP-CL120-CPB之儲存模數分析圖 138
圖4-88 EP-CL120-CPS之儲存模數分析圖 138
圖4-89 EP-CL88-CPB之儲存模數分析圖 139
圖4-90 EP-CL88-CPS之儲存模數分析圖 139
圖4-91 氣體穿透高分子/黏土奈米複材之示意圖 146


表目錄
表2-1 各種聚合法之優缺點比較 25
表2-2 各種聚合法之製備比較 26
表2-3 黏土的種類分類 29
表3-1 無機層狀材料之樣品命名總表 57
表3-2 PMMA/Clay奈米複材之樣品命名總表 57
表4-1 CL120-CPB和CL120-CPS在不同pH下由XRD探討d001層間距 59
表4-2 CL88-CPB和CL88-CPS在不同pH下由XRD探討d001層間距 59
表4-3 CL120-CPB和CL120-CPS在不同pH下由SEM觀察表面型態 62
表4-4 CL88-CPB和CL88-CPS在不同pH下由SEM觀察表面型態 63
表4-5 天然黏土與改質型黏土在200℃與850℃剩餘重量百分比與插層量 71
表4-6 天然改質型無機層材之層間距總表 77
表4-7 改質型黏土的熱穩定總表 81
表4-8 不同改質型黏土由SEM觀察表面型態 88
表4-9 天然黏土之官能基對照表 91
表4-10 CPB之官能基對照表 91
表4-11 CPS之官能基對照表 92
表4-12 不同改質型黏土添加不同量時由TEM分辨其分散型態 103
表4-13 不同改質型黏土添加不同量時由SEM觀察其表面粒徑 109
表4-14 PMMA/clay 奈米複合材料之 T5d總表 115
表4-15 由DSC和DMA轉換之Tangent Delta所測得之Tg點總表 121
表4-16 E-PMMA/clay 奈米複材之分子量總表 125
表4-17 不同黏土對應不同改質劑的分子量比較 125
表4-18 E-PMMA/clay 奈米複材之紫外光-可見光穿透度總表 129
表4-19 E-PMMA/clay 奈米複材之紫外光-可見光吸收度總表 130
表4-20 E-PMMA/clay 奈米複材之儲存模數總表 137
表4-21 E-PMMA/clay 奈米複材之老化測試總表 141
表4-22 E-PMMA/Clay 奈米複材之黃化測試總表 142
表4-23 E-PMMA/clay 奈米複材之鉛筆硬度總表 143
表4-24 E-PMMA/clay 奈米複材之耐磨耗性(圈數:100)總表 145
表4-25 E-PMMA/clay 奈米複材之耐磨耗性(圈數:300)總表 145
表4-26 PMMA 複材之GPA數據總表 148
表4-27 歷屆乳化聚合法PMMA奈米級複合材料之性質比較表 149
表5-1 PMMA奈米複材性質總表 152



[1]B. T. W. Caspary, "Der Β -Biprompropionsäure in Acrylsäure", Ann, vol. 167, pp. 241-242, 1873.
[2]R. Fittig, "Ueber Polymerisirte Ungesättigte Säuren", Juli–Dezember, vol. 12(2), pp. 1739-1744, 1879.
[3]W. F. Smith, "Foundations of Materials Science and Engineering 4th Ed", McGraw-Hill, pp. 509-510, 2006.
[4]J. A. B. 著. 范啟明譯, 塑膠材料, 大中國圖書公司, 1989.
[5]F. W. L. Gucker Frank T. Jr., "Specific Heat of Lucite (Methyl Methacrylate Polymer) ", J. Am. Chem. Soc, vol. 60, pp. 2563-2563, 1938.
[6]L. Chen, X. Li, L. Wang, W. Wang, and Z. Xu, "Effect of the molecular chains grafted on graphene nanosheets on the properties of poly(l-lactic acid) nanocomposites", Polymer Composites, vol. 38, no. 1, pp. 5-12, 2017.
[7]W. Li, X. Jiang, R. Wu, and W. Wang, "Fast shape recovery by changing the grafting ratio in polyurethane/montmorillonite–poly(methyl methacrylate) composites", Polymer Journal, vol. 49, no. 2, pp. 263-271, 2016.
[8]X. X. Huang, Y. Yuan, S. Z. Liu, W. Wang, and R. J. Hong, "One-step sol-gel preparation of hydrophobic antireflective SiO2 coating on poly(methyl methacrylate) substrate", Mater. Lett., Article vol. 208, pp. 62-64, 2017.
[9]S. B. Yang, D. W. Jeong, J. Lee, S. Yeasmin, C. K. Kim, and J. H. Yeum, "Preparation of the Heterogeneous Saponified Poly(Vinyl Alcohol)/Poly(Methyl Methacrylate-Methallyl Alcohol) Blend Film", (in English), Materials, vol. 15, pp. 16-20, 2022.
[10]S. M. Masami Okamoto, Hideyuki Taguchi, Yong Hoon Kim, Tadao Kotaka, Hiroshi Tateyama, "Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization", Polymer, vol. 41, pp. 3887–3890, 2000.
[11]L. Unnikrishnan, S. Mohanty, S. K. Nayak, and A. Ali, "Preparation and characterization of poly(methyl methacrylate)-clay nanocomposites via melt intercalation: Effect of organoclay on thermal, mechanical and flammability properties", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., vol. 528, pp. 3943-3951, 2011.
[12]J. Zhu, P. Start, K. A. Mauritz, and C. A. Wilkie, "Thermal stability and flame retardancy of poly(methyl methacrylate)-clay nanocomposites", Polym. Degrad. Stabil., vol. 77, no. 2, pp. 253-258, 2002.
[13]D. C. Lee and L. W. Jang, "Preparation and characterization of PMMA-clay hybrid composite by emulsion polymerization", J. Appl. Polym. Sci., vol. 61, no. 7, pp. 1117-1122, 1996.
[14]S. Roy and S. Devi, "Mechanism of microemulsion polymerization of methyl methacrylate: Experimental evidence", J. Appl. Polym. Sci. , vol. 62, no. 10, pp. 1509-1516, 1996.
[15]X. L. Xu, X. W. Ge, Z. C. Zhang, M. W. Zhang, J. Zuo, and A. Z. Niu, "Microemulsion polymerization of methyl methacrylate initiated with BPO", Eur. Polym. J., vol. 35, pp. 1975-1978, 1999.
[16]Y. H. Qinghong Kong, Ling Yang, Weicheng Fan, "Synthesis and properties of poly(methyl methacrylate)/clay nanocomposites using natural montmorillonite and synthetic Fe-montmorillonite by emulsion polymerization", Polym. Composites, vol. 27, pp. 49-54, 2006.
[17]P. Meneghetti and S. Qutubuddin, "Synthesis, thermal properties and applications of polymer-clay nanocomposites", Thermochim. Acta, Article; Proceedings Paper vol. 442, pp. 74-77, 2006.
[18]K. V. Maneesh Kumar Poddar, "Rheological and mechanical properties of PMMA/organoclay nanocomposites prepared via ultrasound-assisted in-situ emulsion polymerization", Korean Journal of Chemical Engineering, vol. 36, pp. 828–836, 2019.
[19]專利檢索分析平台(IPTECH), http://cycu.ltc.tw/webpat.
[20]立鼎產業研究網, "2020年全球PMMA行業產能分布、地區分布及國內市場供應格局分析", 2020.
[21] 經濟日報翁永全, 奇美發表再生MMA光學級導光板全球第一片, 2022.
[22]劉奕洪, 分析 pmma 的最新發展趨勢-導光板應用,工研院 IEK, http://ieknet.iek.org.tw/BookView.do?rptidno=113032110, 2012.
[23] 市場調查報告書, "PMMA的全球市場:未來應用預測(標誌/顯示器、
油漆/塗料/印刷油墨、化妝品、聚合物/薄膜、醫療)",
https://www.giichinese.com.tw/report/mama1066634-pmma-
microspheres-market-by-application-signs.html, 2022.
[24]淺高見, 壓克力塑膠 Acrylic 原理與實用, 台灣:復漢出版社,1999.
[25]何經,呂佳燕,黃勝明, 高分子材料,復文書局, 2000.
[26]林建中, 《高分子材料之物性檢驗法》, 高分子加工學, 台灣:文京圖書有限公司 pp. 45-46, 1999.
[27]鶴田禎二,薛敬和, 高分子合成反應, 高立圖書有限公司, 2001.
[28]馬光輝,蘇志國, 新材料與應用技術叢書, 台灣:曉園出版社有限公司, 2006.
[29]A. M. Akelah, "Synthesis of Organophilic Polymer-clay nanocomposites", J. App. Polym. Sci: AppliedPolymer Symposium, vol. 55, pp. 153-172, 1994.
[30]H. V. Olphen, "Clay colloid Chemistry", New York:Chapter V, Wiley- Interface, 1997.
[31]M. Biswas, Ray, S. S., "Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites", vol. 155, pp. 167-221, 2001.
[32]廖建勛,林麗桂,邱文孝, 納米尼龍 6/黏土複合材料結構與熱分析, 高分子研討會論文集 pp. 355-358, 1997.
[33]L. D. W., A. W. H. Mau, "Organic-inorganic hybrid light-emmitting composite: poly (p-Phenylene vinylene) intercalated clay nanoparticles", J. Materials Science Letters, vol. 18, pp. 1539-1541, 1999.
[34]林美汝, "甲基丙烯酸甲酯/改質型黏土奈米複材的製備與其紫外光阻隔及機械特性之研究," 中原大學博士學位論文, 2012.
[35]D. G. E. H. D. H. Solomon, "Chemistry of pigments and Fillers", New York:John Wiley&Sons,Inc, 1983.
[36]T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, "On the Nature Of Polyimide-Clay Hybrid Composites", Chem. Mat., vol. 6, pp. 573-575, 1994.
[37]馬振基,趙珏, 高分子複合材料, 華香園出版社, 2006.
[38]肖衛東,何本橋,何培新,黃珊, 聚合物材料用化學助劑, 化學工業出版社, 2004.
[39]張培萍, 膨潤土加工與應用, 化學工業出版社, 2005.
[40]蔡宗燕, 奈米化學與科技應用,奈米級黏土/高分子複合材料, 工業技術研究院,化工所,2005.
[41]S. Komarneni, "Nanocomposites", J. Mater. Chem. , vol. 2(12), pp. 1219-1230, 1992.
[42]D. W. C. Manzi-Nshuti, J. M. Hossenlopp, C. A. Wilkie., "Fire retardancy of bis[2-(methacryloyloxy)ethyl] phosphate modified poly(methyl methacrylate) nanocomposites containing layered double hydroxide and montmorillonite", Polym. Sci., vol. 94, pp. 1110-1118, 2009.
[43]L. J. Wang, X. L. Xie, S. P. Su, J. X. Feng, and C. A. Wilkie, "A comparison of the fire retardancy of poly(methyl methacrylate) using montmorillonite, layered double hydroxide and kaolinite", Polym. Degrad. Stabil., vol. 95, no. 4, pp. 572-578, 2010.
[44]C. K. L. W. S. Wang, Y. C.Chen, Y. L.Su, T. Y.Tsai, Y. W.Chen-Yang, S. B., "Transparent and flame retardant PMMA/claynanocomposites prepared with dualmodified organoclay", Polym. Adv. Technol, vol. 23(3), pp. 625-631, 2012.
[45]C. C. Manzi-Nshuti, D.Su, S. P.Wilkie, C. A., "Structure-property relationships of new polystyrene nanocomposites prepared from initiator-containing layered double hydroxides of zinc aluminum and magnesium aluminum", Polym. Degrad. Stabil., vol. 94, pp. 1290-1297, 2009.
[46]A. K. A. Nikolaidis, D. S.Karayannidis, G. P., "Effect of the type of organic modifier on the polymerization kinetics and the properties of poly(methyl methacrylate)/organomodified montmorillonite nanocomposites", Eur. Polym. J., vol. 48, pp. 240-251, 2012.
[47]A. De Maria et al., "Synthesis and characterization of PMMA/silylated MMTs", J. Nanopart. Res., Article; Proceedings Paper vol. 13, no. 11, pp. 6049-6058, 2011.
[48]A. K. Dhibar, S. Mallick, T. Rath, and B. B. Khatua, "Effect of Clay Platelet Dispersion as Affected by the Manufacturing Techniques on Thermal and Mechanical Properties of PMMA-Clay Nanocomposites", J. Appl. Polym. Sci., vol. 113, pp. 3012-3018, 2009.
[49]A. Auliawan and E. M. Woo, "Crystallization kinetics and degradation of nanocomposites based on ternary blend of poly(L-lactic acid), poly(methyl methacrylate), and poly(ethylene oxide) with two different organoclays", J. Appl. Polym. Sci., vol. 125, pp. 444-458, 2012.
[50]A. K. Nikolaidis, D. S. Achilias, and G. P. Karayannidis, "Synthesis and Characterization of PMMA/Organomodified Montmorillonite Nanocomposites Prepared by in Situ Bulk Polymerization", Ind. Eng. Chem. Res., vol. 50, no. 2, pp. 571-579, 2011.
[51]D. S. A. A. K. Nikolaidis, G. P. Karayannidis, "Synthesis and characterization of pmma/organo modified montmorillonite nanocomposites prepared by in situ bulk polymerization", Ind. Eng. Chem. Res, vol. 50, pp. 571-579, 2011.
[52]張立德, 奈米材料, 台灣:五南出版社, 2002.
[53]黃振球,尾琦邦宏,松浦一雄, 圖解高分子材料最前線, 台灣:全華科技圖書股份有限公司, 2006.
[54]D. Kong and C. E. Park, "Real time exfoliation behavior of clay layers in epoxy-clay nanocomposites", Chem. Mat., Article vol. 15, no. 2, pp. 419-424, 2003.
[55]C.-H. L. T.-Y. Tsai, C.-H. Chang, W.-H. Cheng, C.-L. Hwang, R. J. Wu, "Preparation of exfoliated polyester/clay nanocomposites", Adv. Mater, vol. 17, pp. 1769-1773, 2005.
[56]T. Lan and T. J. Pinnavaia, "CLAY-REINFORCED EPOXY NANOCOMPOSITES", Chem. Mat., vol. 6, no. 12, pp. 2216-2219, 1994.
[57]C. T. Zilg, R.Mulhaupt, R.Finter, J., "Polyurethane nanocomposites containing laminated anisotropic nanoparticles derived from organophilic layered silicates", Adv. Mater., vol. 11, pp. 49-52, 1999.
[58]C. C. Riccardi and R. J. J. Williams, "A KINETIC SCHEME FOR AN AMINE-EPOXY REACTION WITH SIMULTANEOUS ETHERIFICATION", J. Appl. Polym. Sci., vol. 32, no. 2, pp. 3445-3456, 1986.
[59]Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, "ONE-POT SYNTHESIS OF NYLON-6 CLAY HYBRID", J. Polym. Sci. Pol. Chem., Article vol. 31, no. 7, pp. 1755-1758, 1993.

[60]徐兆稹, "蛋白質在黏土奈米混成材中之吸脫行為的研究", 中原大學碩士學位論文, 2014.
[61]L. J. Johnston, "Quantification of surface functional groups on silica nanoparticles:comparison of thermogravimetric analysis and quantitative NMRǂ", Analyst, pp. 1-20, 2019.
[62]M. W. S.C. Dehou, "Physicochemical, crystalline and morphological characteristics of bricks used for ground waters purification in Bangui region (Central African Republic) ", Appl. Clay Sci., pp. 59–60, 2012.
[63]S.-T. C. Kung-Chin Chang, Hui-Fen Lin, Chang-Yu Lin, Hsin-HuaHuang, Jui-Ming Yeh, Yuan-Hsiang Yu, "Effect of clay on the corrosion protection efficiency of PMMA/Na+-MMT clay nanocomposite coatings evaluated by electrochemical measurements", Eur. Polym. J, vol. 44, pp. 13-23, 2008.
電子全文 電子全文(網際網路公開日期:20270906)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊