跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/15 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊千惠
研究生(外文):YANG, CHIAN-HUEI
論文名稱:含有機改質型黏土之環氧樹脂複合塗料在ACQ木材防腐劑存在下金屬基材的防腐蝕研究
論文名稱(外文):Corrosion protection studies of metal substrates by epoxy composite coatings containing organically modified clay in the presence of ACQ wood preservative
指導教授:葉瑞銘葉瑞銘引用關係
指導教授(外文):YEH, JUI-MING
口試委員:黃俊哲李承宇蘇莉芸葉瑞銘
口試委員(外文):HWANG, JIUNN-JERLEE, CHENG-YUSU, LI-YUNYEH, JUI-MING
口試日期:2023-06-17
學位類別:碩士
校院名稱:中原大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:99
中文關鍵詞:蒙托土環氧樹脂木材防腐劑防腐蝕
外文關鍵詞:montmorilloniteepoxy resinwood preservativecorrosion protection
DOI:10.6840/cycu202301340
相關次數:
  • 被引用被引用:0
  • 點閱點閱:52
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在建築工業中,為了避免木材因為發霉或是蛀蟲,導致木材的損壞,欲避免以上的情形發生,使用木材建造房屋前,會先將其浸泡過化學防腐劑。然而,當鐵製螺絲鎖入浸泡過化學防腐劑之木材中時,木材防腐劑(ACQ)中的「銅離子」會加速螺絲的氧化速率,使得螺絲的使用年限縮短,造成危害問題的產生。
為了有效阻隔銅離子和鐵之間的氧化反應,本研究是利用奈米黏土的阻隔特性,延緩氧化反應的發生。因此在環氧樹脂塗層中添加有機改質奈米黏土,旨在有效延長「鐵製螺絲」與木材防腐劑(ACQ)中的銅離子所引起的氧化還原反應,同時抑制腐蝕現象的發生速率。
首先透過 FT-IR以及 XRD 證實親油性介面活性劑透過陽離子交換當量的方式,成功將其插層進奈米黏土的層間。接著製備由環氧樹脂以及有機改質奈米黏土所製備之一系列的奈米複合塗層,並利用TEM去觀察黏土於環氧樹脂的分散性、水滴接觸角去驗證塗層的疏水程度,以及利用TGA檢測塗層的熱穩定性。
再來利用電化學檢測,對於含不同比例黏土(0.5 wt%、1 wt%、2 wt%)之塗層於鹽水環境下有無銅離子時的防腐蝕測試。從電化學阻抗的數據可以得知環氧樹脂塗層的阻抗值由100 kΩ 下降至42 kΩ,但添加少量黏土(0.5 wt%)後,複合塗層的阻抗值由42 kΩ增加至215 kΩ,表示複合塗料可以阻隔銅離子,有效延緩鐵的氧化速率。最後利用鹽霧試驗機驗證腐蝕現象,將標準試片經由鹽霧暴露14天後的腐蝕趨勢和電化學的檢測結果一致,更加證實了複合塗料可以有效的阻隔銅離子,並且延緩鐵的氧化,延長了腐蝕發生的時間。也透過 GPA證實阻氣性的提升,DMA、附著力測試以及耐磨耗測試證實了機械性能的增加。
綜合電化學檢測及鹽霧試驗之結果,證實複合塗層確實可以有效阻隔銅離子與鐵所發生的氧化時間,將使得鐵製螺絲的使用年限延長。

In the construction industry, to prevent wood from deteriorating due to mold or insect infestation, chemical preservatives are used to treat the wood before using it for building purposes. However, when iron screws are inserted into wood treated with chemical preservatives(ACQ), the presence of "copper ions" in the wood preservative accelerates the oxidation rate of the screws, leading to a shortened lifespan and potential hazards.
To effectively block the oxidation reaction between copper ions and iron, this study utilizes the barrier properties of nano-clay to delay the occurrence of oxidation. Therefore, organic modified nano-clay is added to epoxy resin coatings with the aim of extending the reaction time of "iron screws" with copper ions in wood preservatives(ACQ)and suppressing the rate of corrosion.
Firstly, the cation exchange between the lipophilic interface active agent and interlayer cations of the nano-clay was confirmed through FT-IR and XRD analysis. Subsequently, a series of nanocomposite coatings comprising epoxy resin and organic modified nano-clay were prepared, and the dispersion of clay in epoxy resin, hydrophobicity of the coatings measured by water contact angle, and thermal stability of the coatings examined by TGA were observed using TEM.
Electrochemical testing was performed to evaluate the corrosion resistance of the coatings containing different percentages of clay(0.5 wt%, 1 wt%, 2 wt%)in a saline environment with and without copper ions. The impedance data indicated that the impedance value of the epoxy resin coating decreased from 100 kΩ to 42 kΩ, but increased from 42 kΩ to 215 kΩ with the addition of a small amount of clay(0.5 wt%), demonstrating that the composite coating can block copper ions and effectively slow down the oxidation rate of iron. The corrosion phenomenon was further verified using a salt spray tester, where the corrosion trend of the standard samples exposed to salt spray for 14 days was consistent with the electrochemical measurement results. This confirmed that the composite coating can effectively block copper ions, delay iron oxidation, and extend the occurrence of corrosion.
Additionally, an improvement in gas barrier properties was confirmed through GPA, and the mechanical properties were evaluated through DMA, adhesion tests, and wear resistance tests.
Overall, the electrochemical testing and salt spray test results confirmed that the composite coating can effectively block the occurrence of oxidation between copper ions and iron, thereby extending the lifespan of iron screws.

目錄
中文摘要 I
Abstract III
謝誌 V
目錄 VI
圖目錄 X
表目錄 XIII
第一章 緒論 1
1-1 木材防腐劑之應用與簡介 1
1-1-1 木材防腐劑種類 2
1-1-2 木材防腐劑對金屬的腐蝕性 4
1-2 奈米複合材料之簡介 5
1-3 有機/無機奈米複合材料 7
1-3-1 有機/無機奈米複合材料種類 7
1-3-2 有機/無機奈米複合材料的製備方式 8
1-4 無機層狀材料黏土(Clay) 12
1-4-1 黏土簡介 12
1-4-2 黏土改質 15
1-5 環氧樹脂簡介 16
1-5-1 環氧樹脂的種類 17
1-5-2 環氧樹脂官能基含量表示法 18
1-5-3 環氧樹脂的固化劑與開環反應機制 19
1-5-4 環氧樹脂的功能與應用 21
1-6 防腐蝕簡介 24
1-6-1 腐蝕簡介 24
1-6-2 金屬腐蝕現象 24
1-6-3 常見的腐蝕方法 25
1-7 研究動機 26
第二章 實驗藥品、儀器與實驗步驟 28
2-1 實驗藥品 28
2-2 實驗儀器 30
2-3 蒙托土親油化 34
2-4 製備環氧樹脂及其複合材料 35
2-4-1 環氧樹脂及其複合材料之命名 35
2-4-2 環氧樹脂(DGEBA) 35
2-4-3 環氧樹脂/黏土(DC) 36
第三章 結果與討論 37
3-1 有機改質黏土之合成鑑定 37
3-1-1 有機改質黏土之傅利葉轉換之紅外線光譜(FT-IR) 37
3-1-2 有機改質黏土之X射線衍射(XRD) 38
3-2 環氧樹脂及其複合材料之鑑定 41
3-2-1 環氧樹脂/黏土之穿透式電子顯微鏡(TEM) 41
3-2-2 環氧樹脂之傅利葉轉換之紅外線光譜(FT-IR) 42
3-3-3 環氧樹脂/黏土之水滴接觸角(WCA) 43
3-2-4 環氧樹脂/黏土之熱重分析儀(TGA) 45
3-3 木材防腐劑之基本鑑定 47
3-3-1 EDS之 Mapping 47
3-3-2 紫外光/可見光光譜儀(UV-Vis) 48
3-3-3 感應耦合電漿質譜儀(ICP-MS) 49
3-4 防腐蝕測試 49
3-4-1 環氧樹脂/黏土(DC)之塔芙防腐蝕測試(Tafel) 49
3-4-2 環氧樹脂/黏土(DC)之電化學阻抗光譜測試(EIS) 55
3-4-3 銅離子濃度對於金屬腐蝕的影響 64
3-5 塗層之鹽霧試驗(Salt spray test) 65
3-5-1 無銅離子環境下之鹽霧測試 66
3-5-2 含銅離子環境下之鹽霧測試 67
3-6 塗層之氣體通過率測試 69
3-7 塗層之機械性質測試 70
3-7-1 動態機械分析儀(DMA) 70
3-7-2 附著力測試-百格試驗(Adhesion test) 72
3-7-3 耐磨耗測試(Wear test) 74
第四章 結論及未來展望 77
第五章 參考資料 79

圖目錄
圖1-1 有機高分子∕無機層狀材料複合物的種類 7
圖1-2 聚合體插層法之傳統複合材料示意圖[12] 10
圖1-3 單體插層後聚合法示意圖[12] 10
圖1-4 Smectite Clay理論結構[28] 14
圖1-5 環氧樹脂與胺類的固化反應機構 20
圖1-6 電子效應示意圖 21
圖1-7 DGEBA之化學結構及基本功能性 21

圖2-1 工作電極裝置示意圖與電化學反應槽示意圖 31
圖2-2 環氧樹脂之結構圖 35

圖3-1 有機改質黏土前後之紅外線光譜圖(a)Clay、(b)CL-CTAB 38
圖3-2 黏土改質前後XRD圖(a)Clay、(b)CL-CTAB 39
圖3-3 改質劑插層示意圖 40
圖3-4 DC之TEM 圖像(a) DC0.5 (b) DC1 (c) DC2 41
圖3-5 環氧樹脂之紅外線光譜圖 43
圖3-6 水滴接觸角測試示意圖 44
圖3-7 DC之水滴接觸角 44
圖3-8 DC之熱重分析圖 46
圖3-9 DC塗層之T5d折線圖 46
圖3-10 木材防腐劑之Cu2+離子Mapping圖 47
圖3-11 ACQ之紫外光/可見光光譜圖譜 48
圖3-12 3.5 wt% NaCl(aq)下不同比例之DC之Tafel plot 52
圖3-13 含2 wt% ACQ之鹽水溶液下不同比例之DC之Tafel plot 53
圖3-14 含硫酸銅之鹽水溶液下不同比例之DC之Tafel plot 54
圖3-15 電壓與電流在交流電的情況下的變化示意圖 55
圖3-16 複數平面上之阻抗圖形 56
圖3-17 電極的等效電路圖 56
圖3-18 Nyquist plot半圓圖形 56
圖3-19 3.5 wt% NaCl(aq)下不同比例之DC之Nyquist plot 58
圖3-20 含2 wt% ACQ之鹽水溶液下不同比例之DC之Nyquist plot 59
圖3-21 含硫酸銅之鹽水溶液下不同比例之DC之Nyquist plot 60
圖3-22 3.5 wt% NaCl(aq)下不同比例之DC之Bode plot 62
圖3-23 含2 wt% ACQ之鹽水溶液下不同比例之DC之Bode plot 62
圖3-24 含硫酸銅之鹽水溶液下不同比例之DC之Bode plot 63
圖3-25 有無銅離子環境下之電化學阻抗長條圖 64
圖3-26 不同濃度硫酸銅溶液下之 Epoxy 之 Nyquist plot 65
圖3-27 無銅離子環境下DC之鹽霧試驗圖 67
圖3-28 含銅離子環境下DC之鹽霧試驗圖 68
圖3-29 氧氣於 DC塗層中之理論穿越路徑 69
圖3-30 DC塗層之氣體穿透量 70
圖3-31 DC之動態機械分析圖 71
圖3-32 DC之百格試驗之SEM圖像 74
圖3-33 DC之耐磨耗折線圖 75
圖3-34 DC之質量損失圖 76

表目錄
表1-1 ACQ 之有效成分[2] 3
表1-2 CuAz 之有效成分[2] 4
表1-3 常見的黏土種類分類[34] 15
表1-4 環氧樹脂種類與代號 17

表2-1 環氧樹脂/黏土之比例參照表 36

表3-1 有機改質黏土之特徵官能基對照表 38
表3-2 黏土改質前後之XRD數據 39
表3-3 環氧樹脂之特徵官能基對照表 43
表3-4 DC之熱重分析數據彙整表 46
表3-5 3.5 wt% NaCl(aq)下不同比例之DC之Tafel 數據彙整表 53
表3-6 2 wt% ACQ之鹽水溶液下不同比例之DC之Tafel數據彙整表 54
表3-7 含硫酸銅之鹽水溶液下不同比例之DC之Tafel數據彙整表 55
表3-8 3.5 wt% NaCl(aq)下不同比例之DC之Nyquist數據彙整 59
表3-9 2 wt% ACQ之鹽水溶液下不同比例之DC之Nyquist plot 數據彙整表 60
表3-10 含硫酸銅之鹽水溶液下不同比例之DC之Nyquist數據彙整表 61
表3-11 Epoxy在不同濃度硫酸銅溶液下之Nyquist數據彙整表 65
表3-12 DC塗層之氣體穿透量數據彙整表 70
表3-13 DC之動態機械分析之數據彙整表 71
表3-14 百格試驗分級表 73
表3-15 DC之百格試驗結果整理表 74



1.周慧明, 木材防腐. 中國林業出版社, 1989.
2.中華民國國家標準總號CNS 14495木材防腐劑.
3.Baker, A.J., Corrosion of metals in preservative-treated wood Forest Products Research Society, 1987: p. 99-101.
4.Rammer D.R., S.L.Z., and P. Line, Fastener Corrosion Testing, Research, and Design Considerations. In: WCTE 9th World Conference on Timber Engineering, 2006.
5.Kelly Bossardi Dias and Ricardo Marques Barreiros, Preservative Treatments on Wood and Their Effects. 2021.
6.Arimitsu Usuki, Y.K., Masaya Kawasumi, Akane Okada, Yoshiaki Fukushima, and a.O.K. Toshio Kurauchi, Synthesis of nylon 6-clay hybrid. J. Mater. Res, 1993: p. 1179-1184.
7.Yoshitsugu Kojima, A.U., Masaya Kawasumi, Akane Okada, Toshio Kurauchi, Osami Kamigaito, Sorption of Water in Nylon 6-Clay Hybrid. Journal of Applied Polymer Science, 1993: p. 1259-1264.
8.Yoshitsugu Kojima, A.U., Masaya Kawasumi, Akane Okada, Yoshiaki Fukushima, and a.O.K. Toshio Kurauchi, Mechanical properties of nylon 6-clay hybrid. J. Mater. Res, 1992. 8: p. 1185-1189.
9.Yoshitsugu Kojima, A.U., Masaya Kawasumi, Akane Okada, Toshio Kurauchi, Osami Kamigaito, Synthesis of nylon 6–clay hybrid by montmorillonite intercalated with ϵ-caprolactam. Journal of Polymer Science Part A: Polymer Chemistry., 1993: p. 983-986.
10.Herron, N. and D.L. Thorn, Nanoparticles: Uses and Relationships to Molecular Cluster Compounds. Advanced Materials, 1998. 10(15): p. 1173-1184.
11.V. Favier, J. Y. Cavaille, G. R. Canova, S. C. Shrivastava., Mechanical percolation in cellulose whisker nanocomposites. Polymer Engineering & Science, 1997. 37(10): p. 1732-1739.
12.Michael Alexandre, Philippe Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials Science and Engineering, 2000. 28: p. 1-63.
13.Lan, T., P.D. Kaviratna, and T.J. Pinnavaia, On the Nature of Polyimide-Clay Hybrid Composites. Chemistry of Materials, 2002. 6(5): p. 573-575.
14.Horng-Long Tyan, Y.-C.L., and Kung-Hwa Wei, Thermally and Mechanically Enhanced ClayPolyimide. Chem. Mater, 1999. 11: p. 1942-1947.
15.Jeffrey W. Gilman, C.L.J., Alexander B. Morgan and and J. Richard Harris, Flammability Properties of Polymer−Layered-Silicate Nanocomposites. Polypropylene and Polystyrene Nanocomposites Chemistry of Materials, 2000. 12: p. 1866-1873.
16.Brubaker R.G., Corrosion Chemistry, 1979. 39: p. 108.
17.Ying Wang, Norman Herron, Karin Moller, Thomas Bein, Three dimensionally confined diluted magnetic semiconductor clusters. Solid State Communications, 1991. 77: p. 33-38.
18.Paras N. Prasad, F.E.K., Yang Pang, Chichang J. Wung, Third order non-linear optically active composites, method of making same and photonic media comprising same. The Research Foundation of State Univ. of N.Y., 1992: p. 510362.
19.S. P. Armes, S.G., J. G. Beery, F. Garzon and S. F. Agnewt, Conducting polymer-colloidal silica. Polymer, 1991. 32(13): p. 2325-2330.
20.C. G. Gebelein, B., Progress in biomedical polymers. Polymer, Plenum Press, New York, 1990. 26: p. 203-204.
21.García, C., M. Fittipaldi, and L.R. Grace, Epoxy/montmorillonite nanocomposites for improving aircraft radome longevity. Journal of Applied Polymer Science, 2015. 132(43): p. 46291
22.Njuguna, J., F. Silva, and S. Sachse, Nanocomposites for Vehicle Structural Applications. 2011.
23.Peter C LeBaron, Zhen Wang, Thomas J Pinnavaia, Polymer-layered silicate nanocomposites: an overview. Applied Clay Science, 1999. 15: p. 11-29.
24.Sridhar Komarneni, Feature article. Nanocomposites. Journal of Materials Chemistry, 1992(12).
25.蔡宗燕, 奈米科技導論 Ch. 1 奈米級無機層狀材料, 2004.
26.D. Chapman, R.J.W., A. G. Fitzgerald, A. D. Yoffe J., Spectra and the semi-conductivity of the [SN]x polymer. Chem. Soc. Faraday Trans., 1967. 294.
27.工業材料, 1999(9): p. 153.
28.S. Kobayashi, T.S., Angew. Makromol. Chem, 1992: p. 64.
29.Theng, B.K.G., In Formation and Properties of Clay-Polymer Complexes Chapter 1, Elsevier: New York, 1979. 1979.
30.Giannelis, E.P., Krishnamoorti, R. and Manias, E, Polymer-Silicate Nanocomposites Model Systems for Confined Polymers and Polymer Brushes. Advances in Polymer Science, 1999. 138: p. 107-147.
31.T.Reichle, W., Synthesis of anionic clay minerals (mixed metal hydroxides, hydrotalcite). 1986. 22(1): p. 135-141.
32.Corinne Depège, F.-Z.E.M., Claude Forano, André de Roy, Jacques Dupuis, and Jean-Pierre Besse, Polymerization of Silicates in Layered Double Hydroxides. Chem. Mater., 1996. 8(4): p. 952-960.
33.Andre de Roy, C.F., Khalid EI Malki and a.J.-P. Besse, Anionic Clays-Trends in Pillaring Chemistry. Expanded Clays and Other Microporous Solids, 1992: p. 108-169.
34.黃琇嫈, 中原大學碩士論文. 2002.
35.B. Wang, A.G., A. B. Brennan, D. E. Rodrignes, J. E. Mcgrath,; Willkes, G. and L., Polym. Prep, 1991. 32.
36.Y. Wei, R.B., D. Yang, C. K. Whitecar, Poly. Prep., 1991. 32.
37.C. J. T. Lanrry, B.K.C., Poly. Prep. Am. Chem. Soc. Div., 1991. 32,514.
38.L. A. David, G.W.S., Polym. Prep, 1991. 23,: p. 338.
39.Ikeda, Y.K., S., In situ formed silica particles in rubber vulcanizate by the sol-gel method. Polymer, 1997. 38: p. 4417-4423.
40.B. M. Novak, C.D., Polym. Prep, 1991. 512.
41.Schrade, Resins from Epichlorohydrin. Kunststoffe, 1953(43,128).
42.賴家聲, 環氧樹脂與硬化劑(上). 1999.
43.黃滄閔, 成大化工碩士論文. 2002.
44.胡志明, 鍾松政, 奈米科技專刊. 2002.
45.Chang, Chi-Hao, Hsu, Min-Hsiang, Weng, Chang-Jian, Hung, Wei- I., Chuang, Tsao-Li,Chang, Kung-Chin, Peng, Chih-Wei, Yen, Yu-Chun, Yeh, Jui-Ming, 3D-bioprinting approach to fabricate superhydrophobic epoxy/organophilic clay as an advanced anticorrosive coating with the synergistic effect of superhydrophobicity and gas barrier properties. Journal of Materials Chemistry A, 2013. 1(44): p. 13869-13877.
46.Tsung-Yen Tsai, Naveen Bunekar, Ti-Chia Wu,nYu-Chen Chiang, Zheng-zhou Wangdand Li-Xin Wu, Effect of Organic Nano Carboncapsule Incorporated Modified Clay on Fire-Retardancy of PMMA Nanocomposites. Journal of the Chinese Chemical Society, 2017. 64(12): p. 1399-1407.
47.Jui-Ming Yeh, Hsiu-Yin Huang, Chi-Lun Chen, Wen-Fen Su, Yuan-Hsiang Yu, Siloxane-modified epoxy resin–clay nanocomposite coatings with advanced anticorrosive properties prepared by a solution dispersion approach. Surface and Coatings Technology, 2006. 200(8): p. 2753-2763.
48.Tie Lan, Padmananda D. Kaviratna, and Thomas J. Pinnavaia, Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites. Chemistry of Materials, 1995. 7(11): p. 2144-2150.
49.Jui-Ming Yeh, Chi-Lun Chen, Yen-Chen Chen, Chin-Yi Ma, Kueir-Rarn Lee, Yen Wei, Shuxi Li, Shuxi Li, Enhancement of corrosion protection effect of poly(o-ethoxyaniline) via the formation of poly(o-ethoxyaniline)±clay nanocomposite materials. Polymer, 2002. 43: p. 2729-2736.

50.Marielen Longhia, Lucas Pandolphi Zinia, Vinícius Pistorb, Sandra Raquel Kunsta, Ademir José Zatteraa, Evaluation of the Mechanic and Electrochemical Properties of an Epoxy Coating with Addition of Different Polyhedral Oligomeric Silsesquioxanes (POSS) Applied on Substrate of Low Alloy Steel. Materials Research, 2017. 20(5): p. 1388-1401.
51.Suter, A.a.U.W., Polym. Mater. Sci. Eng. Prepr, 1989. 61,481.
52.Ulianas, D.G.a.A., Optimization of complex NH3 with Cu 2+ ions to determine levels of ammonia by UV-Vis spectrophotometer. Journal of Physics: Conference Series, 2020.
53.Hour, R.S., Elemental and Isotopic Analysis by Inductively Coupled. 1994. 27: p. 333-339.
54.S. Sathiyanarayanan, S.K. Dhawan, D.C. Trivedi, K. Balakrishnan, Soluble conducting poly ethoxy aniline as an inhibitor for iron in HCl. Corrosion Science, 1992. 33(12): p. 1831-1841.
55.Amirudin, D. Thieny, Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Progress in Organic Coatings, 1995. 26: p. 1-28.


電子全文 電子全文(網際網路公開日期:20280721)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊