跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/20 09:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王桓謙
研究生(外文):WANG, HUAN-CHIEN
論文名稱:石墨烯約瑟夫森元件與碲霍爾元件電性傳輸研究
論文名稱(外文):Study on Electronic Transport in Graphene Josephson devices and Tellurium Hall devices
指導教授:莊家翔鐘元良
指導教授(外文):CHUANG, CHIA-SHAINZHONG, YUAN-LIANG
口試委員:梁啟德陳建翰
口試委員(外文):LIANG, CHI-TECHEN, CHIEN-HAN
口試日期:2023-07-07
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:84
中文關鍵詞:石墨烯約瑟夫森效應霍爾效應外爾半金屬手性異常效應
外文關鍵詞:GrapheneJosephson effectTelluriumHall effectWeyl semimetalChiral anomaly effect
DOI:10.6840/cycu202301273
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來量子科技領域的發展日益興盛,對於新穎量子材料的研究變得十分重要,為了將新穎量子材料應用至元件中,就需要了解材料在低溫環境下的物理傳輸特性。其中石墨烯與拓樸材料,皆因擁有特殊的能帶結構,被認為具有作為量子元件材料的潛力。在實驗中透過將石墨烯製作成約瑟夫森接面元件的形式,量測在低溫環境下因為約瑟夫森效應所引發的超導現象,透過一系列的量測後,初步確認了元件有轉變為超導態的跡象。另外在拓樸材料方面,元素碲(Te)的物理特性,十分令人感興趣,為了深入了解材料特性,本研究將Te製作成霍爾元件,並透過變溫的電性量測,發現其具有類似拓樸材料的傳輸性質,透過轉角度的磁阻量測,初步量測到手性異常效應,最後發現在水平磁場的環境下,量測到負磁阻,推測與外爾半導體的手性異常效應有關。
In recent years, the field of quantum related research grow rapidly, and the study of quantum materials become very important. In order to apply quantum materials to quantum devices, it is crucial to understand their physical properties at low temperatures. Graphene and topological materials, which are known for their unique band structures, are considered as promising material candidates for quantum devices. In our experiments, graphene was fabricated as Josephson junction devices to measure the superconducting transport phenomena induced by the Josephson effect at low temperatures. Through a series of electronic measurements, some evidences to show the transition to from a metallic state to a superconducting state in our device has been confirmed. Based on topological materials, the physical properties of the element tellurium (Te) are very interesting. In order to study further the material properties, we made Te rod as a Hall bar. From temperature dependent electronic transport measurements, we found that it revealed electronic transport properties of topological materials. Also, the chiral anomaly effect was observed through the magnetoresistance measurement of the rotation angle, and finally found that in the parallel magnetic field to the current direction. We observed the negative magnetoresistance, which is suggested to be related to the chirality of Weyl semiconductor anomaly effects.
摘要 I
Abstract II
致謝 III
目錄 IV
第一章 緒論 1
1-1 引言 1
1-2 石墨烯 2
1-2-1 石墨烯能帶結構 3
1-3 約瑟夫森效應 4
1-4外爾半金屬 5
1-5 Te 7
1-5-1 Te能帶結構 8
1-6 手性磁效應(Chiral magnetic effect, CME) 9
第二章 研究動機與理論文獻介紹和回顧 13
2-1 研究動機 13
2-2 石墨烯文獻回顧 13
2-3 Te文獻回顧 15
第三章 實驗儀器介紹與元件製作 19
3-1 實驗儀器 19
3-1-1 光學顯微鏡(Optical microscope) 19
3-1-2 旋轉塗佈機(Spin coater) 20
3-1-3 電子束微影(E-beam lithography, EBL) 20
3-1-4 金屬鍍膜系統 21
3-1-5 低溫電性磁阻量測系統 24
3-1-5-1 低溫磁阻系統 25
3-1-5-2 訊號控制櫃 28
3-2 石墨烯樣品製備 29
3-2-1 約瑟夫森接面元件設計與製作 30
3-2-2 電極製作 31
3-2-3 約瑟夫森接面元件量測 33
3-3 Te霍爾元件製備 35
3-3-1 Te霍爾元件製作 36
3-3-2 Te霍爾元件量測 37
第四章 結果與討論 38
4-1 約瑟夫森接面元件在光學顯微鏡下的成像 38
4-2 約瑟夫森接面元件電性量測分析 39
4-2-1 Nb電性量測分析 39
4-2-2 Bi-Nb電性量測分析 41
4-2-3 Bi-Nb-Au電性量測分析 43
4-2-4 約瑟夫森接面元件電性量測分析 45
4-3 Te霍爾元件在光學顯微鏡下的成像 48
4-4 Te霍爾元件電性量測分析 49
4-4-1 Te霍爾元件DC電性量測分析 49
4-3-2 Te霍爾元件AC電性量測分析 51
第五章 結論 61
參考文獻 62
附錄 65
蒸鍍機操作流程(以鍍10 nm Ti/ 100 nm Al為例) 65
AFM操作流程 73
黃光製程與利用AZ5214E反轉操作流程 76
黃光製程(正光阻) 76
利用AZ5214E反轉(負光阻) 77


[1] Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S. K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain and Y. L. Chen, Science. 343, 864 (2014).
[2] Y. Ando, J. Phys. Soc. Jpn. 82, 102001 (2013).
[3] R. Juneja, R. Shinde and A. K. Singh, J. Phys. Chem. Lett. 2202 (2018).
[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science. 306, 666 (2004).
[5] R. F. Service, Science. 324, 875 (2009).
[6] H. W. Zhu, Z. P. Xu, D. Xie and Y, Fang, (2017). Graphene: fabrication, characterizations, properties and applications. China: Tsing Hua University Press
[7] F. Bloch, Phys. Rev. Lett. 21, 1241 (1968).
[8] W. C. Stewart, Appl. Phys. Lett. 12, 277 (1968).
[9] 李偉立,拓樸材料新世界。
https://www.phys.sinica.edu.tw/files/file20201006042952pm_physBimonthly_WeiLiLee.pdf
[10] N. P. Armitage, E. J. Mele and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).
[11] S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele and A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).
[12] H. B. Nielsen and M. Ninomiya, Phys. Lett. B. 130, 389 (1983).
[13] J. F. Oliveira, M. B. Fontes, M. Moutinho, S. E. Rowley, E. B- Saitovitch, M. B. S. Neto and C. Enderlein, Communications Materials. 2, 1 (2021).
[14] L. A. Ba, M. Doering, V. Jamier and C. Jacob, Org. Biomol. Chem. 8, 4203 (2010).
[15] J. W. Liu, J. H. Zhu, C. L. Zhang, H. W. Yu and S. H. Liang, J. Am. Chem. Soc. 132, 8945 (2010).
[16] H. Peng, N. Kioussis and G. J. Snyder, Phys. Rev. B. 89, 195206 (2014).
[17] L. A. Agapito, N. Kioussis, W. A. Goddard III and N. P. Ong. Phys. Rev. Lett. 110, 176401 (2013).
[18] M. Hirayama, R. Okugawa, S. Ishibashi, S. Murakami and T. Miyake, Phys. Rev. Lett. 114, 206401 (2015).
[19] N. Zhang, G. Zhao, L. Li, P. D. Wang, L. Xie, B. Cheng, H. Li, Z. Y. Lin, C. Y. Xi, J. Z. Ke, M. Yang, J. Q. He, Z. Sun, Z. F. Wang, Z. Y. Zhang and C. G. Zeng, Proceedings of the National Academy of Sciences. 117, 11337 (2020)
[20] T. Furukawa, Y. Watanabe, N. Ogasawara, K. Kobayashi and T. Itou, Phys. Rev. Research 3, 023111 (2021)
[21] K. Fukushima, D. E. Kharzeev and H. J. Warringa, Phys. Rev. D. 78, 074033 (2008).
[22] Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu and T. Valla, Nature Physics. 12, 550 (2016).
[23] S. L. Adler, Phys. Rev. 177, 2426 (1969).
[24] J. S. Bell and R. Jackiw, Il Nuovo Cimento A (1965~1970). 60, 47 (1969).
[25] D. T. Son and B. Z. Spivak, Phys. Rev. B 88, 104412 (2013).
[26] A. A. Burkov, Phys. Rev. Lett. 113, 247203 (2014).
[27] V. R. Coluci, S. F. Braga, S. B. Legoas, D. S. Galvão and R. H. Baughman, Phys. Rev. B. 68, 035430 (2003).
[28] X. Du, I. Skachko and E. Y. Andrei, Phys. Rev. B. 77, 184507 (2008).
[29] C. Niu, G. Qiu, Y. X. Wang, Z. C. Zhang, M. W. Si, W. Z. Wu and P. D. Ye, Phys. Rev. B. 101, 205414 (2020).
[30] C. Niu, G. Qiu, Y. X. Wang, M. W. Si, W. Z. Wu and P. D. Ye, Nano Lett, 21, 7527 (2021).
[31] V. Novotny and P. P. M. Meincke, Journal of Low Temperature Physics 18, 147 (1975)

電子全文 電子全文(網際網路公開日期:20250710)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊