跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 11:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃文顥
研究生(外文):HUANG,WEN-HAO
論文名稱:液壓閥閥芯尺寸影響分析研究
論文名稱(外文):Study of a Hydraulic Valve Spool Structure
指導教授:范憶華
指導教授(外文):FAN,YI-HUA
口試委員:陳冠宇范振朝范憶華
口試委員(外文):CHEN,GUAN-YUFAN,ZHEN-CHAOFAN,YI-HUA
口試日期:2022-01-21
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:56
中文關鍵詞:液壓閥輸出性能液壓系統氣蝕現象閥芯結構
外文關鍵詞:Hydraulic valvethe output performancethe hydraulic systemcavitation phenomenonspool of valve structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究模擬液壓閥靜態特性及進行實驗驗證,並分析改變閥體結構尺寸等設計參數對於輸出性能的影響,目的在優化液壓閥穩態壓力、穩態所需時間、穩態誤差以及避免產生氣蝕現象,增加液壓閥壽命和穩定性等等,希望優化液壓閥輸出性能,未來應用於各領域液壓系統中。
首先本研究以低壓對液壓閥進行模擬分析,以液壓閥流量公式及液壓閥實驗平台進行實驗,比對後結果顯示與模擬誤差在8%以內,因此模擬設定具有一定可信度,在改變閥芯結構、輸入壓力的情況下,再次進行液壓閥模擬分析。模擬結果顯示, 5、7、9mm三種閥芯桿件直徑變化對於輸出性能並沒有明顯的影響,從模擬結果可以看出,檢測面的壓力、氣蝕的有無、誤差等等,測量出來的數值差異都不大,因此未來建議往節流口結構等其他方向進行研究。
本研究目前進行三種閥芯尺寸模擬,未來能夠以此研究為基礎,通過考慮所有幾何參數的組合,實現最佳化閥芯幾何形狀,做為優化液壓系統、液壓閥閥芯設計參考。未來將能應用於卡車等需使用液壓閥的重型載具上或是需快速並高精度的機具,如液壓鈑金折彎機等機具。

This study simulates the static characteristics of the hydraulic valve and conducts experimental verification, and analyzes the influence of changing the design parameters such as the valve body structure size on the output performance. Corrosion phenomenon, increase the life and stability of hydraulic valves, etc., hope to optimize the output performance of hydraulic valves, and apply them in hydraulic systems in various fields in the future.
First of all, this study simulates and analyzes the hydraulic valve with low pressure, and conducts experiments with the hydraulic valve flow formula and the hydraulic valve experimental platform. After comparison, the results show that the error with the simulation is within 8%. In the case of core structure and input pressure, the hydraulic valve simulation analysis is performed again. The simulation results show that the diameter changes of the 5, 7, and 9mm valve core rods have no obvious influence on the output performance. From the simulation results, it can be seen that the pressure of the detection surface, the presence or absence of cavitation, errors, etc., the measured values The differences are not large, so it is recommended to conduct research in other directions such as the throttle structure in the future.
This study is currently carrying out three spool size simulations. Based on this research in the future, by considering the combination of all geometric parameters, the optimal spool geometry can be realized, which can be used as a reference for optimizing the hydraulic system and hydraulic valve spool design. In the future, it will be able to be applied to trucks and other heavy vehicles that require hydraulic valves, or machines that require fast and high precision, such as hydraulic sheet metal bending machines and other machines.

摘要 I
Abstract II
致謝詞 III
目錄 IV
圖目錄 VI
表目錄 VIII
符號表 IX
第 1 章 緒論 1
1.1 研究背景與動機 1
1.2 研究方法與目的 2
1.3 文獻回顧 2
1.4 論文架構 5
第 2 章 液壓閥的流量-壓力動靜態特性研究 6
2.1 靜態特性研究 6
2.2 動態特性研究 9
第 3 章 數值模擬軟體分析 12
3.1 CFD軟體介紹 12
3.2 幾何與建模 13
3.2.1 液壓閥結構 13
3.2.2 液壓閥流道結構及走向 15
3.3 網格生成 18
3.4 邊界條件 20
3.5 模擬結果與公式驗證 21
第 4 章 實驗平台設計與實驗配置 23
4.1 實驗平台架構 23
4.1.1 幫浦、馬達 25
4.1.2 液壓閥 26
4.2 實驗結果 27
第 5 章 閥芯參數變化對輸出性能影響分析 28
5.1 輸出性能 28
5.2 閥芯結構 29
5.3 模擬結果 31
第 6 章 結論及未來展望 35
6.1 結論 35
6.2 未來展望 35
參考文獻 36
附錄 39



圖目錄
圖 1零開口液壓閥計算簡圖 6
圖 2變換節流口形式研究規劃 8
圖 3管流動態推導示意圖 9
圖 4液壓閥上視圖 13
圖 5液壓閥結構圖 13
圖 6液壓閥閥芯 14
圖 7液壓閥流道結構圖 15
圖 8液壓閥流道前視圖 16
圖 9節流口油路走向示意圖 17
圖 10不同網格尺寸下壓力檢測面的靜壓與時間關係圖 18
圖 11 模擬下閥開度與輸出端壓力之關係圖 21
圖 12液壓閥壓力特性曲線[27] 22
圖 13實驗平台簡圖 23
圖 14實體組裝圖 24
圖 15幫浦及馬達 25
圖 16電磁閥 26
圖 17 實驗下閥開度與輸出端壓力之關係圖 27
圖 18 模擬與實驗的閥開度與輸出端壓力之關係比較圖 27
圖 19節流口閥芯(閥芯直徑)示意圖 29
圖 20節流口閥芯(閥芯直徑)頗面圖 30
圖 21三種閥芯尺寸的閥開度與輸出端壓力之關係圖 31
圖 22紅色圈選處為模擬檢測面 39
圖 23節流口閥芯 39
圖 24液壓閥壓力模擬圖(開度5%) 39
圖 25液壓閥壓力模擬圖(開度10%) 39
圖 26液壓閥壓力模擬圖(開度15%) 40
圖 27液壓閥壓力模擬圖(開度20%) 40
圖 28紅色圈選處為模擬檢測面 41
圖 29節流口閥芯 41
圖 30液壓閥壓力模擬圖(開度5%) 41
圖 31液壓閥壓力模擬圖(開度10%) 41
圖 32液壓閥壓力模擬圖(開度15%) 42
圖 33液壓閥壓力模擬圖(開度20%) 42
圖 34紅色圈選處為模擬檢測面 43
圖 35節流口閥芯 43
圖 36液壓閥壓力模擬圖(開度5%) 43
圖 37液壓閥壓力模擬圖(開度10%) 43
圖 38液壓閥壓力模擬圖(開度15%) 44
圖 39液壓閥壓力模擬圖(開度20%) 44
圖 40紅色圈選處為模擬檢測面 45
圖 41節流口閥芯 45
圖 42液壓閥壓力模擬圖(開度5%) 45
圖 43液壓閥壓力模擬圖(開度10%) 45
圖 44液壓閥壓力模擬圖(開度15%) 46
圖 45液壓閥壓力模擬圖(開度20%) 46




表目錄
表 1 CFD網格設定表 18
表 2 邊界條件設定表 20
表 3四種閥開度流量係數表 22
表 4各閥芯桿件尺寸在四種閥開度下達到穩態所需時間 31
表 5各閥芯桿件尺寸在四種閥開度下的平均壓力 32
表 6各閥芯桿件尺寸在四種閥開度下的穩態誤差 32
表 7各閥芯桿件尺寸在四種閥開度下氣蝕現象的有無 33

[1]黃韋倫, "氣體軸承設計與應用,"機電系, 國立彰化師範大學, 2007.
[2]賴建名, "壓電致動器驅動油壓控制閥設計與控制之研究," 碩士, 機械工程學系, 國立成功大學, 台南市, 2014. [Online]. Available: https://hdl.handle.net/11296/35pmtx
[3]X. Pan, G. Wang, and Z. Lu, "Flow field simulation and a flow model of servo-valve spool valve orifice," Energy Conversion and Management, vol. 52, vol. 10, pp. 3249-3256, 2011/09/01/ 2011, doi: https://doi.org/10.1016/j.enconman.2011.05.010.
[4]Z.-f. Peng, C.-g. Sun, R.-B. Yuan, and P. Zhang, "The CFD analysis of main valve flow field and structural optimization for double-nozzle flapper servo valve," Procedia Engineering, vol. 31, pp. 115-121, 2012/01/01/ 2012, doi: https://doi.org/10.1016/j.proeng.2012.01.1000.
[5]Y. Ye, C.-B. Yin, X.-D. Li, W.-j. Zhou, and F.-f. Yuan, "Effects of groove shape of notch on the flow characteristics of spool valve," Energy Conversion and Management, vol. 86, pp. 1091-1101, 2014/10/01/ 2014, doi: https://doi.org/10.1016/j.enconman.2014.06.081.
[6]阮彥瑜 "具迴授功能的滑閥型提動節流器之研究," 碩士, 機械工程系, 國立雲林科技大學, 雲林縣, 2017.
[7]S. Zhang and S. Li, "Cavity shedding dynamics in a flapper–nozzle pilot stage of an electro-hydraulic servo-valve: Experiments and numerical study," Energy Conversion and Management, vol. 100, pp. 370-379, 2015/08/01/ 2015.
[8]H. Chattopadhyay, A. Kundu, B. K. Saha, and T. Gangopadhyay, "Analysis of flow structure inside a spool type pressure regulating valve," Energy Conversion and Management, vol. 53, vol. 1, pp. 196-204, 2012/01/01/ 2012, doi: https://doi.org/10.1016/j.enconman.2011.08.021.
[9]S. H. Hong and K. W. Kim, "A new type groove for hydraulic spool valve," Tribology International, vol. 103, pp. 629-640, 2016/11/01/ 2016, doi: https://doi.org/10.1016/j.triboint.2016.07.009.
[10]R. Amirante, P. G. Moscatelli, and L. A. Catalano, "Evaluation of the flow forces on a direct (single stage) proportional valve by means of a computational fluid dynamic analysis," Energy Conversion and Management, vol. 48, vol. 3, pp. 942-953, 2007/03/01/ 2007, doi: https://doi.org/10.1016/j.enconman.2006.08.024.
[11]T.-J. Park and Y.-G. Hwang, "Effect of Groove Sectional Shape on the Lubrication Characteristics of Hydraulic Spool Valve," Tribology Online, vol. 5, vol. 5, pp. 239-244, 2010, doi: 10.2474/trol.5.239.
[12]林昆緯, "電液伺服閥之射出速度控制," 碩士, 機械工程系所, 國立屏東科技大學, 屏東縣, 2012.
[13]B. K. Saha, S. Li, and X. Lv, "Analysis of pressure characteristics under laminar and turbulent flow states inside the pilot stage of a deflection flapper servo-valve: Mathematical modeling with CFD study and experimental validation," Chinese Journal of Aeronautics, 2020/02/18/ 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1000936120300340.
[14]M. Li, G. Meng, J. Jing, J. Liu, and Z. Zhong, "Application of Modelica/MWorks on modeling, simulation and optimization for electro-hydraulic servo valve system," Theoretical and Applied Mechanics Letters, vol. 2, vol. 6, p. 063007, 2012/01/01/ 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2095034915301951.
[15]J.-P. Franc, "Physics and control of cavitation," GRENOBLE UNIV (FRANCE), 2006.
[16]F. Avellan, "Introduction to Cavitation in Hydraulic Machinery," 2004. [Online]. Available: https://infoscience.epfl.ch/record/254965/files/2004%20Avellan%20Introduction%20to%20Cavitation%20in%20Hydraulic%20Machinery%206th%20International%20Conference%20on%20Hydraulic%20Machinery%20and%20Hydrodynamics%20Timisoara%20.pdf.
[17]X.-w. Luo, B. Ji, and Y. Tsujimoto, "A review of cavitation in hydraulic machinery," Journal of Hydrodynamics, Ser. B, vol. 28, vol. 3, pp. 335-358, 2016/06/01/ 2016, doi: https://doi.org/10.1016/S1001-6058(16)60638-8.
[18]M. Dular, B. Bachert, B. Stoffel, and B. Širok, "Relationship between cavitation structures and cavitation damage," Wear, vol. 257, vol. 11, pp. 1176-1184, 2004/12/01/ 2004, doi: https://doi.org/10.1016/j.wear.2004.08.004.
[19]J. Katz, "Cavitation phenomena within regions of flow separation," Journal of Fluid Mechanics, vol. 140, pp. 397-436, 1984.
[20]Y. S.-q. a. C. Q.-p. LI Sen-lin, "Research on Cavitation Phenomenon of Non-full-circumference Opening Spool Valve Port Based on Fluent Sliding Grid," 2021.
[21]J. Zou et al., "Cavitation in a non-circular opening spool valve with U-grooves," Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 222, vol. 4, pp. 413-420, 2008.
[22]R. Amirante, E. Distaso, and P. Tamburrano, "Experimental and numerical analysis of cavitation in hydraulic proportional directional valves," Energy Conversion and Management, vol. 87, pp. 208-219, 2014.
[23]Y. Altintaş and A. J. Lane, "Design of an electro-hydraulic CNC press brake," International Journal of Machine Tools and Manufacture, vol. 37, vol. 1, pp. 45-59, 1997/01/01/ 1997, doi: https://doi.org/10.1016/0890-6955(95)00112-3.
[24]S. Company, 2020. [Online]. Available: https://www.shenchong.com/blogs/proportional-valve-works-on-electro-hydraulic-press-brake/#why-proportional-valve-control-of-press-brake-synchronization-is-better.
[25]wassee, "How to Verify Mesh Quality in ANSYS Workbench." [Online]. Available: https://featips.com/2021/05/07/how-to-verify-mesh-quality-in-ansys-workbench/.
[26]R. R. d. S. Bravo, A. T. d. C. Gama, A. A. M. Oliveira, and V. J. De Negri, "Component sizing and sensitivity analysis of design parameters of a hydraulic-pneumatic regenerative braking system for heavy duty vehicles," Energy, vol. 264, p. 126021, 2023/02/01/ 2023, doi: https://doi.org/10.1016/j.energy.2022.126021.
[27]協聚德股份有限公司, 2020. [Online]. Available: http://www.sgdeng.com.tw/.

電子全文 電子全文(網際網路公開日期:20280321)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top