1.周文祥(譯),C-Mold 射出成型模具設計,新文京開發出版有限公司,2008
2.J. E. Martini, F. A. Waldman and N. P. Suh, SPE ANTEC Technical Papers, 28, p. 674 (1982).
3.C. B. Park, N. P. Suh, “Extrusion of microcellular polymers using a rapid pressure drop device”, Society of Plastic Engineers Technical Papers, Vol. 39, pp.1818-1822 (1993).
4.J. S. Colton, N. P. Suh, “Nucleation of Microcellular Foam: Theory and Practice”, Polymer Engineering and Science, Vol.27, No.7, pp.500, (1987).
5.Mohebbi, A. Mehrabani-Zeinabad and M. Navid-Famili, Dynamic behavior of nucleation in supercritical N2 foaming of polystyrene-aluminum oxide nanocomposite, Polymer Science Series A, Vol. 53(11), 1076-1085 (2011).
6.A. T. Balevski, et al., United States Patent 4092385, (1978).
7.M. G. Guergov, et al., United States Patent 5441680, (1995).
8.M. G. Guergov, et al., United States Patent 5716561, (1998).
9.D. M. Bryce, Plastic Injection Molding: Product Design & Material Selection Fundamentals, Society of Manufacturing Engineers, ISBN-13: 978-0872634886 (1997).
10.J. Xu, Microcellular Injection Molding, John Wiley & Sons, Inc., ISBN: 978- 0-470-46612-4 (2010).
11.王昭欽,發泡之原理及其在押出成型加工之應用,工業技術人才培訓計劃講義,財團法人塑膠發展中心,2002。
12.張瑞峯,“利用超臨界流體與螯合劑萃取土壤重金屬之研究”,朝陽科技大學環境工程與管理所碩士論文,(2005)。13.J.B. Hanny, and J. Hogarth, “On the solubility of solids in gases,” Royal Society Proceedings, Vol. 29, pp. 324, (1879).
14.J. E. Martini, N. P. Suh and Waldman, F. A.: US Patent 4473665, (1984).
15.J. S. Colton and N. P. Suh, Polym. Eng. Sci., 27, p. 500, (1987).
16.Trexel, Inc. Web site, http : www.trexel.com.
17.J. Xu and D. Pierick, Microcellular foam processing in reciprocating-screw injection molding machines, Journal of Injection Molding Technology Vol. 5(3), 152-159 (2001).
18.D. E. Pierick, J. R. Anderson and S. W. Cha et al., Injection molding of polymeric material. Patent 6,884,823 B1, U.S.A, (2005).
19.G. Llewelyn, A. Rees and C. A. Griffiths et al., Advances in near net shape polymer manufacturing through microcellular injection moulding. In: K Gupta (ed) Near net shape manufacturing processes, Switzerland: Springer International Publishing, 177-189 (2019).
20.C. Goldsberry, Trexel announces development of new MuCell-focused technical center, (2016, accessed 8th August 2017).
21.C. Wang, K. Cox, and G. A. Campbell, "Microcellular Foam of Polypropylene Containing Low Glass Transition Rubber Particles in an Injection Molding Process", SPE ANTEC Technical Papers, pp. 406, (1995).
22.J. R. Royer, Y. J. Gay, J. M. Desimone, and S. A. Khan, "High-Pressure Rheology of Polystyrene Melts Plasticized with CO2: Experimental Measurement and Predictive Scaling Relationships", Journal of Polymer Science, Part B: Polymer Physics, Vol.8, pp.3168, (2000).
23.Li, D. Z. Liu, B. Han, L. Song, G. Yang and T. Jiang, Polymer, (2002).
24.Zirkel, L., M. Jakob and H. Münstedt, Journal of Supercritical Fluids, (2009).
25.K. T. Okamoto, "Microcellular Processing", Hanser Gardner Publishers (2003).
26.Ramesh, N. S., Rasmussen, D. H. and Campbell, G. A. "Numerical and Experimental Studies of Bubble Growth during the Microcellular Foaming Process", Polymer Engineering and Science, (1991).
27.Ishikawa T, Taki K and Ohshima M., “Visual observation and numerical studies of N2 vs. CO2 foaming behavior in core-back foam injection molding.” Polym Eng Sci 52: 875-883, (2012).
28.Moris Amon and Costel D. Denson, “A Study of the Dynamics of Foam Growth: Analysis of the Growth of Closely Spaced Spherical Bubbles”, Department of Chemical Engineering University of Delaware, (1984).
29.A. Huang, H. Kharbas, T. Ellingham, H.Y. Mi, L.S. Turng, X.F. Peng, Mechanical properties, crystallization characteristics, and foaming behavior of polytetrafluoroethylene-reinforced poly(lactic acid), Polym. Eng. Sci. 57 570-580, (2016).
30.M. Shimbo, D. F. Baldwin and N. P. Suh, “The Viscoelastic Behavior of Microcellular Plastics With Varying Cell Size”, (1995).
31.J. E. Martini, F. A. Waldman and N. P. Suh, "The Production and Analysis of Microcellular Thermoplastic Foam", SPE ANTEC Technical Papers, Vol.28, pp.674, (1982).
32.D. I. Collias, D. G. Baird and R. J. M. Borggreve, "Impact Toughening of Polycarbonate by Microcellular Foaming", Polymer, Vol.25, pp.3978, (1994).
33.D. I. Collias and D. G. Baird, "Tesile Toughness of Microcellular Foams of Polystyrene, Styrene-acrylonitrile Copolymer, and Polycarbonate, and the Effect of Dissolved Gas on the Tensile Toughness of The Same Polymer Matrices and Microcellular Foams", Polymer Engineering and Science, Vol.35, pp.1167, (1995).
34.L. M. Matuana, C. B. Park and J. J. Balatinecz, "Structures and Mechanical Properties of Microcellular Foamed Polyvinyl Chloride", Cellular Polymer, Vol.17, pp.1, (1998).
35.C. B. Park, “Effect of the Pressure Drip Rate on Cell Nucleation in Contiouns Processing of Microcellular Polymers”, (1995).
36.G. L. Wang, G. Q. Zhao, J. C. Wang, L. Zhang, “Research on Formation Mechanisms and Control of External and Inner Bubble Morphology in Microcellular Injection Molding”, (2015).
37.G. Dong, G. Zhao, Y. Guan, “Influence of relative low gas counter pressure on melt foaming behavior and surface quality of molded parts in microcellular injection molding process.”, (2014).
38.F. A. Shutov, G. Henrici-Olive and S. Olive, Injection molding: gas counter pressure process. In: G Henrici-Olive and S Olive (eds) Integral/structural polymer foams: technology, properties and applications, Berlin, Heidelberg: Springer, 71-80 (1986).
39.A. K. Bledzki, H. Kirschling and G. Steinbichler et al., Polycarbonate microfoams with a smooth surface and higher notched impact strength, Journal of Cellular Plastics, Vol. 40, 489-496 (2004).
40.A. K. Bledzki, M. Rohleder and H. Kirschling et al., Microcellular polycarbonate with improved notched impact strength produced by injection moulding with physical blowing agent, Journal of Cellular Plastics, Vol. 27, 327-345 (2008).
41.S. C. Chen, P. S. Hsu and S. S. Hwang, The effects of gas counter pressure and mold temperature variation on the surface quality and morphology of the microcellular polystyrene foams, Journal of Applied Polymer Science, Vol. 127, 4769-4776 (2013).
42.S. C. Chen, P. S. Hsu and Y. W. Lin, Establishment of gas counter pressure technology and its application to improve the surface quality of microcellular injection molded parts, Journal of the Polymer Processing Society, Vol. 26, 275-282 (2011).
43.許評順,模內氣體反壓與動態模溫機制應用於超臨界微細發泡射出成型發泡控制與表面品質影響之研究,私立中原大學博士論文,2011。44.蕭宇倫,模內氣體反壓與動態模溫協同控制系統應用於超臨界微細發泡射出成型發泡控制及產品機械性質之研究,私立中原大學碩士論文,2011。45.J. W. S. Lee, R. E. Lee and J. Wang et al., Study of the foaming mechanisms associated with gas counter pressure and mold opening using the pressure profiles, Chemical Engineering Science, Vol. 167, 105-119 (2017).
46.張哲維,氣體反壓應用於提升超臨界微細發泡射出成型皮層發泡密度之研究,私立中原大學博士論文,2021。47.黃柏凱,超臨界微細發泡成型製程參數對成品之極限減重及重量穩定性之探討,私立中原大學碩士論文,202248.C. A. Villamizar and C. D. Han, Studies on structural foam processing. II. Bubble dynamics in foam injection molding, Polym. Eng. Sci. 18, p. 699, (1978).
49.R. J. Koopmans, J. C. F. D. Doelder and A. N. Paquet, “Modeling Foam Growth in Thermoplastics”, Advanced Materials, No. 23, pp. 1873-1880, (2000).
50.C. D. Han and H. J. Yoo, ''Studies on structural foam processing. Part IV: Bubble growth during molding filling,'' Polym. Eng. Sci. 21, 518-533, (1981).
51.吳舜英,徐敬一,“塑膠發泡成形技術”,高分子工業雜誌社,(2001)
52.Park, C. B. and Suh, N. P., “Filamentary Extrusion of Microcellular Polymers Using a Rapid Decompressive Element”, Polymer Engineering and Science, Vol. 36, No. 1, pp. 34-48, (1996).
53.M. Amon and C. D. Denson, ‘‘A study of the dynamics of foam growth: analysis of the growth of closely spaced spherical bubbles”, Polym. Eng. Sci. 24, pp. 1026-1034, (1984).
54.P. S. Epstein and M. S. Plesset, “On the stability of gas bubbles in liquid-gas solutions”, J. Chem. Phys. 18, pp. 1505-1509, (1950).
55.Hasan, MM, Li YG, Li G, Park CB, Chen P, Simha. R, J Chem Eng Data, 55, 4885-4895, (2010).
56.Park CB, Behravesh AH, Venter RD, Polym Eng Sci, 38, 1812-1213, (1998).
57.“Technical Data Sheet”, Lcy Chemical Corporation, (2022).