跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/05 03:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳瀚宇
研究生(外文):CHEN, HAN-YU
論文名稱:探討厚度幾何對超臨界微細發泡產品減重的影響及應用氣體反壓改善表面品質
論文名稱(外文):Discussion on the effect of thickness geometry on weight reduction of Supercritical Micro-foamed products and application of gas counter pressure to improve surface quality
指導教授:陳夏宗陳夏宗引用關係
指導教授(外文):CHEN,SHIA-CHUNG
口試委員:鄭年添張詠翔
口試委員(外文):CHENG, NIEN-TIENCHANG, YUNG-HSIANG
口試日期:2023-07-25
學位類別:碩士
校院名稱:中原大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:99
中文關鍵詞:超臨界微細發泡氣體反壓減重光澤度
外文關鍵詞:Microcellular (MuCell)Gas Counter Pressure (GCP)Weight ReductionGloss
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
塑膠產品已是生活中不可或缺的必需品,根據經濟部統計處,台灣塑膠製品製造業近十年皆有3至4億的生產價值,其中射出成型為塑膠製品量產的主要方式之一,且因應ESG概念成為評估一間企業經營的指標,減碳概念已成為製造商能否外銷國際市場的必要條件,因此超臨界微細發泡射出成型(Microcellular Injection Molding, MuCell®)技術,其所賦予產品輕量化的特性將是一個可應用的解答。根據過往的研究,MuCell®產品仍有些許待優化的缺陷與研究的價值。以往研究都集中於探討製程因子(如:模溫、料溫、背壓、轉速、射速等)對產品減重效益之影響,而本研究主要探討產品厚度幾何是否也會影響減重效益。此外,也針對MuCell®產品較差的表面光澤問題,透過氣體反壓控制技術(Gas Counter Pressure, GCP)進行優化,期望生產出較具光澤的產品表面品質。
研究結果證實,在固定制程參數的邊界條件下,產品厚度幾何的改變確實會影響產品減重的效果,即便是在合理參數範圍內,大程度地補償較薄幾何組別因熱傳性質形成的差異。另外,導入GCP後的MuCell®產品,較厚的產品減重程度可再提升外,其表面也如預期地擁有了更具光澤的表面。
Plastic products have become an indispensable necessity in life. According to the Census and Statistics Department of the Ministry of Economic Affairs, Taiwan's plastic product manufacturing industry has had a production value of 300-400 million dollars in the past ten years, of which injection molding is one of the main methods of mass production of plastic products, and since the ESG concept has become an indicator for evaluating the operation of an enterprise, and the concept of reducing carbon emissions has become a necessary condition for manufacturers to be able to sell to the international market, the supercritical Microcellular Injection Molding (MuCell®) technology, which gives products lightweight characteristics, will be an applicable answer. Based on previous studies, MuCell® products still have some shortcomings that need to be optimized and are worth investigating. Previous studies have focused on the effects of process factors (e.g., mold temperature, material temperature, back pressure, rotational speed, injection speed, etc.) on the weight reduction of the product, while this study focuses on whether the thickness geometry of the product also affects the weight reduction. In addition, the poor surface gloss of MuCell® products was optimized by Gas Counter Pressure (GCP) to produce a more glossy surface quality.
The results of the study confirmed that changes in the thickness geometry of the product can indeed affect the weight reduction of the product under the boundary conditions of fixed process parameters, even within a reasonable range of parameters that compensates to a large extent for the differences in the heat transfer properties of the thinner geometrical groups. In addition, with the introduction of GCP into MuCell® products, the weight reduction of thicker products can be further increased, and their surfaces have a more glossy finish as expected.
目錄
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 前言 1
1.2 傳統射出成型製程 2
1.2.1 塑化 2
1.2.2 充填 2
1.2.3 保壓 3
1.2.4 冷卻 3
1.2.5 頂出 3
1.3 超臨界微細發泡成型(MuCell®) 4
1.4 氣體反壓控制技術(Gas Counter Pressure, GCP) 6
1.5 文獻回顧 10
1.5.1 超臨界微細發泡成型技術 10
1.5.2 氣體反壓控制技術 14
1.6 動機與目的 19
1.7 本文架構 20
第二章 實驗理論 22
2.1 氣體擴散成長方程式 22
2.2 流體動力成長方程式 29
2.3 超臨界流體(SCF)含量的影響 33
2.4 壓力的影響 34
2.5 溫度的影響 35
第三章 實驗設備與方法 39
3.1 實驗材料 39
3.1.1 高分子材料 39
3.1.2 超臨界流體 41
3.2 實驗設備 42
3.2.1 超臨界微細發泡射出成型機 42
3.2.2 超臨界流體產生器 46
3.2.3 氣體反壓控制設備 47
3.2.4 實驗模具 49
3.2.5 模具溫度控制機 51
3.3 量測設備 51
3.3.1 電子天秤儀 51
3.3.2 溫度感測器 53
3.3.3 掃描式電子顯微鏡 55
3.3.4 光澤計 57
3.4 實驗方法 58
3.5 量測方法 60
第四章 結果與討論 62
4.1 厚度改變對減重效益的影響 62
4.2 氣體反壓控制技術(GCP)對不同厚度產品的影響 69
4.2.1 對減重效益的影響 69
4.2.2 對表面光澤的影響 75
結論與未來展望 79
5.1 結論 79
5.2 未來展望 80
參考文獻 82

圖目錄
圖 1 1 射出成型製程主要五個階段[1] 4
圖 1 2超臨界流體(CO2 SCF狀態圖) 7
圖 1 3 MuCell 技術之發泡(From Trexel) 8
圖 1 4傳統與MuCell®製程週期比較表 8
圖 1 5 MuCell®製程步驟 (From Trexel) 9
圖 1 6超臨界流體發泡步驟 (From GreenMolding) 9
圖 1 7噴泉流動 10
圖 1 8 GCP控制流程圖 10
圖 1 9 往復式螺桿微細發泡射出機 16
圖 1 10 N2與CO2之發泡效果比較 (From Trexel) 17
圖 1 11充填階段氮氣與二氧化碳的飽和壓力變化比較圖 18
圖 1 12泡體聚併形成通孔的過程 18
圖 1 13傳統成型與MIM+GCP成型泡體控制 (A)持壓時間0s (B)持壓時間3s (C)持壓時間10s [42] 19
圖 2 1恆溫條件下單顆氣泡在方形模穴內的成長行為示意圖 29
圖 2 2氣泡核單元模型 32
圖 3 1塑膠回收編號(來源:台灣環保署) 40
圖 3 2富強鑫 HT-150SV-MuCell 43
圖 3 3超臨界流體注入器 43
圖 3 4可閉式噴嘴 43
圖 3 5 MuCell®專用螺桿 44
圖 3 6 GEFRAN MN1系列熔體壓力感測器 44
圖 3 7 Trexel T-100超臨界流體產生器 46
圖 3 8 T-100 SCF進氣能力 47
圖 3 9 氣體增壓機 48
圖 3 10 模內壓力感測器 48
圖 3 11 不同厚度的長平板 49
圖 3 12 冷卻水路配置與產品幾何尺寸 50
圖 3 13 橘色O型環(公模側) 50
圖 3 14 JSW-4018E模具溫度控制機 51
圖 3 15 電子天秤儀 52
圖 3 16 溫度感測器 53
圖 3 17 掃描式電子顯微鏡S-3000N 55
圖 3 18 鍍金機E-1010 56
圖 3 19 三角度光澤計 57
圖 3 20 測試極限減重的流程 59
圖 3 21 實驗流程圖 60
圖 3 22 長平板泡體量測位置示意圖 61
圖 4 1 4mm與2mm組別的極限減重程度差異 63
圖 4 2 4mm與2mm組別長平板截面SEM圖 64
圖 4 3 2mm高模溫與高料溫補充組別長平板截面SEM圖 66
圖 4 4 2mm高模溫、料溫補充組別長平板截面SEM圖 66
圖 4 5 2mm固定參數組別與補充組別的極限減重程度差異 67
圖 4 6 2mm高模溫、料溫補充組別導以GCP改善泡體聚併 68
圖 4 7 4mm未導入與導入GCP組別的極限減重程度差異 71
圖 4 8 2mm未導入與導入GCP組別的極限減重程度差異 71
圖 4 9 4mm未導入與導入GCP組別長平板截面SEM圖 72
圖 4 10 2mm未導入與導入GCP組別長平板截面SEM圖 72
圖 4 11 4mm組別光澤度變化 78
圖 4 12 2mm組別光澤度變化 78

表目錄
表 1 1超臨界溫度(Tcr)及壓力(Pcr)比較表[25] 7
表 2 1 超臨界流體於不同高分子之溶解度(二氧化碳與氮氣) 38
表 3 1 PP-7533物性表 41
表 3 2 氮氣之物性表 41
表 3 3 GEFRAN MN1 熔體壓力感測器規格表 44
表 3 4 超臨界微細發泡射出成型機規格表 45
表 3 5 Trexel T-100規格 47
表 3 6 HZK-FA110規格 52
表 3 7 溫度感測器規格 53
表 3 8 掃描式電子顯微鏡S-3000N規格 56
表 3 9 鍍金機E-1010規格 56
表 3 10 固定參數(純料即未減重組別) 58
表 3 11 補充組別 59
表 3 12 GCP實驗參數 59
表 4 1 4mm組別長平板實驗數據 73
表 4 2 2mm組別長平板實驗數據 73
表 4 3 推測4mm組別泡體所佔體積 74
表 4 4 推測2mm組別泡體所佔體積 74
表 4 5 4mm組別長平板的光澤度比較表(單位:GU) 77
表 4 6 2mm組別長平板的光澤度比較表(單位:GU) 77

1.周文祥(譯),C-Mold 射出成型模具設計,新文京開發出版有限公司,2008
2.J. E. Martini, F. A. Waldman and N. P. Suh, SPE ANTEC Technical Papers, 28, p. 674 (1982).
3.C. B. Park, N. P. Suh, “Extrusion of microcellular polymers using a rapid pressure drop device”, Society of Plastic Engineers Technical Papers, Vol. 39, pp.1818-1822 (1993).
4.J. S. Colton, N. P. Suh, “Nucleation of Microcellular Foam: Theory and Practice”, Polymer Engineering and Science, Vol.27, No.7, pp.500, (1987).
5.Mohebbi, A. Mehrabani-Zeinabad and M. Navid-Famili, Dynamic behavior of nucleation in supercritical N2 foaming of polystyrene-aluminum oxide nanocomposite, Polymer Science Series A, Vol. 53(11), 1076-1085 (2011).
6.A. T. Balevski, et al., United States Patent 4092385, (1978).
7.M. G. Guergov, et al., United States Patent 5441680, (1995).
8.M. G. Guergov, et al., United States Patent 5716561, (1998).
9.D. M. Bryce, Plastic Injection Molding: Product Design & Material Selection Fundamentals, Society of Manufacturing Engineers, ISBN-13: 978-0872634886 (1997).
10.J. Xu, Microcellular Injection Molding, John Wiley & Sons, Inc., ISBN: 978- 0-470-46612-4 (2010).
11.王昭欽,發泡之原理及其在押出成型加工之應用,工業技術人才培訓計劃講義,財團法人塑膠發展中心,2002。
12.張瑞峯,“利用超臨界流體與螯合劑萃取土壤重金屬之研究”,朝陽科技大學環境工程與管理所碩士論文,(2005)。
13.J.B. Hanny, and J. Hogarth, “On the solubility of solids in gases,” Royal Society Proceedings, Vol. 29, pp. 324, (1879).
14.J. E. Martini, N. P. Suh and Waldman, F. A.: US Patent 4473665, (1984).
15.J. S. Colton and N. P. Suh, Polym. Eng. Sci., 27, p. 500, (1987).
16.Trexel, Inc. Web site, http : www.trexel.com.
17.J. Xu and D. Pierick, Microcellular foam processing in reciprocating-screw injection molding machines, Journal of Injection Molding Technology Vol. 5(3), 152-159 (2001).
18.D. E. Pierick, J. R. Anderson and S. W. Cha et al., Injection molding of polymeric material. Patent 6,884,823 B1, U.S.A, (2005).
19.G. Llewelyn, A. Rees and C. A. Griffiths et al., Advances in near net shape polymer manufacturing through microcellular injection moulding. In: K Gupta (ed) Near net shape manufacturing processes, Switzerland: Springer International Publishing, 177-189 (2019).
20.C. Goldsberry, Trexel announces development of new MuCell-focused technical center, (2016, accessed 8th August 2017).
21.C. Wang, K. Cox, and G. A. Campbell, "Microcellular Foam of Polypropylene Containing Low Glass Transition Rubber Particles in an Injection Molding Process", SPE ANTEC Technical Papers, pp. 406, (1995).
22.J. R. Royer, Y. J. Gay, J. M. Desimone, and S. A. Khan, "High-Pressure Rheology of Polystyrene Melts Plasticized with CO2: Experimental Measurement and Predictive Scaling Relationships", Journal of Polymer Science, Part B: Polymer Physics, Vol.8, pp.3168, (2000).
23.Li, D. Z. Liu, B. Han, L. Song, G. Yang and T. Jiang, Polymer, (2002).
24.Zirkel, L., M. Jakob and H. Münstedt, Journal of Supercritical Fluids, (2009).
25.K. T. Okamoto, "Microcellular Processing", Hanser Gardner Publishers (2003).
26.Ramesh, N. S., Rasmussen, D. H. and Campbell, G. A. "Numerical and Experimental Studies of Bubble Growth during the Microcellular Foaming Process", Polymer Engineering and Science, (1991).
27.Ishikawa T, Taki K and Ohshima M., “Visual observation and numerical studies of N2 vs. CO2 foaming behavior in core-back foam injection molding.” Polym Eng Sci 52: 875-883, (2012).
28.Moris Amon and Costel D. Denson, “A Study of the Dynamics of Foam Growth: Analysis of the Growth of Closely Spaced Spherical Bubbles”, Department of Chemical Engineering University of Delaware, (1984).
29.A. Huang, H. Kharbas, T. Ellingham, H.Y. Mi, L.S. Turng, X.F. Peng, Mechanical properties, crystallization characteristics, and foaming behavior of polytetrafluoroethylene-reinforced poly(lactic acid), Polym. Eng. Sci. 57 570-580, (2016).
30.M. Shimbo, D. F. Baldwin and N. P. Suh, “The Viscoelastic Behavior of Microcellular Plastics With Varying Cell Size”, (1995).
31.J. E. Martini, F. A. Waldman and N. P. Suh, "The Production and Analysis of Microcellular Thermoplastic Foam", SPE ANTEC Technical Papers, Vol.28, pp.674, (1982).
32.D. I. Collias, D. G. Baird and R. J. M. Borggreve, "Impact Toughening of Polycarbonate by Microcellular Foaming", Polymer, Vol.25, pp.3978, (1994).
33.D. I. Collias and D. G. Baird, "Tesile Toughness of Microcellular Foams of Polystyrene, Styrene-acrylonitrile Copolymer, and Polycarbonate, and the Effect of Dissolved Gas on the Tensile Toughness of The Same Polymer Matrices and Microcellular Foams", Polymer Engineering and Science, Vol.35, pp.1167, (1995).
34.L. M. Matuana, C. B. Park and J. J. Balatinecz, "Structures and Mechanical Properties of Microcellular Foamed Polyvinyl Chloride", Cellular Polymer, Vol.17, pp.1, (1998).
35.C. B. Park, “Effect of the Pressure Drip Rate on Cell Nucleation in Contiouns Processing of Microcellular Polymers”, (1995).
36.G. L. Wang, G. Q. Zhao, J. C. Wang, L. Zhang, “Research on Formation Mechanisms and Control of External and Inner Bubble Morphology in Microcellular Injection Molding”, (2015).
37.G. Dong, G. Zhao, Y. Guan, “Influence of relative low gas counter pressure on melt foaming behavior and surface quality of molded parts in microcellular injection molding process.”, (2014).
38.F. A. Shutov, G. Henrici-Olive and S. Olive, Injection molding: gas counter pressure process. In: G Henrici-Olive and S Olive (eds) Integral/structural polymer foams: technology, properties and applications, Berlin, Heidelberg: Springer, 71-80 (1986).
39.A. K. Bledzki, H. Kirschling and G. Steinbichler et al., Polycarbonate microfoams with a smooth surface and higher notched impact strength, Journal of Cellular Plastics, Vol. 40, 489-496 (2004).
40.A. K. Bledzki, M. Rohleder and H. Kirschling et al., Microcellular polycarbonate with improved notched impact strength produced by injection moulding with physical blowing agent, Journal of Cellular Plastics, Vol. 27, 327-345 (2008).
41.S. C. Chen, P. S. Hsu and S. S. Hwang, The effects of gas counter pressure and mold temperature variation on the surface quality and morphology of the microcellular polystyrene foams, Journal of Applied Polymer Science, Vol. 127, 4769-4776 (2013).
42.S. C. Chen, P. S. Hsu and Y. W. Lin, Establishment of gas counter pressure technology and its application to improve the surface quality of microcellular injection molded parts, Journal of the Polymer Processing Society, Vol. 26, 275-282 (2011).
43.許評順,模內氣體反壓與動態模溫機制應用於超臨界微細發泡射出成型發泡控制與表面品質影響之研究,私立中原大學博士論文,2011。
44.蕭宇倫,模內氣體反壓與動態模溫協同控制系統應用於超臨界微細發泡射出成型發泡控制及產品機械性質之研究,私立中原大學碩士論文,2011。
45.J. W. S. Lee, R. E. Lee and J. Wang et al., Study of the foaming mechanisms associated with gas counter pressure and mold opening using the pressure profiles, Chemical Engineering Science, Vol. 167, 105-119 (2017).
46.張哲維,氣體反壓應用於提升超臨界微細發泡射出成型皮層發泡密度之研究,私立中原大學博士論文,2021。
47.黃柏凱,超臨界微細發泡成型製程參數對成品之極限減重及重量穩定性之探討,私立中原大學碩士論文,2022
48.C. A. Villamizar and C. D. Han, Studies on structural foam processing. II. Bubble dynamics in foam injection molding, Polym. Eng. Sci. 18, p. 699, (1978).
49.R. J. Koopmans, J. C. F. D. Doelder and A. N. Paquet, “Modeling Foam Growth in Thermoplastics”, Advanced Materials, No. 23, pp. 1873-1880, (2000).
50.C. D. Han and H. J. Yoo, ''Studies on structural foam processing. Part IV: Bubble growth during molding filling,'' Polym. Eng. Sci. 21, 518-533, (1981).
51.吳舜英,徐敬一,“塑膠發泡成形技術”,高分子工業雜誌社,(2001)
52.Park, C. B. and Suh, N. P., “Filamentary Extrusion of Microcellular Polymers Using a Rapid Decompressive Element”, Polymer Engineering and Science, Vol. 36, No. 1, pp. 34-48, (1996).
53.M. Amon and C. D. Denson, ‘‘A study of the dynamics of foam growth: analysis of the growth of closely spaced spherical bubbles”, Polym. Eng. Sci. 24, pp. 1026-1034, (1984).
54.P. S. Epstein and M. S. Plesset, “On the stability of gas bubbles in liquid-gas solutions”, J. Chem. Phys. 18, pp. 1505-1509, (1950).
55.Hasan, MM, Li YG, Li G, Park CB, Chen P, Simha. R, J Chem Eng Data, 55, 4885-4895, (2010).
56.Park CB, Behravesh AH, Venter RD, Polym Eng Sci, 38, 1812-1213, (1998).
57.“Technical Data Sheet”, Lcy Chemical Corporation, (2022).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊