跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/04 01:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏佑
研究生(外文):Chen, Bo-You
論文名稱:透明石墨烯/聚胺酯複合材料製備之應用與探討
論文名稱(外文):Application and Investigation of Transparent Graphene/Polyurethane Composite.
指導教授:石燕鳳石燕鳳引用關係
指導教授(外文):Shih, Yeng-Fong
口試委員:莊宗原石燕鳳林美靜
口試委員(外文):Juang, Tzong-YuanShih, Yeng-FongLin, Mei-Ching
口試日期:2023-07-19
學位類別:碩士
校院名稱:朝陽科技大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:72
中文關鍵詞:水性聚胺酯石墨烯透明度電磁遮蔽
外文關鍵詞:Water-base polyurethanegraphenetransparencyelectromagnetic shielding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:61
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在探討不同含量的單層石墨烯及多層石墨烯對於水性聚胺酯的外觀、熱性能、親水性、機械性質和電磁遮蔽性能等之影響,以及其應用範疇。在穿透度分析發現,單層石墨烯(GYC)添加到1 wt%也幾乎不會影響水性聚胺酯的透明度,在可見光範圍能保持極高的穿透率。而添加多層石墨烯(TG)表現出較低的光學透過率,尤其在250 nm至 450 nm的範圍內表現出極低的穿透率。熱性能方面,添加石墨烯可以提升水性聚胺酯的導熱係數和殘炭量,從而增強了其阻燃性。在電阻方面,添加GYC的聚胺酯複合材料由於分散性較好而表現出較低的電阻,從原先的5.63x1012Ω/sq降低至1.64 x108Ω/sq。電磁遮蔽的測試中表明,兩種石墨烯聚胺酯複合材料都表現出一定的遮蔽能力,尤其添加2wt% GYC後,電磁遮蔽能力從原先的2.25dB提升至30.8dB。在機械性能測試中,添加GYC的聚胺酯複合材料表現出了接近聚胺酯的強度,添加TG的聚胺酯複合材料則表現出比聚胺酯更高的抗張強度。在溼度測試時,發現添加GYC的聚胺酯複合材料,在溼度提升時可見光穿透度會逐漸降低,電阻則是降低至1.64 x108Ω/sq,此種特性有機會應用於對於濕度敏感的儀器或場所之濕度檢測。
The purpose of this study is to investigate the effects of different contents of single-layer graphene (GYC) and multilayer graphene (TG) on the appearance, thermal properties, hydrophilicity, mechanical properties, and electromagnetic shielding performance of waterborne polyurethane (WPU), as well as their application scope. In the transparency analysis, it was found that the addition of single-layer graphene (GYC) at 1 wt% does not significantly affect the transparency of WPU, and it maintains high transmittance in the visible light range. On the other hand, the addition of multilayer graphene (TG) shows lower optical transmittance, especially exhibiting extremely low transmittance in the range of 250 nm to 450 nm. Regarding thermal performance, the addition of graphene can enhance the thermal conductivity and char yield of WPU, thereby improving its flame retardancy. In terms of electrical resistance, the polyurethane composites with GYC added showed lower electrical resistance due to better dispersion, which decreased from the original 5.63x1012Ω/sq to 1.98x108Ω/sq. The electromagnetic shielding test shows that both graphene polyurethane composites have a certain shielding ability, especially after adding 2 wt% GYC, the electromagnetic shielding ability is increased from the original 2.25dB to 30.8dB. In the mechanical property test, the PU composites with added GYC show strength similar to that of pure PU, while the PU composites with added TG exhibit higher tensile strength than pure PU. In the humidity test, it was observed that the PU composites with added GYC gradually decrease in transparency and the resistance decreases to 1.64 x108 Ω/sq as the humidity increases. Such characteristics could potentially be applied in humidity detection for humidity-sensitive instruments or environments.
摘要.......I
Abstract.......II
致謝.......IV
目錄.......V
圖目錄.......VIII
表目錄.......XII
第一章 緒論.......1
1.1 前言.......1
1.2 透明導電材料之簡介.......2
1.2-1 透明導電薄膜定義.......3
1.2-2 透明導電材料之應用.......4
1.3 水性聚胺酯介紹.......5
1.4 石墨烯簡介.......8
1.4-1 石墨烯的製備方法.......10
1.4-2 石墨烯的應用.......13
1.4-3 太陽能電池.......14
1.4-4 EMI(ElectroMagnetic Interference)遮蔽材料.......16
2.1 文獻回顧.......20
2.1-1 大尺寸氧化石墨烯/聚胺酯奈米複合材料.......20
2.1-2 石墨烯/聚胺酯複合材料之導電性.......22
2.1-3 石墨烯含量對於導電性的影響.......24
2.1-4 水性聚胺酯和石墨烯/氧化石墨烯之導電性.......26
第三章 實驗內容.......29
3.1 實驗藥品.......29
3.2 分析儀器.......30
3.4 儀器原理與測試條件.......31
3.5 實驗流程.......35
第四章 結果與討論.......36
4.1 石墨烯性質分析.......37
4.2 不同石墨烯添加量對薄膜之影響.......39
4.3 電阻測試:.......41
4.4 熱性質測試.......46
4.5 穿透度測試.......51
4.6 濕度測試.......55
4.7 電磁干擾測試.......60
4.8 機械性能測試.......62
4.9 熱傳導測試.......64
4.10 XRD測試.......65
4.11 SEM測試.......66
第五章 結論.......68
第六章 參考文獻.......70

圖目錄
1.2透明材料之簡介
圖1.2-1、經由噴撒沉積之ITO SEM圖.......3
圖1.2-2、導電金屬氧化物膜電阻.......4
圖1.2-3、日本液晶廁所.......5
1.3聚胺酯介紹
圖1.3-1、聚胺酯結構式.......6
圖1.3-2、含有異氰酸酯類聚胺酯之合成路線.......6
圖1.3-3、PU泡沫隔間牆.......7
1.4石墨烯簡介
圖1.4-1、電子顯微鏡下之石墨烯薄片.......9
圖1.4-2、經透射電子顯微鏡觀察之石墨烯.......9
圖1.4-3、利用奈米切割法製造石墨烯.......10
圖1.4-4、氧化石墨烯與經微波後的AFM圖.......11
圖1.4-5、利用光催化法製備石墨烯.......12
圖1.4-6、(a)還原前及(b)還原後氧化石墨烯.......12
圖1.4-7、利用外延生長法製備石墨烯.......13
圖1.4-8、石墨烯基本結構.......14
圖1.4-9、太陽能板.......15
圖1.4-10、電磁遮蔽材料吸收電磁干擾.......17
圖1.4-11、反射電磁干擾以降低通過之電磁干擾.......17
圖1.4-12、利用導電材料包覆電線達到抗EMI效果.......19
2.1文獻回顧
圖 2.1-1、0.5%wt GO/PU薄膜.......20
圖 2.1-2、2%wt GO/PU薄膜.......21
圖 2.1-3、高濃度與低濃度下的石墨排列現象.......21
圖 2.1-4、複合物在快速冷卻與緩慢冷卻時之導電度.......22
圖 2.1-5、複合物SEM圖.......23
圖 2.1-6、複合物之熱性能測試.......23
圖 2.1-7、WPU/石墨烯複合材料之TEM圖.......24
圖 2.1-8、石墨烯含量對電導率之影響.......25
圖 2.1-9石墨烯對熱穩定性之影響.......25
圖 2.1-10、PU/石墨烯之SEM測試.......27
3.4儀器原理與測試條件
圖3.4-1、微差式掃描卡計熱循環圖.......32
圖3.4-2、接觸角示意圖.......34
圖3.4-3、親水性及疏水性之角度關係.......35

4.1石墨烯性質分析
圖4.1-1、三晃石墨烯ATR圖分析.......38
圖4.1-2、GYC石墨烯ATR圖分析.......38
4.2 不同石墨烯添加量對薄膜之影響
圖4.2-1、PU之水接觸角.......40
圖4.2-2、0.2%石墨烯/PU之水接觸角.......41
4.3電阻測試
圖4.3-1、單層石墨烯/水性聚胺酯之表面電阻.......43
圖4.3-2、單層石墨烯/水性聚胺酯之體電阻.......43
4.4熱性質測試
圖4.4-1、水性聚胺酯之DSC測試.......46
圖4.4-2、GYC0.5之DSC測試.......47
圖4.4-3、GYC1之DSC測試.......47
圖4.4-4、水性聚胺酯與GYC樣品之TGA測試.......48
圖4.4-5、水性聚胺酯與GYC樣品對溫度積分圖.......49
圖4.4-6、水性聚胺酯與TG樣品之TGA測試.......50
圖4.4-7、水性聚胺酯與TG樣品對溫度積分圖.......50
4.5穿透度測試
圖4.5-1 (A)GYC樣品之UV-vis穿透度測試(250~800nm).......52
圖4.5-2、GYC樣品之透明度.......53
圖4.5-3、TG樣品之透明度.......54
圖4.5-4、水性聚胺酯/TG樣品之穿透度測試.......55
4.6濕度測試
圖4.6-1、GYC0.1(A)、GYC0.5(B)、GYC1.0(C)在溼度100%時的狀態.......57
圖4.6-2、溼度50%之GYC0.8.......59
圖4.6-3、溼度100%之GYC0.8.......59
4.10 XRD測試
圖4.10-1、PU樣品之XRD圖.......65
4.11 SEM測試
圖4.11-1、水性聚氨酯(A)GYC石墨烯(B)TG石墨烯(C)
之SEM圖.......66
圖4.11-1、GYC0.2(A)GYC1(B)TG0.2(C)TG1(D)之SEM圖.......67

表目錄
2.1文獻回顧
表2.1- 1樣品的機械性質.......26
4.2不同石墨烯添加量對薄膜之影響
表4.2-1、材料總表.......39
4.3電阻測試
表4.3-1、單層石墨烯/水性聚胺酯之電阻測試.......44
表4.3-2、多層石墨烯之電阻測試.......45
4.5熱性質測試
表4.5-1、GYC樣品之特定波長穿透度.......53
表4.5-2、TG/水性聚胺酯之穿透度總表.......55
4.6濕度測試
表4.6-1、不同濕度下之GYC0.8穿透度.......58
表4.6-2、濕度對電阻之影響.......58
4.7電磁干擾測試
表4.7-1、GYC電磁遮蔽效率.......61
表4.7-2、TG樣品之電磁遮蔽率.......62
4.8機械性能測試
表4.8-1 機械性質測試.......63
4.9 熱傳導測試
表4.9-1 熱傳導測試.......64










[1] K. Baedeker.,über Die Elektrische Leitfähigkeit Und Die Thermoelektrische Kraft Einiger Schwermetallverbindungen, JA Barth, pp.749-766 (1906).
[2] W. Jie, J. Hao, Nanoscale., “ Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors”, Nanoscale,Vol. 6, pp.6346-6362(2014).
[3] M. Morales-Masis, S. De Wolf, R. Woods-Robinson, J. W. Ager, C. Ballif,“ Transparent Electrodes for Efficient Optoelectronics” Advanced Electronic Materials., Vol. 3, pp.1600529(2017).
[4] A. B. Chebotareva, G. G. Untila, T. N. Kost, S. Jorgensen, A. G. Ulyashin, “ITO deposited by pyrosol for photovoltaic applications Thin Solid Films.”, Vol. 515, pp.8505-8510(2007).
[5] T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes.”, Semiconductor Science and Technology., Vol. 20, pp.S35-S44(2005).
[6] Y. W. Zhang, P. P. Cheng, W. Y. Tan and Y. Min. “Balance the thickness, transparency and stability of semi-transparent perovskite solar cells by solvent engineering and using a bifunctional additive. ”, Applied Applied Surface Science, vol.537, pp. 147908(2021)
[7] M. Oltean.,“ Switchable Glass: A Possible Medium for Evolvable Hardware.”,First NASA/ESA Conference on Adaptive Hardware and Systems , pp.86-87(2006).
[8] J. Li, X. Zhang, Z. Liu, W. Li, J. Dai,“ Studies on waterborne polyurethanes based on new medium length fluorinated diols.”, Journal of Fluorine Chemistry., Vol. 175, pp.12-17(2015).
[9] F. M. de Souza, P. K. Kahol, R. K. Gupta. (2021), Polyurethane Chemistry: Renewable Polyols and Isocyanates. Washington, DC, American Chemical Society
[10] S. Saalah et al., “Waterborne polyurethane dispersions synthesized from jatropha oil, ” Industrial Crops and Products.”, Vol. 64, pp.194-200(2015).
[11] V. Kohlschütter, P. Haenni, “Zur Kenntnis des Graphitischen Kohlenstoffs und der Graphitsäure.”, Zeitschrift für anorganische und allgemeine Chemie., Vol. 105, pp.121-144(1918).
[12] G. Ruess, F. Vogt, “Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd”, Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, Vol. 78, p.222-242(1948).
[13] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science., Vol. 306, pp.666-669(2004).
[14] N. Mohanty, D. Moore, Z. Xu, T. S. Sreeprasad, A. Nagaraja, A. A. Rodriguez, V. Berry,“Nanotomy-based production of transferable and dispersible graphene nanostructures of controlled shape and size” Nature Communications., Vol. 3, pp.844(2012).
[15] J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li, M. Ye, “Fast and Facile Preparation of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets”, Chemistry of Materials., Vol. 21, pp.3514-3520(2009).
[16] W. Chen,L. Yan, P. R. Bangal, “Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves.”, Carbon., Vol. 48, pp.1146-1152(2010).
[17] A. Wang, X. Li, Y. Zhao, W. Wu, J. Chen, H. Meng, “Preparation and characterizations of Cu2O/reduced graphene oxide nanocomposites with high photo-catalytic performances”, Powder Technology., Vol. 261, pp.42-48(2014).
[18] T. Soltani, B. Kyu Lee, “A benign ultrasonic route to reduced graphene oxide from pristine graphite”, Journal of Colloid and Interface Science., Vol. 486, pp.337-343(2017).
[19] X. Z. Yu, C. G. Hwang, C. M. Jozwiak, A. Köhl, A. K. Schmid, A. Lanzara, “New synthesis method for the growth of epitaxial graphene”, Journal of Electron Spectroscopy and Related Phenomena., Vol. 184, pp.100-106(2011).
[20] C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene.”, Science., Vol. 321, pp.385-388(2008).
[21] S. Sun, L. Gao, Y. Liu, “Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation”, Applied physics letters. , Vol. 96, pp.083113(2010).
[22] S. Geetha, K. K. Satheesh Kumar, C. R. K. Rao, M. Vijayan, and D. C. Trivedi, “EMI shielding: Methods and materials—A review.”, Journal of Applied Polymer Science, vol. 112, pp2073-2086.(2009)
[23] S. Hu, D. Wang, Y. Kyosev, D. Kremenakova, J. Militky, “The novel approach of EMI shielding simulation for metal coated nonwoven textiles with optimized textile module.”, Polymer Testing., Vol. 114, pp.107706(2022).
[24] N. Yousefi, M. M. Gudarzi, Q. Zheng, S. H. Aboutalebi, F. Sharif, J.-K. Kim, “Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites”, Journal of Materials Chemistry., Vol. 22, pp.12709-12717(2012).
[25] G. Kaur, R. Adhikari, P. Cass, M. Bown, M. D. M. Evans, A. V. Vashi, P. Gunatillake,“ Graphene/polyurethane composites: fabrication and evaluation of electrical conductivity, mechanical properties and cell viability.”, RSC Advances., Vol. 5, pp.98762-98772(2015).
[26] J. N. Ding, Y. Fan, C. X. Zhao,Y. B. Liu, C. T. Yu; N. Y. Yuan, “Electrical conductivity of waterborne polyurethane/graphene composites prepared by solution mixing.”, Journal of Composite Materials., Vol. 46, pp.747-752(2011).
[27] D. Cai and M. Song, “ Water-Based Polyurethane Filled with Multi-Walled Carbon Nanotubes Prepared by a Colloidal-Physics Method▪Author: This manuscript has been thoroughly edited. Please read the proofs carefully to ensure that no unintentional shift in meaning has been introduced. ”, Macromolecular Chemistry and Physics. ,vol. 208, pp.1183-1189(2007)
[28] A. V. Raghu, Y. R. Lee, H. M. Jeong, and C. M. Shin, “Preparation and Physical Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites”, Macromolecular Chemistry and Physics, vol.209, pp.2487-2493(2008)
[29] I. Larraza, B. Alonso-Lerma, K. Gonzalez, N. Gabilondo, R. Perez-Jimenez, M. Corcuera, A. Arbelaiz, A. Eceiza,“ Waterborne polyurethane and graphene/graphene oxide-based nanocomposites: Reinforcement and electrical conductivity.”, Express Polymer Letters., Vol. 14, pp.1018-1033(2020).
[30] Griffiths, David J.(1998) Introduction to Electrodynamics (3rd ed.). Prentice Hall., pp.301-304.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top