|
[1]Liu, X., et al. (2021). A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health 3, e727–e740. [2]Gurcan, M. N., et al. (2009). Histopathological image analysis: A review. IEEE Reviews in Biomedical Engineering, 2, 147-171. [3]Sung, H., et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209-249. [4]Siegel, R. L., Miller, K. D., & Jemal, A. (2019). Cancer statistics, 2019. CA: A Cancer Journal For Clinicians, 69(1), 7-34. [5]Kavitha, M. S., et al. (2022). Deep Neural Network Models for Colon Cancer Screening. Cancers, 14(15), 3707. [6]Lieberman, D. A., et al. (2012). Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology, 143(3), 844-857. [7]Misawa, M., et al. (2018). Artificial intelligence-assisted polyp detection for colonoscopy: initial experience. Gastroenterology, 154(8), 2027-2029. [8]World Health Organization. (2018). Cancer. https://www.who.int/news-room/fact-sheets/detail/cancer (最後查詢日期 : 2023.07.07) [9]Wong, M. C., et al. (2021). Differences in incidence and mortality trends of colorectal cancer worldwide based on sex, age, and anatomic location. Clinical Gastroenterology and Hepatology, 19(5), 955-966. [10]Bernal, J., et al. (2015). WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Computerized Medical Imaging and Graphics, 43, 99-111. [11]Wang, P., et al. (2018). Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy. Nature Biomedical Engineering, 2(10), 741-748. [12]Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56. [13]Rajkomar, A., Dean, J., & Kohane, I. (2019). Machine learning in medicine. New England Journal of Medicine, 380(14), 1347-1358. [14]American Cancer Society. (2021). Colorectal Cancer Signs and Symptoms.https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging/signs-and-symptoms.html (Last query date : 2023.07.31) [15]Jiang, M., et al. (2021). Detection and clinical significance of circulating tumor cells in colorectal cancer. Biomarker Research, 9, 1-20. [16]Sirinukunwattana, K., et al. (2016). Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Transactions on Medical Imaging, 35(5), 1196-1206. [17]Shen, D., Wu, G., & Suk, H. I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19, 221-248. [18]LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. In Proceedings of the IEEE, 86(11), 2278-2324. [19]Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556. [20]Scherer, D., Müller, A., & Behnke, S. (2010). Evaluation of pooling operations in convolutional architectures for object recognition. In Proceedings of the Artificial Neural Networks 20th International Conference (ICANN 2010), Thessaloniki, Greece, September 15-18, 2010, Part III 20 ,92-101. Springer Berlin Heidelberg. [21]Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., & Torralba, A. (2016). Learning deep features for discriminative localization. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2921-2929). [22]Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708). [23]LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. [24]Dean, J., et al. (2012). Large scale distributed deep networks. Advances in Neural Information Processing Systems, 25. [25]Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data, 3(1), 1-40. [26]Kornblith, S., Shlens, J., & Le, Q. V. (2019). Do better imagenet models transfer better?. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2661-2671. [27]Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. [28]Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. [29]Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. [30]He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,770-778. [31]Powers, D. M. (2020). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv preprint arXiv:2010.16061. [32]Hossin, M., & Sulaiman, M. N. (2015). A review on evaluation metrics for data classification evaluations. International Journal of Data Mining and Knowledge Management Process, 5(2), 1. [33]Davis, J., & Goadrich, M. (2006, June). The relationship between Precision-Recall and ROC curves. In Proceedings of the 23rd international conference on Machine learning, 233-240. [34]Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing and Management, 45(4), 427-437. [35]Flach, P., & Kull, M. (2015). Precision-recall-gain curves: PR analysis done right. Advances in Neural Information Processing Systems, 28. [36]Kather, J. N., et al. (2019). Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study. PLoS Medicine, 16(1), e1002730. [37]Li, J., et al. (2022). DARC: Deep adaptive regularized clustering for histopathological image classification. Medical Image Analysis, 80, 102521. [38]Hamida, A. B., et al. (2022). Weakly Supervised Learning using Attention gates for colon cancer histopathological image segmentation. Artificial Intelligence in Medicine, 133, 102407. [39]Ghosh, S., Bandyopadhyay, A., Sahay, S., Ghosh, R., Kundu, I., & Santosh, K. C. (2021). Colorectal histology tumor detection using ensemble deep neural network. Engineering Applications of Artificial Intelligence, 100, 104202. [40]Kumar, A., Vishwakarma, A., & Bajaj, V. (2023). Crccn-net: Automated framework for classification of colorectal tissue using histopathological images. Biomedical Signal Processing and Control, 79, 104172. [41]Hamida, A. B., et al. (2021). Deep learning for colon cancer histopathological images analysis. Computers in Biology and Medicine, 136, 104730. [42]Kather, J. N. (2019). Benchmark Dataset of 100,000 Histological Images of Human Colorectal Cancer and Healthy Tissue. Zenodo. Retrieved from https://zenodo.org/record/1214456 (Last query date : 2023.07.31) [43]Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22(10), 1345-1359. [44]Shin, H. C., et al. (2016). Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging, 35(5), 1285-1298.
|