跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/07 22:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁嘉豪
研究生(外文):LIANG, JIA-HAO
論文名稱:用金屬離子和顆粒碳提升光醱酵產氫效率
論文名稱(外文):Enhancing photo-fermentative biohydrogen production with metal ions and carbon particles.
指導教授:吳石乙
指導教授(外文):WU, SHU-YII
口試委員:李亦宸洪俊雄
口試委員(外文):LI, YI-CHENHUNG, CHUN-HSIUNG
口試日期:2023-06-15
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:88
中文關鍵詞:光醱酵輔助因子活性碳
外文關鍵詞:photo-fermentationauxiliary factorsactivated carbon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
光醱酵生物產氫(photo-fermentative biohydrogen production,PFHP)的過程是通過光合細菌的固氮酶進行光分解有機物來產生氫氣,但在固氮酶催化反應的過程中高能量需求以及生物製產氫的產氫效率已成為光醱酵大規模應用的首要問題。本研究主要目的為優化以 Rhodopseudomonas palustris WP3-5 為主菌株的光醱酵產氫的表現。實驗原理為光合菌以葡萄糖作為碳源進行產氫,添加不同濃度的鐵離子 (100~900 mg-Fe/L)、鉬離子 (1~100 mg-Mo/L)、鎳離子 (1~100 mg-Ni/L) 以及鋅離子 (10~900 mg-Zn/L) 來觀察金屬離子對於 PFHP 的影響。另外添加不同濃度的活性碳顆粒 (100~900 mg-GAC/L) 以及活性炭粉末 (1~700 mg-PAC/L) 來觀察碳顆粒對於 PFHP 的影響。因此本研究皆使用氫氣產率作為評估指標。
在批次系統中研究了許多參數,例如基質的碳氮比 (C/N ratio)、pH、金屬離子與碳顆粒的添加量等。實驗結果表明,基質控制在碳氮比 25 以及 pH 7.5 的情況下有較高的氫氣產率。另外,添加 5 mg-Mo/L 其氫氣產率為 2.685 mol H2/mol glucose,與對照組相比提升 63.4% 的產氫速率;添加 10 mg-PAC/L 其氫氣產率為 2.412 mol H2/mol glucose,與對照組相比提升 62.7% 的產氫速率。
由上述實驗結果可知,添加金屬離子以及碳顆粒等輔助因子能夠有效提升氫氣產率,尤其添加鉬離子最為顯著,對於光醱酵大規模應用有著至關重要的作用。
The photo-fermentative biohydrogen production (PFHP) involves the hydrogen production through the light-induced decomposition of organic compounds by photosynthetic bacteria's nitrogenase. However, the high energy demand and low hydrogen production efficiency of the nitrogenase catalytic reaction have become the primary challenges in the large-scale application of photo-fermentation. The main objective of this study is to optimize the performance of photo-fermentative biohydrogen production using Rhodopseudomonas palustris WP3-5 as the predominant strain. In the experimental setup, photoautotrophic bacteria utilize glucose as a carbon source for hydrogen production, and the addition of different concentrations of metal ions such as iron ions (100-900 mg-Fe/L), molybdenum ions (1-100 mg-Mo/L), nickel ions (1-100 mg-Ni/L), and zinc ions (10-900 mg-Zn/L) were work out to observe the influence of metal ions on PFHP. Additionally, the addition of various concentrations of granular activated carbon (100-900 mg-GAC/L) and powdered activated carbon (1-700 mg-PAC/L) examined the effect of carbon particles on PFHP. Therefore, the hydrogen production rate used as the evaluation parameter.
Several parameters, including the C/N ratio of the substrate, pH, and the amount of metal ions and carbon particles added, are investigated in batch systems. The experimental results indicate that maintaining a carbon-to-nitrogen ratio of 25 and a pH of 7.5 resulted in higher hydrogen production rates. Furthermore, adding 5 mg-Mo/L leads to a hydrogen production rate of 2.685 mol H2/mol glucose, representing a 63.4% increase compared to the control group. Similarly, adding 10 mg-PAC/L resulted in a hydrogen production rate of 2.412 mol H2/mol glucose, exhibiting a 62.7% improvement compared to the control group.
Based on the above experimental results, it is evident that adding of metal ions and carbon particles as auxiliary factors can effectively enhance the hydrogen production rate in photo-fermentation. Obviously, adding molybdenum ions demonstrates significant effects and holds critical importance for the large-scale application of photo-fermentation.
第一章 緒論 1
1-1 前言 1
1-2研究動機和目的 2
1-3實驗架構 2
第二章 文獻回顧 4
2-1 生質產氫 4
2-1-1 產氫方式 5
2-1-2 光醱酵反應產氫 7
2-1-3 光醱酵產氫代謝路徑 9
2-2 微生物動力學建模 10
2-2-1 微生物生長 12
2-2-2 微生物產氫 14
2-3 光醱酵厭氧產氫之變因 16
2-3-1 pH 變因 17
2-3-2 溫度變因 18
2-3-3 光照變因 19
2-3-4 基質種類與濃度 19
2-3-5 金屬離子 20
2-3-6 碳顆粒 21
2-4 微生物定量 22
第三章 實驗方法 23
3-1 菌體來源 23
3-2 營養配方來源 23
3-3 實驗儀器與裝置 24
3-4 實驗方法與步驟 25
3-5 實驗與藥品分析 26
3-5-1 實驗藥品 26
3-5-2 氣相組成分析 27
3-5-3 液相組成分析 28
3-5-4 菌重分析 28
3-5-5 菌項分析 29
第四章 結果與討論 30
4-1 在不同 PH 值的環境對光醱酵產氫之影響 31
4-2 添加不同碳氮比的營養源對光醱酵產氫之影響 35
4-3 菌項分析 37
4-4 添加不同微量元素對光醱酵產氫之影響 39
4-4-1 鐵離子 41
4-4-2 鉬離子 43
4-4-3 鋅離子 45
4-4-4 鎳離子 47
4-5 添加活性碳對光醱酵產氫之影響 51
4-6 活性碳粉末對透光度之影響 56
第五章 結論 57
參考文獻 58

Ahmed, S. F., Mofijur, M., Nahrin, M., Chowdhury, S. N., Nuzhat, S., Alherek, M., Rafa, N., Ong, H. C., Nghiem, L. D., & Mahlia, T. M. I. (2022). Biohydrogen production from wastewater-based microalgae: Progresses and challenges. International Journal of Hydrogen Energy, 47(88), 37321–37342. https://doi.org/10.1016/J.IJHYDENE.2021.09.178
Akkerman, I., Janssen, M., Rocha, J., & Wijffels, R. H. (2002). Photobiological hydrogen production: Photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy, 27(11–12), 1195–1208. https://doi.org/10.1016/S0360-3199(02)00071-X
Al-Mohammedawi, H. H., & Znad, H. (2020). Impact of metal ions and EDTA on photofermentative hydrogen production by Rhodobacter sphaeroides using a mixture of pre-treated brewery and restaurant effluents. Biomass and Bioenergy, 134. https://doi.org/10.1016/j.biombioe.2020.105482
Al-Mohammedawi, H. H., Znad, H., & Eroglu, E. (2018). Synergistic effects and optimization of photo-fermentative hydrogen production of Rhodobacter sphaeroides DSM 158. International Journal of Hydrogen Energy, 43(33), 15823–15834. https://doi.org/10.1016/J.IJHYDENE.2018.06.140
Anwar, M., Lou, S., Chen, L., Li, H., & Hu, Z. (2019). Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. Bioresource Technology, 292. https://doi.org/10.1016/J.BIORTECH.2019.121972
Basak, N., & Das, D. (2007). The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state of the art. World Journal of Microbiology and Biotechnology, 23(1), 31–42. https://doi.org/10.1007/S11274-006-9190-9/METRICS
Bisaillon, A., Turcot, J., & Hallenbeck, P. C. (2006). The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. International Journal of Hydrogen Energy, 31(11), 1504–1508. https://doi.org/10.1016/j.ijhydene.2006.06.016
Bolatkhan, K., Kossalbayev, B. D., Zayadan, B. K., Tomo, T., Veziroglu, T. N., & Allakhverdiev, S. I. (2019). Hydrogen production from phototrophic microorganisms: Reality and perspectives. International Journal of Hydrogen Energy, 44(12), 5799–5811. https://doi.org/10.1016/J.IJHYDENE.2019.01.092
Boran, E., Özgür, E., Van Der Burg, J., Yücel, M., Gündüz, U., & Eroglu, I. (2010). Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor. Journal of Cleaner Production, 18(SUPPL. 1). https://doi.org/10.1016/J.JCLEPRO.2010.03.018
Boran, E., Özgür, E., Yücel, M., Gündüz, U., & Eroglu, I. (2012). Biohydrogen production by Rhodobacter capsulatus in solar tubular photobioreactor on thick juice dark fermenter effluent. Journal of Cleaner Production, 31, 150–157. https://doi.org/10.1016/J.JCLEPRO.2012.03.020
Boshagh, F., & Rostami, K. (2021). Kinetic models of biological hydrogen production by Enterobacter aerogenes. Biotechnology Letters, 43(2), 435–443. https://doi.org/10.1007/S10529-020-03051-4
Boshagh, F., Rostami, K., & Moazami, N. (2019a). Biohydrogen production by immobilized Enterobacter aerogenes on functionalized multi-walled carbon nanotube. International Journal of Hydrogen Energy, 44(28), 14395–14405. https://doi.org/10.1016/J.IJHYDENE.2018.11.199
Boshagh, F., Rostami, K., & Moazami, N. (2019b). Immobilization of Enterobacter aerogenes on carbon fiber and activated carbon to study hydrogen production enhancement. Biochemical Engineering Journal, 144, 64–72. https://doi.org/10.1016/J.BEJ.2019.01.014
Budiman, M., Wu, T. Y., Ramanan, R. N., Xiao, J., & Hay, W. (2014). Treatment and Reuse of Effluents from Palm Oil, Pulp, and Paper Mills as a Combined Substrate by Using Purple Nonsulfur Bacteria. https://doi.org/10.1021/ie501798f
Budiman, P. M., & Wu, T. Y. (2018). Role of chemicals addition in affecting biohydrogen production through photofermentation. Energy Conversion and Management, 165, 509–527. https://doi.org/10.1016/j.enconman.2018.01.058
Chandrasekhar, K., Lee, Y. J., & Lee, D. W. (2015). Biohydrogen production: Strategies to improve process efficiency through microbial routes. In International Journal of Molecular Sciences (Vol. 16, Issue 4, pp. 8266–8293). MDPI AG. https://doi.org/10.3390/ijms16048266
Chen, C. Y., Lu, W. Bin, Liu, C. H., & Chang, J. S. (2008). Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. Bioresource Technology, 99(9), 3609–3616. https://doi.org/10.1016/J.BIORTECH.2007.07.037
Chen, H., Wu, J., Huang, R., Zhang, W., He, W., Deng, Z., Han, Y., Xiao, B., Luo, H., & Qu, W. (2022). Effects of temperature and total solid content on biohydrogen production from dark fermentation of rice straw: Performance and microbial community characteristics. Chemosphere, 286. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131655
Chen, W. H., Tsai, C. W., Lin, Y. L., Chein, R. Y., & Yu, C. T. (2017). Reaction phenomena of high-temperature water gas shift reaction in a membrane reactor. Fuel, 199, 358–371. https://doi.org/10.1016/J.FUEL.2017.03.002
Chen, W., Li, T., Ren, Y., Wang, J., Chen, H., & Wang, Q. (2023). Biological hydrogen with industrial potential: Improvement and prospection in biohydrogen production. Journal of Cleaner Production, 387, 135777. https://doi.org/10.1016/J.JCLEPRO.2022.135777
Chen, W. M., Tseng, Z. J., Lee, K. S., & Chang, J. S. (2005). Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy, 30(10), 1063–1070. https://doi.org/10.1016/J.IJHYDENE.2004.09.008
Chong, M. L., Abdul Rahman, N. A., Rahim, R. A., Aziz, S. A., Shirai, Y., & Hassan, M. A. (2009). Optimization of biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent using response surface methodology. International Journal of Hydrogen Energy, 34(17), 7475–7482. https://doi.org/10.1016/J.IJHYDENE.2009.05.088
Das, S. R., & Basak, N. (2022). Optimization of process parameters for enhanced biohydrogen production using potato waste as substrate by combined dark and photo fermentation. Biomass Conversion and Biorefinery, 1–21. https://doi.org/10.1007/S13399-022-02588-W/METRICS
Fuess, L. T., Zaiat, M., & do Nascimento, C. A. O. (2019). Novel insights on the versatility of biohydrogen production from sugarcane vinasse via thermophilic dark fermentation: Impacts of pH-driven operating strategies on acidogenesis metabolite profiles. Bioresource Technology, 286. https://doi.org/10.1016/J.BIORTECH.2019.121379
Gadhamshetty, V., Arudchelvam, Y., Nirmalakhandan, N., & Johnson, D. C. (2010). Modeling dark fermentation for biohydrogen production: ADM1-based model vs. Gompertz model. International Journal of Hydrogen Energy, 35(2), 479–490. https://doi.org/10.1016/J.IJHYDENE.2009.11.007
Gadhe, A., Sonawane, S. S., & Varma, M. N. (2014). Kinetic analysis of biohydrogen production from complex dairy wastewater under optimized condition. International Journal of Hydrogen Energy, 39(3), 1306–1314. https://doi.org/10.1016/J.IJHYDENE.2013.11.022
Goveas, L. C., Nayak, S., Kumar, P. S., Vinayagam, R., Selvaraj, R., & Rangasamy, G. (2023). Recent advances in fermentative biohydrogen production. International Journal of Hydrogen Energy. https://doi.org/10.1016/J.IJHYDENE.2023.04.208
Guo, S., Lu, C., Wang, K., Wang, J., Zhang, Z., Jing, Y., & Zhang, Q. (2020). Enhancement of pH values stability and photo-fermentation biohydrogen production by phosphate buffer. Bioengineered, 11(1), 291–300. https://doi.org/10.1080/21655979.2020.1736239
Hakobyan, L., Gabrielyan, L., & Trchounian, A. (2012). Bio-hydrogen production and the F 0F 1-ATPase activity of Rhodobacter sphaeroides: Effects of various heavy metal ions. International Journal of Hydrogen Energy, 37(23), 17794–17800. https://doi.org/10.1016/J.IJHYDENE.2012.09.091
Hallenbeck, P. C., Lazaro, C. Z., & Sagir, E. (2018). CHAPTER 1: Photosynthesis and Hydrogen from Photosynthetic Microorganisms. Comprehensive Series in Photochemical and Photobiological Sciences, 16, 3–30. https://doi.org/10.1039/9781849737128-00001
Hay, J. X. W., Wu, T. Y., Teh, C. Y., & Jahim, J. Md. (2012). Optimized growth of Rhodobacter sphaeroides O.U.001 using response surface methodology (RSM). JSIR Vol.71(02) [February 2012], 71, 149–154. http://nopr.niscpr.res.in/handle/123456789/13493
Herlevich, A., & Karpuk, M. (1982). Engineering aspects of hydrogen production from photosynthetic bacteria. https://doi.org/10.2172/1179401
Hu, C., Choy, S. Y., & Giannis, A. (2018). Evaluation of Lighting Systems, Carbon Sources, and Bacteria Cultures on Photofermentative Hydrogen Production. Applied Biochemistry and Biotechnology, 185(1), 257–269. https://doi.org/10.1007/S12010-017-2655-5
Hwang, J. H., & Lee, W. H. (2021). Continuous photosynthetic biohydrogen production from acetate-rich wastewater: Influence of light intensity. International Journal of Hydrogen Energy, 46(42), 21812–21821. https://doi.org/10.1016/J.IJHYDENE.2021.04.052
Jabbari, B., Jalilnejad, E., Ghasemzadeh, K., & Iulianelli, A. (2019). Recent progresses in application of membrane bioreactors in production of biohydrogen. Membranes, 9(8). https://doi.org/10.3390/MEMBRANES9080100
Jagadeesan, B., Gerner-Smidt, P., Allard, M. W., Leuillet, S., Winkler, A., Xiao, Y., Chaffron, S., Van Der Vossen, J., Tang, S., Katase, M., McClure, P., Kimura, B., Ching Chai, L., Chapman, J., & Grant, K. (2019). The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiology, 79, 96–115. https://doi.org/10.1016/J.FM.2018.11.005
Jiang, D., Zhang, X., Jing, Y., Zhang, T., Shui, X., Yang, J., Lu, C., Chen, Z., Lei, T., & Zhang, Q. (2022). Towards high light conversion efficiency from photo-fermentative hydrogen production of Arundo donax L. By light–dark duration alternation strategy. Bioresource Technology, 344. https://doi.org/10.1016/J.BIORTECH.2021.126302
Kallastu, A., Malv, E., Aro, V., Meikas, A., Vendelin, M., Kattel, A., Nahku, R., & Kazantseva, J. (2023). Absolute quantification of viable bacteria abundances in food by next-generation sequencing: Quantitative NGS of viable microbes. Current Research in Food Science, 6, 100443. https://doi.org/10.1016/J.CRFS.2023.100443
Kavitha, S., Jayashree, C., Adish Kumar, S., Yeom, I. T., & Rajesh Banu, J. (2014). The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment. Bioresource Technology, 168, 159–166. https://doi.org/10.1016/J.BIORTECH.2014.01.118
Kavitha, S., Rajesh Banu, J., Subitha, G., Ushani, U., & Yeom, I. T. (2016). Impact of thermo-chemo-sonic pretreatment in solubilizing waste activated sludge for biogas production: Energetic analysis and economic assessment. Bioresource Technology, 219, 479–486. https://doi.org/10.1016/J.BIORTECH.2016.07.115
Khanal, S. K., Chen, W. H., Li, L., & Sung, S. (2004). Biological hydrogen production: Effects of pH and intermediate products. International Journal of Hydrogen Energy, 29(11), 1123–1131. https://doi.org/10.1016/J.IJHYDENE.2003.11.002
Kim, D. H., Cha, J., Kang, S., & Kim, M. S. (2013). Continuous photo-fermentative hydrogen production from lactate and lactate-rich acidified food waste. International Journal of Hydrogen Energy, 38(14), 6161–6166. https://doi.org/10.1016/J.IJHYDENE.2012.12.072
Koku, H., Erolu, I., Gündüz, U., Yücel, M., & Türker, L. (2002). Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 27(11–12), 1315–1329. https://doi.org/10.1016/S0360-3199(02)00127-1
Kumar, A. N., & Mohan, S. V. (2018). Acidogenic valorization of vegetable waste for short chain carboxylic acids and biohydrogen production: Influence of pretreatment and pH. Journal of Cleaner Production, 203, 1055–1066. https://doi.org/10.1016/J.JCLEPRO.2018.08.198
Laio, G. Z. (2021, June 10). Bio-hydrogen production by immobilized photo bacteria and adding nanoparticles in batch photo fermentations. https://hdl.handle.net/11296/6jd7w3
Lee, C. M., Chen, P. C., Wang, C. C., & Tung, Y. C. (2002). Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. International Journal of Hydrogen Energy, 27(11–12), 1309–1313. https://doi.org/10.1016/S0360-3199(02)00102-7
Lee, C. M., Hung, G. J., & Yang, C. F. (2011). Hydrogen production by Rhodopseudomonas palustris WP 3-5 in a serial photobioreactor fed with hydrogen fermentation effluent. Bioresource Technology, 102(18), 8350–8356. https://doi.org/10.1016/J.BIORTECH.2011.04.072
Lee, Y. J., Miyahara, T., & Noike, T. (2002). Effect of pH on microbial hydrogen fermentation. Journal of Chemical Technology & Biotechnology, 77(6), 694–698. https://doi.org/10.1002/JCTB.623
Li, C., & Fang, H. H. P. (2007). Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology, 37(1), 1–39. https://doi.org/10.1080/10643380600729071
Lin, C. Y., Chang, C. C., & Hung, C. H. (2008). Fermentative hydrogen production from starch using natural mixed cultures. International Journal of Hydrogen Energy, 33(10), 2445–2453. https://doi.org/10.1016/J.IJHYDENE.2008.02.069
Lin, C. Y., Hung, C. H., Chen, C. H., Chung, W. T., & Cheng, L. H. (2006). Effects of initial cultivation pH on fermentative hydrogen production from xylose using natural mixed cultures. Process Biochemistry, 41(6), 1383–1390. https://doi.org/10.1016/J.PROCBIO.2006.01.021
Lin, C. Y., & Hung, W. C. (2008). Enhancement of fermentative hydrogen/ethanol production from cellulose using mixed anaerobic cultures. International Journal of Hydrogen Energy, 33(14), 3660–3667. https://doi.org/10.1016/J.IJHYDENE.2008.04.036
Lin, R., Cheng, J., Ding, L., Song, W., Liu, M., Zhou, J., & Cen, K. (2016). Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes. Bioresource Technology, 207, 213–219. https://doi.org/10.1016/J.BIORTECH.2016.02.009
Lu, C., Tahir, N., Li, W., Zhang, Z., Jiang, D., Guo, S., Wang, J., Wang, K., & Zhang, Q. (2020). Enhanced buffer capacity of fermentation broth and biohydrogen production from corn stalk with Na2HPO4/NaH2PO4. Bioresource Technology, 313. https://doi.org/10.1016/J.BIORTECH.2020.123783
Luo, Y., Yang, Q., Nie, W., Yao, Q., Zhang, Z., & Lu, Z. H. (2020). Anchoring IrPdAu Nanoparticles on NH2-SBA-15 for Fast Hydrogen Production from Formic Acid at Room Temperature. ACS Applied Materials and Interfaces, 12(7), 8082–8090. https://doi.org/10.1021/ACSAMI.9B16981/SUPPL_FILE/AM9B16981_SI_001.PDF
Martinez-Burgos, W. J., Sydney, E. B., de Paula, D. R., Medeiros, A. B. P., de Carvalho, J. C., Soccol, V. T., de Souza Vandenberghe, L. P., Woiciechowski, A. L., & Soccol, C. R. (2020). Biohydrogen production in cassava processing wastewater using microbial consortia: Process optimization and kinetic analysis of the microbial community. Bioresource Technology, 309. https://doi.org/10.1016/J.BIORTECH.2020.123331
Mauerhofer, L. M., Pappenreiter, P., Paulik, C., Seifert, A. H., Bernacchi, S., & Rittmann, S. K. M. R. (2019). Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology. Folia Microbiologica, 64(3), 321–360. https://doi.org/10.1007/S12223-018-0658-4
Melitos, G., Voulkopoulos, X., & Zabaniotou, A. (2021). Waste to Sustainable Biohydrogen Production Via Photo-Fermentation and Biophotolysis − A Systematic Review. Renewable Energy and Environmental Sustainability, 6, 45. https://doi.org/10.1051/REES/2021047
Mofijur, M., Siddiki, S. Y. A., Shuvho, M. B. A., Djavanroodi, F., Fattah, I. M. R., Ong, H. C., Chowdhury, M. A., & Mahlia, T. M. I. (2021). Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources- A mini-review. Chemosphere, 270, 128642. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128642
Monod, J. (1949). THE GROWTH OF BACTERIAL CULTURES. Annual Review of Microbiology, 3(1), 371–394. https://doi.org/10.1146/ANNUREV.MI.03.100149.002103
Mori Budiman, P., Yeong Wu, T., Nagasundara Ramanan, R., Md Jahim, J., & Ehsan, D. (2015). Improvement of Biohydrogen Production through Combined Reuses of Palm Oil Mill Effluent Together with Pulp and Paper Mill Effluent in Photofermentation. https://doi.org/10.1021/acs.energyfuels.5b01078
Mu, Y., Wang, G., & Yu, H. Q. (2006a). Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures. Bioresource Technology, 97(11), 1302–1307. https://doi.org/10.1016/J.BIORTECH.2005.05.014
Mu, Y., Wang, G., & Yu, H. Q. (2006b). Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme and Microbial Technology, 38(7), 905–913. https://doi.org/10.1016/J.ENZMICTEC.2005.08.016
Mu, Y., Yu, H. Q., & Wang, G. (2007). A kinetic approach to anaerobic hydrogen-producing process. Water Research, 41(5), 1152–1160. https://doi.org/10.1016/J.WATRES.2006.11.047
Mu, Y., Zheng, X. J., Yu, H. Q., & Zhu, R. F. (2006). Biological hydrogen production by anaerobic sludge at various temperatures. International Journal of Hydrogen Energy, 31(6), 780–785. https://doi.org/10.1016/j.ijhydene.2005.06.016
Mullai, P., Rene, E. R., & Sridevi, K. (2013). Biohydrogen production and kinetic modeling using sediment microorganisms of pichavaram mangroves, India. BioMed Research International, 2013. https://doi.org/10.1155/2013/265618
Mumme, J., Srocke, F., Heeg, K., & Werner, M. (2014). Use of biochars in anaerobic digestion. Bioresource Technology, 164, 189–197. https://doi.org/10.1016/j.biortech.2014.05.008
Nagy, V., Podmaniczki, A., Vidal-Meireles, A., Kuntam, S., Herman, É., Kovács, L., Tóth, D., Scoma, A., & Tóth, S. Z. (2021). Thin cell layer cultures of Chlamydomonas reinhardtii L159I-N230Y, pgrl1 and pgr5 mutants perform enhanced hydrogen production at sunlight intensity. Bioresource Technology, 333, 125217. https://doi.org/10.1016/J.BIORTECH.2021.125217
Nandi, R., & Sengupta, S. (1998). Microbial Production of Hydrogen: An Overview. Critical Reviews in Microbiology, 24(1), 61–84. https://doi.org/10.1080/10408419891294181
Ntaikou, I., Gavala, H. N., Kornaros, M., & Lyberatos, G. (2008). Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. International Journal of Hydrogen Energy, 33(4), 1153–1163. https://doi.org/10.1016/j.ijhydene.2007.10.053
Ntaikou, I., Gavala, H. N., & Lyberatos, G. (2009). Modeling of fermentative hydrogen production from the bacterium Ruminococcus albus: Definition of metabolism and kinetics during growth on glucose. International Journal of Hydrogen Energy, 34(9), 3697–3709. https://doi.org/10.1016/J.IJHYDENE.2009.02.057
Oflaz, F. B., & Koku, H. (2021). Pilot-scale outdoor photofermentative hydrogen production from molasses using pH control. International Journal of Hydrogen Energy, 46(57), 29160–29172. https://doi.org/10.1016/J.IJHYDENE.2020.10.086
Oh, Y. K., Seol, E. H., Kim, J. R., & Park, S. (2003). Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. International Journal of Hydrogen Energy, 28(12), 1353–1359. https://doi.org/10.1016/S0360-3199(03)00024-7
Oliveira, T. V., Bessa, L. O., Oliveira, F. S., Ferreira, J. S., Batista, F. R. X., & Cardoso, V. L. (2014). Insights into the effect of carbon and nitrogen source on hydrogen production by photosynthetic bacteria. Chemical Engineering Transactions, 38, 367–372. https://doi.org/10.3303/CET1438062
O-Thong, S., Prasertsan, P., Karakashev, D., & Angelidaki, I. (2008). Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. International Journal of Hydrogen Energy, 33(4), 1204–1214. https://doi.org/10.1016/J.IJHYDENE.2007.12.015
Paquete, C. M., Rosenbaum, M. A., Bañeras, L., Rotaru, A. E., & Puig, S. (2022). Let’s chat: Communication between electroactive microorganisms. Bioresource Technology, 347, 126705. https://doi.org/10.1016/J.BIORTECH.2022.126705
Ponnusamy, V. K., Nagappan, S., Bhosale, R. R., Lay, C. H., Duc Nguyen, D., Pugazhendhi, A., Chang, S. W., & Kumar, G. (2020). Review on sustainable production of biochar through hydrothermal liquefaction: Physico-chemical properties and applications. Bioresource Technology, 310, 123414. https://doi.org/10.1016/J.BIORTECH.2020.123414
Prabakar, D., Manimudi, V. T., Suvetha K, S., Sampath, S., Mahapatra, D. M., Rajendran, K., & Pugazhendhi, A. (2018). Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects. Renewable and Sustainable Energy Reviews, 96, 306–324. https://doi.org/10.1016/J.RSER.2018.08.006
Pradhan, N., Dipasquale, L., d’Ippolito, G., Fontana, A., Panico, A., Pirozzi, F., Lens, P. N. L., & Esposito, G. (2016). Model development and experimental validation of capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana. Water Research, 99, 225–234. https://doi.org/10.1016/J.WATRES.2016.04.063
Procházka, J., Dolejš, P., MácA, J., & Dohányos, M. (2012). Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Applied Microbiology and Biotechnology, 93(1), 439–447. https://doi.org/10.1007/S00253-011-3625-4
Rajesh Banu, J., Ginni, G., Kavitha, S., Yukesh Kannah, R., Adish Kumar, S., Bhatia, S. K., & Kumar, G. (2021). Integrated biorefinery routes of biohydrogen: Possible utilization of acidogenic fermentative effluent. Bioresource Technology, 319, 124241. https://doi.org/10.1016/J.BIORTECH.2020.124241
Rezaeitavabe, F., Saadat, S., Talebbeydokhti, N., Sartaj, M., & Tabatabaei, M. (2020). Enhancing bio-hydrogen production from food waste in single-stage hybrid dark-photo fermentation by addition of two waste materials (exhausted resin and biochar). Biomass and Bioenergy, 143, 105846. https://doi.org/10.1016/J.BIOMBIOE.2020.105846
Salerno, M. B., Park, W., Zuo, Y., & Logan, B. E. (2006). Inhibition of biohydrogen production by ammonia. Water Research, 40(6), 1167–1172. https://doi.org/10.1016/j.watres.2006.01.024
Sasaki, K., Morita, M., Hirano, S. I., Ohmura, N., & Igarashi, Y. (2011). Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles. Applied Microbiology and Biotechnology, 90(4), 1555–1561. https://doi.org/10.1007/S00253-011-3215-5
Sharma, P., & Melkania, U. (2017). Biochar-enhanced hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. coli. International Journal of Hydrogen Energy, 42(30), 18865–18874. https://doi.org/10.1016/J.IJHYDENE.2017.06.171
Singh, L., & Wahid, Z. A. (2015). Methods for enhancing bio-hydrogen production from biological process: A review. In Journal of Industrial and Engineering Chemistry (Vol. 21, pp. 70–80). Korean Society of Industrial Engineering Chemistry. https://doi.org/10.1016/j.jiec.2014.05.035
Sinharoy, A., Baskaran, D., & Pakshirajan, K. (2019). Sustainable biohydrogen production by dark fermentation using carbon monoxide as the sole carbon and energy source. International Journal of Hydrogen Energy, 44(26), 13114–13125. https://doi.org/10.1016/J.IJHYDENE.2019.03.130
Sugiarto, Y., Sunyoto, N. M. S., Zhu, M., Jones, I., & Zhang, D. (2021). Effect of biochar in enhancing hydrogen production by mesophilic anaerobic digestion of food wastes: The role of minerals. International Journal of Hydrogen Energy, 46(5), 3695–3703. https://doi.org/10.1016/J.IJHYDENE.2020.10.256
Sunyoto, N. M. S., Zhu, M., Zhang, Z., & Zhang, D. (2016). Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresource Technology, 219, 29–36. https://doi.org/10.1016/j.biortech.2016.07.089
Tian, X., Liao, Q., Zhu, X., Wang, Y., Zhang, P., Li, J., & Wang, H. (2010). Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production. Bioresource Technology, 101(3), 977–983. https://doi.org/10.1016/J.BIORTECH.2009.09.007
Vargas, S. R., & Zaiat, M. (2021). Inuence of Sulfur and Light Intensity in Nutrient Removal, and Hydrogen and Ethanol Production by Optimized Biomass of Chlamydomonas Reinhardtii in Batch Anaerobic Photobioreactors. https://doi.org/10.21203/rs.3.rs-355711/v1
Wang, G., Mu, Y., & Yu, H. Q. (2005). Response surface analysis to evaluate the influence of pH, temperature and substrate concentration on the acidogenesis of sucrose-rich wastewater. Biochemical Engineering Journal, 23(2), 175–184. https://doi.org/10.1016/j.bej.2005.01.002
Wang, J., & Wan, W. (2008a). Effect of temperature on fermentative hydrogen production by mixed cultures. International Journal of Hydrogen Energy, 33(20), 5392–5397. https://doi.org/10.1016/j.ijhydene.2008.07.010
Wang, J., & Wan, W. (2008b). The effect of substrate concentration on biohydrogen production by using kinetic models. Science in China, Series B: Chemistry, 51(11), 1110–1117. https://doi.org/10.1007/S11426-008-0104-6/METRICS
Wang, J., & Yin, Y. (2018). Fermentative hydrogen production using various biomass-based materials as feedstock. Renewable and Sustainable Energy Reviews, 92, 284–306. https://doi.org/10.1016/J.RSER.2018.04.033
Wei, X., Feng, J., Cao, W., Li, Q., & Guo, L. (2021). Photo-biological hydrogen production by a temperature-tolerant mutant of Rhodobacter capsulatus isolated by transposon mutagenesis. Bioresource Technology, 320. https://doi.org/10.1016/J.BIORTECH.2020.124286
Wong, Y. M., Wu, T. Y., & Juan, J. C. (2014). A review of sustainable hydrogen production using seed sludge via dark fermentation. Renewable and Sustainable Energy Reviews, 34, 471–482. https://doi.org/10.1016/J.RSER.2014.03.008
Xie, G. J., Liu, B. F., Wen, H. Q., Li, Q., Yang, C. Y., Han, W. L., Nan, J., & Ren, N. Q. (2013). Bioflocculation of photo-fermentative bacteria induced by calcium ion for enhancing hydrogen production. International Journal of Hydrogen Energy, 38(19), 7780–7788. https://doi.org/10.1016/J.IJHYDENE.2013.04.099
Xing, D., Ren, N., Wang, A., Li, Q., Feng, Y., & Ma, F. (2008). Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3 under non-sterile condition. International Journal of Hydrogen Energy, 33(5), 1489–1495. https://doi.org/10.1016/j.ijhydene.2007.09.038
Yahaya, E., Lim, S. W., Yeo, W. S., & Nandong, J. (2022). A review on process modeling and design of biohydrogen. International Journal of Hydrogen Energy, 47(71), 30404–30427. https://doi.org/10.1016/J.IJHYDENE.2022.06.317
Yang, E., Omar Mohamed, H., Park, S. G., Obaid, M., Al-Qaradawi, S. Y., Castaño, P., Chon, K., & Chae, K. J. (2021). A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies. Bioresource Technology, 320, 124363. https://doi.org/10.1016/J.BIORTECH.2020.124363
Zamri, M. F. M. A., Hasmady, S., Akhiar, A., Ideris, F., Shamsuddin, A. H., Mofijur, M., Fattah, I. M. R., & Mahlia, T. M. I. (2021). A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 137, 110637. https://doi.org/10.1016/J.RSER.2020.110637
Zhang, H., Li, Y., Chen, L., & Zhang, Q. (2021). Effect of zinc ion on photo-fermentative hydrogen production performance, kinetics and electronic distribution in biohydrogen production by HAU-M1. Bioresource Technology, 324. https://doi.org/10.1016/J.BIORTECH.2021.124680
Zhang, Q., Liu, H., Shui, X., Li, Y., & Zhang, Z. (2022). Research progress of additives in photobiological hydrogen production system to enhance biohydrogen. Bioresource Technology, 362, 127787. https://doi.org/10.1016/J.BIORTECH.2022.127787
Zhang, Q., Zhu, S., Zhang, Z., Zhang, H., & Xia, C. (2021). Enhancement strategies for photo-fermentative biohydrogen production: A review. Bioresource Technology, 340, 125601. https://doi.org/10.1016/J.BIORTECH.2021.125601
Zhang, T., Liu, H., & Fang, H. H. P. (2003). Biohydrogen production from starch in wastewater under thermophilic condition. Journal of Environmental Management, 69(2), 149–156. https://doi.org/10.1016/S0301-4797(03)00141-5
Zheng, Y., Zhang, Q., Zhang, Z., Jing, Y., Hu, J., He, C., & Lu, C. (2022). A review on biological recycling in agricultural waste-based biohydrogen production: Recent developments. Bioresource Technology, 347, 126595. https://doi.org/10.1016/J.BIORTECH.2021.126595
Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & Van’t Riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56(6), 1875–1881. https://doi.org/10.1128/AEM.56.6.1875-1881.1990


電子全文 電子全文(網際網路公開日期:20250731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top