|
Ahmed, S. F., Mofijur, M., Nahrin, M., Chowdhury, S. N., Nuzhat, S., Alherek, M., Rafa, N., Ong, H. C., Nghiem, L. D., & Mahlia, T. M. I. (2022). Biohydrogen production from wastewater-based microalgae: Progresses and challenges. International Journal of Hydrogen Energy, 47(88), 37321–37342. https://doi.org/10.1016/J.IJHYDENE.2021.09.178 Akkerman, I., Janssen, M., Rocha, J., & Wijffels, R. H. (2002). Photobiological hydrogen production: Photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy, 27(11–12), 1195–1208. https://doi.org/10.1016/S0360-3199(02)00071-X Al-Mohammedawi, H. H., & Znad, H. (2020). Impact of metal ions and EDTA on photofermentative hydrogen production by Rhodobacter sphaeroides using a mixture of pre-treated brewery and restaurant effluents. Biomass and Bioenergy, 134. https://doi.org/10.1016/j.biombioe.2020.105482 Al-Mohammedawi, H. H., Znad, H., & Eroglu, E. (2018). Synergistic effects and optimization of photo-fermentative hydrogen production of Rhodobacter sphaeroides DSM 158. International Journal of Hydrogen Energy, 43(33), 15823–15834. https://doi.org/10.1016/J.IJHYDENE.2018.06.140 Anwar, M., Lou, S., Chen, L., Li, H., & Hu, Z. (2019). Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. Bioresource Technology, 292. https://doi.org/10.1016/J.BIORTECH.2019.121972 Basak, N., & Das, D. (2007). The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: The present state of the art. World Journal of Microbiology and Biotechnology, 23(1), 31–42. https://doi.org/10.1007/S11274-006-9190-9/METRICS Bisaillon, A., Turcot, J., & Hallenbeck, P. C. (2006). The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. International Journal of Hydrogen Energy, 31(11), 1504–1508. https://doi.org/10.1016/j.ijhydene.2006.06.016 Bolatkhan, K., Kossalbayev, B. D., Zayadan, B. K., Tomo, T., Veziroglu, T. N., & Allakhverdiev, S. I. (2019). Hydrogen production from phototrophic microorganisms: Reality and perspectives. International Journal of Hydrogen Energy, 44(12), 5799–5811. https://doi.org/10.1016/J.IJHYDENE.2019.01.092 Boran, E., Özgür, E., Van Der Burg, J., Yücel, M., Gündüz, U., & Eroglu, I. (2010). Biological hydrogen production by Rhodobacter capsulatus in solar tubular photo bioreactor. Journal of Cleaner Production, 18(SUPPL. 1). https://doi.org/10.1016/J.JCLEPRO.2010.03.018 Boran, E., Özgür, E., Yücel, M., Gündüz, U., & Eroglu, I. (2012). Biohydrogen production by Rhodobacter capsulatus in solar tubular photobioreactor on thick juice dark fermenter effluent. Journal of Cleaner Production, 31, 150–157. https://doi.org/10.1016/J.JCLEPRO.2012.03.020 Boshagh, F., & Rostami, K. (2021). Kinetic models of biological hydrogen production by Enterobacter aerogenes. Biotechnology Letters, 43(2), 435–443. https://doi.org/10.1007/S10529-020-03051-4 Boshagh, F., Rostami, K., & Moazami, N. (2019a). Biohydrogen production by immobilized Enterobacter aerogenes on functionalized multi-walled carbon nanotube. International Journal of Hydrogen Energy, 44(28), 14395–14405. https://doi.org/10.1016/J.IJHYDENE.2018.11.199 Boshagh, F., Rostami, K., & Moazami, N. (2019b). Immobilization of Enterobacter aerogenes on carbon fiber and activated carbon to study hydrogen production enhancement. Biochemical Engineering Journal, 144, 64–72. https://doi.org/10.1016/J.BEJ.2019.01.014 Budiman, M., Wu, T. Y., Ramanan, R. N., Xiao, J., & Hay, W. (2014). Treatment and Reuse of Effluents from Palm Oil, Pulp, and Paper Mills as a Combined Substrate by Using Purple Nonsulfur Bacteria. https://doi.org/10.1021/ie501798f Budiman, P. M., & Wu, T. Y. (2018). Role of chemicals addition in affecting biohydrogen production through photofermentation. Energy Conversion and Management, 165, 509–527. https://doi.org/10.1016/j.enconman.2018.01.058 Chandrasekhar, K., Lee, Y. J., & Lee, D. W. (2015). Biohydrogen production: Strategies to improve process efficiency through microbial routes. In International Journal of Molecular Sciences (Vol. 16, Issue 4, pp. 8266–8293). MDPI AG. https://doi.org/10.3390/ijms16048266 Chen, C. Y., Lu, W. Bin, Liu, C. H., & Chang, J. S. (2008). Improved phototrophic H2 production with Rhodopseudomonas palustris WP3-5 using acetate and butyrate as dual carbon substrates. Bioresource Technology, 99(9), 3609–3616. https://doi.org/10.1016/J.BIORTECH.2007.07.037 Chen, H., Wu, J., Huang, R., Zhang, W., He, W., Deng, Z., Han, Y., Xiao, B., Luo, H., & Qu, W. (2022). Effects of temperature and total solid content on biohydrogen production from dark fermentation of rice straw: Performance and microbial community characteristics. Chemosphere, 286. https://doi.org/10.1016/J.CHEMOSPHERE.2021.131655 Chen, W. H., Tsai, C. W., Lin, Y. L., Chein, R. Y., & Yu, C. T. (2017). Reaction phenomena of high-temperature water gas shift reaction in a membrane reactor. Fuel, 199, 358–371. https://doi.org/10.1016/J.FUEL.2017.03.002 Chen, W., Li, T., Ren, Y., Wang, J., Chen, H., & Wang, Q. (2023). Biological hydrogen with industrial potential: Improvement and prospection in biohydrogen production. Journal of Cleaner Production, 387, 135777. https://doi.org/10.1016/J.JCLEPRO.2022.135777 Chen, W. M., Tseng, Z. J., Lee, K. S., & Chang, J. S. (2005). Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy, 30(10), 1063–1070. https://doi.org/10.1016/J.IJHYDENE.2004.09.008 Chong, M. L., Abdul Rahman, N. A., Rahim, R. A., Aziz, S. A., Shirai, Y., & Hassan, M. A. (2009). Optimization of biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent using response surface methodology. International Journal of Hydrogen Energy, 34(17), 7475–7482. https://doi.org/10.1016/J.IJHYDENE.2009.05.088 Das, S. R., & Basak, N. (2022). Optimization of process parameters for enhanced biohydrogen production using potato waste as substrate by combined dark and photo fermentation. Biomass Conversion and Biorefinery, 1–21. https://doi.org/10.1007/S13399-022-02588-W/METRICS Fuess, L. T., Zaiat, M., & do Nascimento, C. A. O. (2019). Novel insights on the versatility of biohydrogen production from sugarcane vinasse via thermophilic dark fermentation: Impacts of pH-driven operating strategies on acidogenesis metabolite profiles. Bioresource Technology, 286. https://doi.org/10.1016/J.BIORTECH.2019.121379 Gadhamshetty, V., Arudchelvam, Y., Nirmalakhandan, N., & Johnson, D. C. (2010). Modeling dark fermentation for biohydrogen production: ADM1-based model vs. Gompertz model. International Journal of Hydrogen Energy, 35(2), 479–490. https://doi.org/10.1016/J.IJHYDENE.2009.11.007 Gadhe, A., Sonawane, S. S., & Varma, M. N. (2014). Kinetic analysis of biohydrogen production from complex dairy wastewater under optimized condition. International Journal of Hydrogen Energy, 39(3), 1306–1314. https://doi.org/10.1016/J.IJHYDENE.2013.11.022 Goveas, L. C., Nayak, S., Kumar, P. S., Vinayagam, R., Selvaraj, R., & Rangasamy, G. (2023). Recent advances in fermentative biohydrogen production. International Journal of Hydrogen Energy. https://doi.org/10.1016/J.IJHYDENE.2023.04.208 Guo, S., Lu, C., Wang, K., Wang, J., Zhang, Z., Jing, Y., & Zhang, Q. (2020). Enhancement of pH values stability and photo-fermentation biohydrogen production by phosphate buffer. Bioengineered, 11(1), 291–300. https://doi.org/10.1080/21655979.2020.1736239 Hakobyan, L., Gabrielyan, L., & Trchounian, A. (2012). Bio-hydrogen production and the F 0F 1-ATPase activity of Rhodobacter sphaeroides: Effects of various heavy metal ions. International Journal of Hydrogen Energy, 37(23), 17794–17800. https://doi.org/10.1016/J.IJHYDENE.2012.09.091 Hallenbeck, P. C., Lazaro, C. Z., & Sagir, E. (2018). CHAPTER 1: Photosynthesis and Hydrogen from Photosynthetic Microorganisms. Comprehensive Series in Photochemical and Photobiological Sciences, 16, 3–30. https://doi.org/10.1039/9781849737128-00001 Hay, J. X. W., Wu, T. Y., Teh, C. Y., & Jahim, J. Md. (2012). Optimized growth of Rhodobacter sphaeroides O.U.001 using response surface methodology (RSM). JSIR Vol.71(02) [February 2012], 71, 149–154. http://nopr.niscpr.res.in/handle/123456789/13493 Herlevich, A., & Karpuk, M. (1982). Engineering aspects of hydrogen production from photosynthetic bacteria. https://doi.org/10.2172/1179401 Hu, C., Choy, S. Y., & Giannis, A. (2018). Evaluation of Lighting Systems, Carbon Sources, and Bacteria Cultures on Photofermentative Hydrogen Production. Applied Biochemistry and Biotechnology, 185(1), 257–269. https://doi.org/10.1007/S12010-017-2655-5 Hwang, J. H., & Lee, W. H. (2021). Continuous photosynthetic biohydrogen production from acetate-rich wastewater: Influence of light intensity. International Journal of Hydrogen Energy, 46(42), 21812–21821. https://doi.org/10.1016/J.IJHYDENE.2021.04.052 Jabbari, B., Jalilnejad, E., Ghasemzadeh, K., & Iulianelli, A. (2019). Recent progresses in application of membrane bioreactors in production of biohydrogen. Membranes, 9(8). https://doi.org/10.3390/MEMBRANES9080100 Jagadeesan, B., Gerner-Smidt, P., Allard, M. W., Leuillet, S., Winkler, A., Xiao, Y., Chaffron, S., Van Der Vossen, J., Tang, S., Katase, M., McClure, P., Kimura, B., Ching Chai, L., Chapman, J., & Grant, K. (2019). The use of next generation sequencing for improving food safety: Translation into practice. Food Microbiology, 79, 96–115. https://doi.org/10.1016/J.FM.2018.11.005 Jiang, D., Zhang, X., Jing, Y., Zhang, T., Shui, X., Yang, J., Lu, C., Chen, Z., Lei, T., & Zhang, Q. (2022). Towards high light conversion efficiency from photo-fermentative hydrogen production of Arundo donax L. By light–dark duration alternation strategy. Bioresource Technology, 344. https://doi.org/10.1016/J.BIORTECH.2021.126302 Kallastu, A., Malv, E., Aro, V., Meikas, A., Vendelin, M., Kattel, A., Nahku, R., & Kazantseva, J. (2023). Absolute quantification of viable bacteria abundances in food by next-generation sequencing: Quantitative NGS of viable microbes. Current Research in Food Science, 6, 100443. https://doi.org/10.1016/J.CRFS.2023.100443 Kavitha, S., Jayashree, C., Adish Kumar, S., Yeom, I. T., & Rajesh Banu, J. (2014). The enhancement of anaerobic biodegradability of waste activated sludge by surfactant mediated biological pretreatment. Bioresource Technology, 168, 159–166. https://doi.org/10.1016/J.BIORTECH.2014.01.118 Kavitha, S., Rajesh Banu, J., Subitha, G., Ushani, U., & Yeom, I. T. (2016). Impact of thermo-chemo-sonic pretreatment in solubilizing waste activated sludge for biogas production: Energetic analysis and economic assessment. Bioresource Technology, 219, 479–486. https://doi.org/10.1016/J.BIORTECH.2016.07.115 Khanal, S. K., Chen, W. H., Li, L., & Sung, S. (2004). Biological hydrogen production: Effects of pH and intermediate products. International Journal of Hydrogen Energy, 29(11), 1123–1131. https://doi.org/10.1016/J.IJHYDENE.2003.11.002 Kim, D. H., Cha, J., Kang, S., & Kim, M. S. (2013). Continuous photo-fermentative hydrogen production from lactate and lactate-rich acidified food waste. International Journal of Hydrogen Energy, 38(14), 6161–6166. https://doi.org/10.1016/J.IJHYDENE.2012.12.072 Koku, H., Erolu, I., Gündüz, U., Yücel, M., & Türker, L. (2002). Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy, 27(11–12), 1315–1329. https://doi.org/10.1016/S0360-3199(02)00127-1 Kumar, A. N., & Mohan, S. V. (2018). Acidogenic valorization of vegetable waste for short chain carboxylic acids and biohydrogen production: Influence of pretreatment and pH. Journal of Cleaner Production, 203, 1055–1066. https://doi.org/10.1016/J.JCLEPRO.2018.08.198 Laio, G. Z. (2021, June 10). Bio-hydrogen production by immobilized photo bacteria and adding nanoparticles in batch photo fermentations. https://hdl.handle.net/11296/6jd7w3 Lee, C. M., Chen, P. C., Wang, C. C., & Tung, Y. C. (2002). Photohydrogen production using purple nonsulfur bacteria with hydrogen fermentation reactor effluent. International Journal of Hydrogen Energy, 27(11–12), 1309–1313. https://doi.org/10.1016/S0360-3199(02)00102-7 Lee, C. M., Hung, G. J., & Yang, C. F. (2011). Hydrogen production by Rhodopseudomonas palustris WP 3-5 in a serial photobioreactor fed with hydrogen fermentation effluent. Bioresource Technology, 102(18), 8350–8356. https://doi.org/10.1016/J.BIORTECH.2011.04.072 Lee, Y. J., Miyahara, T., & Noike, T. (2002). Effect of pH on microbial hydrogen fermentation. Journal of Chemical Technology & Biotechnology, 77(6), 694–698. https://doi.org/10.1002/JCTB.623 Li, C., & Fang, H. H. P. (2007). Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology, 37(1), 1–39. https://doi.org/10.1080/10643380600729071 Lin, C. Y., Chang, C. C., & Hung, C. H. (2008). Fermentative hydrogen production from starch using natural mixed cultures. International Journal of Hydrogen Energy, 33(10), 2445–2453. https://doi.org/10.1016/J.IJHYDENE.2008.02.069 Lin, C. Y., Hung, C. H., Chen, C. H., Chung, W. T., & Cheng, L. H. (2006). Effects of initial cultivation pH on fermentative hydrogen production from xylose using natural mixed cultures. Process Biochemistry, 41(6), 1383–1390. https://doi.org/10.1016/J.PROCBIO.2006.01.021 Lin, C. Y., & Hung, W. C. (2008). Enhancement of fermentative hydrogen/ethanol production from cellulose using mixed anaerobic cultures. International Journal of Hydrogen Energy, 33(14), 3660–3667. https://doi.org/10.1016/J.IJHYDENE.2008.04.036 Lin, R., Cheng, J., Ding, L., Song, W., Liu, M., Zhou, J., & Cen, K. (2016). Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes. Bioresource Technology, 207, 213–219. https://doi.org/10.1016/J.BIORTECH.2016.02.009 Lu, C., Tahir, N., Li, W., Zhang, Z., Jiang, D., Guo, S., Wang, J., Wang, K., & Zhang, Q. (2020). Enhanced buffer capacity of fermentation broth and biohydrogen production from corn stalk with Na2HPO4/NaH2PO4. Bioresource Technology, 313. https://doi.org/10.1016/J.BIORTECH.2020.123783 Luo, Y., Yang, Q., Nie, W., Yao, Q., Zhang, Z., & Lu, Z. H. (2020). Anchoring IrPdAu Nanoparticles on NH2-SBA-15 for Fast Hydrogen Production from Formic Acid at Room Temperature. ACS Applied Materials and Interfaces, 12(7), 8082–8090. https://doi.org/10.1021/ACSAMI.9B16981/SUPPL_FILE/AM9B16981_SI_001.PDF Martinez-Burgos, W. J., Sydney, E. B., de Paula, D. R., Medeiros, A. B. P., de Carvalho, J. C., Soccol, V. T., de Souza Vandenberghe, L. P., Woiciechowski, A. L., & Soccol, C. R. (2020). Biohydrogen production in cassava processing wastewater using microbial consortia: Process optimization and kinetic analysis of the microbial community. Bioresource Technology, 309. https://doi.org/10.1016/J.BIORTECH.2020.123331 Mauerhofer, L. M., Pappenreiter, P., Paulik, C., Seifert, A. H., Bernacchi, S., & Rittmann, S. K. M. R. (2019). Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology. Folia Microbiologica, 64(3), 321–360. https://doi.org/10.1007/S12223-018-0658-4 Melitos, G., Voulkopoulos, X., & Zabaniotou, A. (2021). Waste to Sustainable Biohydrogen Production Via Photo-Fermentation and Biophotolysis − A Systematic Review. Renewable Energy and Environmental Sustainability, 6, 45. https://doi.org/10.1051/REES/2021047 Mofijur, M., Siddiki, S. Y. A., Shuvho, M. B. A., Djavanroodi, F., Fattah, I. M. R., Ong, H. C., Chowdhury, M. A., & Mahlia, T. M. I. (2021). Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources- A mini-review. Chemosphere, 270, 128642. https://doi.org/10.1016/J.CHEMOSPHERE.2020.128642 Monod, J. (1949). THE GROWTH OF BACTERIAL CULTURES. Annual Review of Microbiology, 3(1), 371–394. https://doi.org/10.1146/ANNUREV.MI.03.100149.002103 Mori Budiman, P., Yeong Wu, T., Nagasundara Ramanan, R., Md Jahim, J., & Ehsan, D. (2015). Improvement of Biohydrogen Production through Combined Reuses of Palm Oil Mill Effluent Together with Pulp and Paper Mill Effluent in Photofermentation. https://doi.org/10.1021/acs.energyfuels.5b01078 Mu, Y., Wang, G., & Yu, H. Q. (2006a). Kinetic modeling of batch hydrogen production process by mixed anaerobic cultures. Bioresource Technology, 97(11), 1302–1307. https://doi.org/10.1016/J.BIORTECH.2005.05.014 Mu, Y., Wang, G., & Yu, H. Q. (2006b). Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures. Enzyme and Microbial Technology, 38(7), 905–913. https://doi.org/10.1016/J.ENZMICTEC.2005.08.016 Mu, Y., Yu, H. Q., & Wang, G. (2007). A kinetic approach to anaerobic hydrogen-producing process. Water Research, 41(5), 1152–1160. https://doi.org/10.1016/J.WATRES.2006.11.047 Mu, Y., Zheng, X. J., Yu, H. Q., & Zhu, R. F. (2006). Biological hydrogen production by anaerobic sludge at various temperatures. International Journal of Hydrogen Energy, 31(6), 780–785. https://doi.org/10.1016/j.ijhydene.2005.06.016 Mullai, P., Rene, E. R., & Sridevi, K. (2013). Biohydrogen production and kinetic modeling using sediment microorganisms of pichavaram mangroves, India. BioMed Research International, 2013. https://doi.org/10.1155/2013/265618 Mumme, J., Srocke, F., Heeg, K., & Werner, M. (2014). Use of biochars in anaerobic digestion. Bioresource Technology, 164, 189–197. https://doi.org/10.1016/j.biortech.2014.05.008 Nagy, V., Podmaniczki, A., Vidal-Meireles, A., Kuntam, S., Herman, É., Kovács, L., Tóth, D., Scoma, A., & Tóth, S. Z. (2021). Thin cell layer cultures of Chlamydomonas reinhardtii L159I-N230Y, pgrl1 and pgr5 mutants perform enhanced hydrogen production at sunlight intensity. Bioresource Technology, 333, 125217. https://doi.org/10.1016/J.BIORTECH.2021.125217 Nandi, R., & Sengupta, S. (1998). Microbial Production of Hydrogen: An Overview. Critical Reviews in Microbiology, 24(1), 61–84. https://doi.org/10.1080/10408419891294181 Ntaikou, I., Gavala, H. N., Kornaros, M., & Lyberatos, G. (2008). Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. International Journal of Hydrogen Energy, 33(4), 1153–1163. https://doi.org/10.1016/j.ijhydene.2007.10.053 Ntaikou, I., Gavala, H. N., & Lyberatos, G. (2009). Modeling of fermentative hydrogen production from the bacterium Ruminococcus albus: Definition of metabolism and kinetics during growth on glucose. International Journal of Hydrogen Energy, 34(9), 3697–3709. https://doi.org/10.1016/J.IJHYDENE.2009.02.057 Oflaz, F. B., & Koku, H. (2021). Pilot-scale outdoor photofermentative hydrogen production from molasses using pH control. International Journal of Hydrogen Energy, 46(57), 29160–29172. https://doi.org/10.1016/J.IJHYDENE.2020.10.086 Oh, Y. K., Seol, E. H., Kim, J. R., & Park, S. (2003). Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. International Journal of Hydrogen Energy, 28(12), 1353–1359. https://doi.org/10.1016/S0360-3199(03)00024-7 Oliveira, T. V., Bessa, L. O., Oliveira, F. S., Ferreira, J. S., Batista, F. R. X., & Cardoso, V. L. (2014). Insights into the effect of carbon and nitrogen source on hydrogen production by photosynthetic bacteria. Chemical Engineering Transactions, 38, 367–372. https://doi.org/10.3303/CET1438062 O-Thong, S., Prasertsan, P., Karakashev, D., & Angelidaki, I. (2008). Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. International Journal of Hydrogen Energy, 33(4), 1204–1214. https://doi.org/10.1016/J.IJHYDENE.2007.12.015 Paquete, C. M., Rosenbaum, M. A., Bañeras, L., Rotaru, A. E., & Puig, S. (2022). Let’s chat: Communication between electroactive microorganisms. Bioresource Technology, 347, 126705. https://doi.org/10.1016/J.BIORTECH.2022.126705 Ponnusamy, V. K., Nagappan, S., Bhosale, R. R., Lay, C. H., Duc Nguyen, D., Pugazhendhi, A., Chang, S. W., & Kumar, G. (2020). Review on sustainable production of biochar through hydrothermal liquefaction: Physico-chemical properties and applications. Bioresource Technology, 310, 123414. https://doi.org/10.1016/J.BIORTECH.2020.123414 Prabakar, D., Manimudi, V. T., Suvetha K, S., Sampath, S., Mahapatra, D. M., Rajendran, K., & Pugazhendhi, A. (2018). Advanced biohydrogen production using pretreated industrial waste: Outlook and prospects. Renewable and Sustainable Energy Reviews, 96, 306–324. https://doi.org/10.1016/J.RSER.2018.08.006 Pradhan, N., Dipasquale, L., d’Ippolito, G., Fontana, A., Panico, A., Pirozzi, F., Lens, P. N. L., & Esposito, G. (2016). Model development and experimental validation of capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana. Water Research, 99, 225–234. https://doi.org/10.1016/J.WATRES.2016.04.063 Procházka, J., Dolejš, P., MácA, J., & Dohányos, M. (2012). Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Applied Microbiology and Biotechnology, 93(1), 439–447. https://doi.org/10.1007/S00253-011-3625-4 Rajesh Banu, J., Ginni, G., Kavitha, S., Yukesh Kannah, R., Adish Kumar, S., Bhatia, S. K., & Kumar, G. (2021). Integrated biorefinery routes of biohydrogen: Possible utilization of acidogenic fermentative effluent. Bioresource Technology, 319, 124241. https://doi.org/10.1016/J.BIORTECH.2020.124241 Rezaeitavabe, F., Saadat, S., Talebbeydokhti, N., Sartaj, M., & Tabatabaei, M. (2020). Enhancing bio-hydrogen production from food waste in single-stage hybrid dark-photo fermentation by addition of two waste materials (exhausted resin and biochar). Biomass and Bioenergy, 143, 105846. https://doi.org/10.1016/J.BIOMBIOE.2020.105846 Salerno, M. B., Park, W., Zuo, Y., & Logan, B. E. (2006). Inhibition of biohydrogen production by ammonia. Water Research, 40(6), 1167–1172. https://doi.org/10.1016/j.watres.2006.01.024 Sasaki, K., Morita, M., Hirano, S. I., Ohmura, N., & Igarashi, Y. (2011). Decreasing ammonia inhibition in thermophilic methanogenic bioreactors using carbon fiber textiles. Applied Microbiology and Biotechnology, 90(4), 1555–1561. https://doi.org/10.1007/S00253-011-3215-5 Sharma, P., & Melkania, U. (2017). Biochar-enhanced hydrogen production from organic fraction of municipal solid waste using co-culture of Enterobacter aerogenes and E. coli. International Journal of Hydrogen Energy, 42(30), 18865–18874. https://doi.org/10.1016/J.IJHYDENE.2017.06.171 Singh, L., & Wahid, Z. A. (2015). Methods for enhancing bio-hydrogen production from biological process: A review. In Journal of Industrial and Engineering Chemistry (Vol. 21, pp. 70–80). Korean Society of Industrial Engineering Chemistry. https://doi.org/10.1016/j.jiec.2014.05.035 Sinharoy, A., Baskaran, D., & Pakshirajan, K. (2019). Sustainable biohydrogen production by dark fermentation using carbon monoxide as the sole carbon and energy source. International Journal of Hydrogen Energy, 44(26), 13114–13125. https://doi.org/10.1016/J.IJHYDENE.2019.03.130 Sugiarto, Y., Sunyoto, N. M. S., Zhu, M., Jones, I., & Zhang, D. (2021). Effect of biochar in enhancing hydrogen production by mesophilic anaerobic digestion of food wastes: The role of minerals. International Journal of Hydrogen Energy, 46(5), 3695–3703. https://doi.org/10.1016/J.IJHYDENE.2020.10.256 Sunyoto, N. M. S., Zhu, M., Zhang, Z., & Zhang, D. (2016). Effect of biochar addition on hydrogen and methane production in two-phase anaerobic digestion of aqueous carbohydrates food waste. Bioresource Technology, 219, 29–36. https://doi.org/10.1016/j.biortech.2016.07.089 Tian, X., Liao, Q., Zhu, X., Wang, Y., Zhang, P., Li, J., & Wang, H. (2010). Characteristics of a biofilm photobioreactor as applied to photo-hydrogen production. Bioresource Technology, 101(3), 977–983. https://doi.org/10.1016/J.BIORTECH.2009.09.007 Vargas, S. R., & Zaiat, M. (2021). Inuence of Sulfur and Light Intensity in Nutrient Removal, and Hydrogen and Ethanol Production by Optimized Biomass of Chlamydomonas Reinhardtii in Batch Anaerobic Photobioreactors. https://doi.org/10.21203/rs.3.rs-355711/v1 Wang, G., Mu, Y., & Yu, H. Q. (2005). Response surface analysis to evaluate the influence of pH, temperature and substrate concentration on the acidogenesis of sucrose-rich wastewater. Biochemical Engineering Journal, 23(2), 175–184. https://doi.org/10.1016/j.bej.2005.01.002 Wang, J., & Wan, W. (2008a). Effect of temperature on fermentative hydrogen production by mixed cultures. International Journal of Hydrogen Energy, 33(20), 5392–5397. https://doi.org/10.1016/j.ijhydene.2008.07.010 Wang, J., & Wan, W. (2008b). The effect of substrate concentration on biohydrogen production by using kinetic models. Science in China, Series B: Chemistry, 51(11), 1110–1117. https://doi.org/10.1007/S11426-008-0104-6/METRICS Wang, J., & Yin, Y. (2018). Fermentative hydrogen production using various biomass-based materials as feedstock. Renewable and Sustainable Energy Reviews, 92, 284–306. https://doi.org/10.1016/J.RSER.2018.04.033 Wei, X., Feng, J., Cao, W., Li, Q., & Guo, L. (2021). Photo-biological hydrogen production by a temperature-tolerant mutant of Rhodobacter capsulatus isolated by transposon mutagenesis. Bioresource Technology, 320. https://doi.org/10.1016/J.BIORTECH.2020.124286 Wong, Y. M., Wu, T. Y., & Juan, J. C. (2014). A review of sustainable hydrogen production using seed sludge via dark fermentation. Renewable and Sustainable Energy Reviews, 34, 471–482. https://doi.org/10.1016/J.RSER.2014.03.008 Xie, G. J., Liu, B. F., Wen, H. Q., Li, Q., Yang, C. Y., Han, W. L., Nan, J., & Ren, N. Q. (2013). Bioflocculation of photo-fermentative bacteria induced by calcium ion for enhancing hydrogen production. International Journal of Hydrogen Energy, 38(19), 7780–7788. https://doi.org/10.1016/J.IJHYDENE.2013.04.099 Xing, D., Ren, N., Wang, A., Li, Q., Feng, Y., & Ma, F. (2008). Continuous hydrogen production of auto-aggregative Ethanoligenens harbinense YUAN-3 under non-sterile condition. International Journal of Hydrogen Energy, 33(5), 1489–1495. https://doi.org/10.1016/j.ijhydene.2007.09.038 Yahaya, E., Lim, S. W., Yeo, W. S., & Nandong, J. (2022). A review on process modeling and design of biohydrogen. International Journal of Hydrogen Energy, 47(71), 30404–30427. https://doi.org/10.1016/J.IJHYDENE.2022.06.317 Yang, E., Omar Mohamed, H., Park, S. G., Obaid, M., Al-Qaradawi, S. Y., Castaño, P., Chon, K., & Chae, K. J. (2021). A review on self-sustainable microbial electrolysis cells for electro-biohydrogen production via coupling with carbon-neutral renewable energy technologies. Bioresource Technology, 320, 124363. https://doi.org/10.1016/J.BIORTECH.2020.124363 Zamri, M. F. M. A., Hasmady, S., Akhiar, A., Ideris, F., Shamsuddin, A. H., Mofijur, M., Fattah, I. M. R., & Mahlia, T. M. I. (2021). A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste. Renewable and Sustainable Energy Reviews, 137, 110637. https://doi.org/10.1016/J.RSER.2020.110637 Zhang, H., Li, Y., Chen, L., & Zhang, Q. (2021). Effect of zinc ion on photo-fermentative hydrogen production performance, kinetics and electronic distribution in biohydrogen production by HAU-M1. Bioresource Technology, 324. https://doi.org/10.1016/J.BIORTECH.2021.124680 Zhang, Q., Liu, H., Shui, X., Li, Y., & Zhang, Z. (2022). Research progress of additives in photobiological hydrogen production system to enhance biohydrogen. Bioresource Technology, 362, 127787. https://doi.org/10.1016/J.BIORTECH.2022.127787 Zhang, Q., Zhu, S., Zhang, Z., Zhang, H., & Xia, C. (2021). Enhancement strategies for photo-fermentative biohydrogen production: A review. Bioresource Technology, 340, 125601. https://doi.org/10.1016/J.BIORTECH.2021.125601 Zhang, T., Liu, H., & Fang, H. H. P. (2003). Biohydrogen production from starch in wastewater under thermophilic condition. Journal of Environmental Management, 69(2), 149–156. https://doi.org/10.1016/S0301-4797(03)00141-5 Zheng, Y., Zhang, Q., Zhang, Z., Jing, Y., Hu, J., He, C., & Lu, C. (2022). A review on biological recycling in agricultural waste-based biohydrogen production: Recent developments. Bioresource Technology, 347, 126595. https://doi.org/10.1016/J.BIORTECH.2021.126595 Zwietering, M. H., Jongenburger, I., Rombouts, F. M., & Van’t Riet, K. (1990). Modeling of the bacterial growth curve. Applied and Environmental Microbiology, 56(6), 1875–1881. https://doi.org/10.1128/AEM.56.6.1875-1881.1990
|