跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/16 02:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫藝誠
研究生(外文):SUN, YI-CHENG
論文名稱:以粗甘油作為碳源大量生產α-酮戊二酸之研究
論文名稱(外文):High production of α-ketoglutarate based on crude glycerol
指導教授:趙雲鵬
指導教授(外文):Chao, Yun-Peng
口試委員:姜中人李思禹趙雲鵬
口試委員(外文):Chiang, Chung-JenLi, Si-YuChao, Yun-Peng
口試日期:2023-07-28
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:104
中文關鍵詞:大腸桿菌α-酮戊二酸
外文關鍵詞:Escherichia coliα-Ketoglutaric acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:47
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之主旨為利用基因工程對大腸桿菌的代謝途徑進行修改,並配合基因編輯技術強化菌株對碳源之代謝能力及生產目標化學品的代謝途徑,最後使用不同的發酵策略提升目標產物在發酵過程中的產量、產率及轉化率。
In this study, the technology of genetic engineering was applied to modify metabolic pathways of Escherichia coli for overproduction of α-ketoglutarate. The engineered pathways involve sugar metabolism and the synthetic pathway leading to the formation of α-ketoglutarate. Furthermore, various fermentation strategies were empolyed to improve the production yield of and the conversion yiled of α-ketoglutarate.
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 粗甘油 (Crude glycerol) 2
1.2.2 α-酮戊二酸 (Alpha Ketoglutaric acid) 2
1.2.3 生產α-酮戊二酸之菌株 4
1.3 研究動機 5
第二章 實驗方法與材料 6
2.1 菌株儲存與培養 6
2.1.1 菌株儲存 6
2.1.2 菌株培養 7
2.2 DNA(Dexyribonucleic acid)之純化與萃取 8
2.2.1 染色體萃取 8
2.2.2 質體萃取(Plasmid DNA extraction) 9
2.2.3 瓊脂凝膠萃取DNA片段 11
2.3 鏈鎖聚合酶反應 (Polymerase Chain Reaction, PCR) 12
2.4 DNA濃度之量測 13
2.5 基因重組技術 14
2.5.1 凝膠電泳法(Gel electrophoresis) 14
2.5.2 In-Fusion 重組反應 16
2.5.3 λ Red同源重組 (λ Red homologous recombination) 17
2.5.4 位點特異性重組 (Site-specific recombination, SSR) 18
2.5.5 質體插入染色體 (Insertional plasmid) 20
2.6 大腸桿菌勝任細胞(Competent Cell)的製備 22
2.6.1 制備化學法之大腸桿菌勝任細胞 22
2.6.2 製備電擊穿透法之大腸桿菌勝任細胞 23
2.7 大腸桿菌轉化作用(Transformation) 24
2.7.1 化學法製備勝任細胞之轉形 24
2.7.2 電擊穿透法製備勝任細胞之轉形 25
2.8 大腸桿菌P1轉導(Transduction) 26
2.8.1 P1裂解液製備 26
2.8.2 執行P1轉導 27
2.9 菌株馴養 28
2.10 CRISPR / Cas9 剔除質體p15A-MutD5 29
2.11 重組菌株製備 30
2.12 培養基配置 31
2.12.1 M9 salt培養基 31
2.12.2 M9F培養基 31
2.12.3 SMAC salt培養基 32
2.13 醱酵條件 32
2.13.1 搖瓶醱酵條件 32
2.13.2 醱酵槽醱酵條件 1 32
2.13.3 醱酵槽醱酵條件 2 33
2.13.4 醱酵槽醱酵條件 3 33
2.13.5 醱酵溶氧量DO (Dissolved Oxygen) 33
2.14 重組質體建構 34
2.14.1 建構質體pLam-PPS 34
2.14.2 建構質體pUK-NAT-LCI 36
2.14.3 建構質體pTr-CsgBA-LIC 38
2.14.4 建構質體pCL-GFPuv 40
2.14.5 建構質體pND-CsgBA-DocII 42
2.14.6 建構質體pND-CsgBA-CohII 44
第三章 實驗結果與討論 46
3.1 α-酮戊二酸醱酵 46
3.1.1 批次醱酵檢測菌株 AKG-13 48
3.1.2 強化基因ppsA 49
3.1.3 批次醱酵檢測菌株 AKG-14 51
3.1.4 饋料批次醱酵檢測菌株 AKG-14 52
3.1.5 剔除mdhA基因 55
3.1.6 使用高濃度粗甘油進行批次醱酵檢測菌株 AKG-14-157
3.1.7 二階段進料醱酵檢測菌株 AKG-14-1 58
3.1.8 降低進料的氮源濃度檢測菌株 AKG-14-1 59
3.1.9 低溶氧醱酵檢測菌株 AKG-14-1 60
3.1.10 微溶氧醱酵檢測菌株 AKG-14-1 62
3.1.11 剔除kgtP基因 63
3.1.12 醱酵表現整理 65
3.2 細胞固定化 65
3.2.1 觀察LCI蛋白細胞對聚丙烯材質的吸附現象 66
3.2.2 觀察LCI蛋白在Curli蛋白的幫助下細胞對聚丙烯材質的吸附現象 68
3.2.3 觀察CsgB、CsgA蛋白結合 CohII、DocII蛋白在細胞間彼此吸附的現象 71
第四章 結論與未來展望 73
第五章 參考文獻 75
附錄 79
附錄一 研究中所使用到之質體圖 79
附錄二 實驗器材 82
附錄三 數據分析 84
附錄四 引子序列 93

1. SUN, Wei; HUANG, Chenchen. Predictions of carbon emission intensity based on
factor analysis and an improved extreme learning machine from the perspective
of carbon emission efficiency. Journal of Cleaner Production, 2022,
338:130414.
2. LIU, Zhu, et al. Real-time carbon emission accounting technology toward
carbon neutrality. Engineering, 2022.
3. KO, Yoo-Sung, et al. Tools and strategies of systems metabolic engineering
for the development of microbial cell factories for chemical production.
Chemical Society Reviews, 2020, 49.14: 4615-4636.
4. KAUR, Jaspreet, et al. Valorisation of crude glycerol to value-added
products: Perspectives of process technology, economics and environmental
issues. Biotechnology Reports, 2020, 27: e00487..
5. KUMAR, Lalit R., et al. A review on variation in crude glycerol composition,
bio-valorization of crude and purified glycerol as carbon source for lipid
production. Bioresource technology, 2019, 293: 122155.
6. Guo HW, Du GC, Chen JW, et al. Progress in microbial production of α-
ketoglutarate. Chin J Biotech, 2013, 29(2): 141−152.
7. Otto, C., Yovkova, V. & Barth, G. Overproduction and secretion of α-
ketoglutaric acid by microorganisms. Appl Microbiol Biotechnol 92, 689–695
(2011).
8. LIU, Shaojuan; HE, Liuqin; YAO, Kang. The antioxidative function of alpha-
ketoglutarate and its applications. BioMed research international, 2018,
2018.
9. GYANWALI, Bibek, et al. Alpha-Ketoglutarate dietary supplementation to
improve health in humans. Trends in Endocrinology & Metabolism, 2021.
10. MOSER, P. M., et al. Verwendung von alpha-Ketoglutarsäure und 5-Hydroxy-
methylfurfural zur Reduktion von oxidativem Stress. CYLP GmbH. Patent
EP1842536 A, 2007, 1: 148.
11. SU, Yuan, et al. Alpha-ketoglutarate extends Drosophila lifespan by
inhibiting mTOR and activating AMPK. Aging (Albany NY), 2019, 11.12: 4183.
12. CAI, Xingcai, et al. α-Ketoglutarate prevents skeletal muscle protein
degradation and muscle atrophy through PHD3/ADRB2 pathway. The FASEB
Journal, 2018, 32.1: 488.
13. LUO, Zhengshan, et al. Comparative analysis of the chemical and
biochemical synthesis of keto acids. Biotechnology advances, 2021,
47: 107706.
14. BARRETT, Devin G.; YOUSAF, Muhammad N. Poly (triol α-ketoglutarate) as
biodegradable, chemoselective, and mechanically tunable elastomers.
Macromolecules, 2008, 41.17: 6347-6352.
15. LOCKWOOD, Lewis B.; STODOLA, Frank H. Preliminary studies on the production
of α-ketoglutaric acid by Pseudomonas fluorescens. Journal of Biological
Chemistry, 1946, 164.1: 81-83.
16. ASAI, T., et al. On α-ketoglutaric acid fermentation. The Journal of General
and Applied Microbiology, 1955, 1.4: 308-346.
17. CHERNYAVSKAYA, O. G., et al. Synthesis of α-ketoglutaric acid by Yarrowia
lipolytica yeast grown on ethanol. Applied microbiology and biotechnology,
2000, 53: 152-158.
18. VERSECK, S.; KARAU, A.; WEBER, M. Fermentative Herstellung von alpha-
Ketoglutarsäure. Evonik Degussa GmbH. Patent DE, 2007, 10.2007: 051.
19. VERSECK, S.; KARAU, A.; WEBER, M. Fermentative production of alpha-
ketoglutaric acid. Evonik Degussa GmbH. Patent WO2009053489, 2009.
20. ZHANG, Dandan, et al. Enhancement of [alpha]-ketoglutarate production in
Torulopsis glabrata: redistribution of carbon flux from pyruvate to [alpha]-
ketoglutarate. Biotechnology and Bioprocess Engineering: BBE, 2009, 14.2:
134.
21. YOVKOVA, Venelina, et al. Engineering the α-ketoglutarate overproduction
from raw glycerol by overexpression of the genes encoding NADP+-dependent
isocitrate dehydrogenase and pyruvate carboxylase in Yarrowia lipolytica.
Applied microbiology and biotechnology, 2014, 98: 2003-2013.
22. KAMZOLOVA, Svetlana V.; MORGUNOV, Igor G. Optimization of medium composition
and fermentation conditions for α-ketoglutaric acid production from
biodiesel waste by Yarrowia lipolytica. Applied Microbiology and
Biotechnology, 2020, 104.18: 7979-7989.
23. TOMASZEWSKA-HETMAN, Ludwika, et al. Enhancement of α-Ketoglutaric Acid
Production by Yarrowia lipolytica Grown on Mixed Renewable Carbon Sources
through Adjustment of Culture Conditions. Catalysts, 2022, 13.1: 14.
24. CHEN, Xiulai, et al. Pathway engineering of Escherichia coli for α‐
ketoglutaric acid production. Biotechnology and Bioengineering, 2020, 117.9:
2791-2801.
25. 呂泉穎。「醱酵生產生物基化學品的策略」。碩士論文,逢甲大學化學工程學系,2021。
26. STOTTMEISTER, U., et al. White biotechnology for green chemistry:
fermentative 2-oxocarboxylic acids as novel building blocks for subsequent
chemical syntheses. Journal of Industrial Microbiology and Biotechnology,
2005, 32.11-12: 651-664.
27. BURGARD, Anthony, et al. Development of a commercial scale
process for production of 1, 4-butanediol from sugar. Current opinion
in biotechnology, 2016, 42: 118-125.
28. GONG, Weibin, et al. Solution structure of LCI, a novel antimicrobial
peptide from Bacillus subtilis. Biochemistry, 2011, 50.18: 3621-3627.
29. RÜBSAM, Kristin, et al. Directed evolution of polypropylene and
polystyrene binding peptides. Biotechnology and bioengineering,
2018, 115.2: 321-330.
30. BARNHART, Michelle M.; CHAPMAN, Matthew R. Curli
biogenesis and function. Annu. Rev. Microbiol., 2006, 60: 131-147.
31. ZDZISIŃSKA, Barbara; ŻUREK, Aleksandra; KANDEFER-
SZERSZEŃ, Martyna. Alpha-ketoglutarate as a molecule with
pleiotropic activity: well-known and novel possibilities of therapeutic
use. Archivum immunologiae et therapiae experimentalis, 2017, 65:21-36.

電子全文 電子全文(網際網路公開日期:20250731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top