1. SUN, Wei; HUANG, Chenchen. Predictions of carbon emission intensity based on
factor analysis and an improved extreme learning machine from the perspective
of carbon emission efficiency. Journal of Cleaner Production, 2022,
338:130414.
2. LIU, Zhu, et al. Real-time carbon emission accounting technology toward
carbon neutrality. Engineering, 2022.
3. KO, Yoo-Sung, et al. Tools and strategies of systems metabolic engineering
for the development of microbial cell factories for chemical production.
Chemical Society Reviews, 2020, 49.14: 4615-4636.
4. KAUR, Jaspreet, et al. Valorisation of crude glycerol to value-added
products: Perspectives of process technology, economics and environmental
issues. Biotechnology Reports, 2020, 27: e00487..
5. KUMAR, Lalit R., et al. A review on variation in crude glycerol composition,
bio-valorization of crude and purified glycerol as carbon source for lipid
production. Bioresource technology, 2019, 293: 122155.
6. Guo HW, Du GC, Chen JW, et al. Progress in microbial production of α-
ketoglutarate. Chin J Biotech, 2013, 29(2): 141−152.
7. Otto, C., Yovkova, V. & Barth, G. Overproduction and secretion of α-
ketoglutaric acid by microorganisms. Appl Microbiol Biotechnol 92, 689–695
(2011).
8. LIU, Shaojuan; HE, Liuqin; YAO, Kang. The antioxidative function of alpha-
ketoglutarate and its applications. BioMed research international, 2018,
2018.
9. GYANWALI, Bibek, et al. Alpha-Ketoglutarate dietary supplementation to
improve health in humans. Trends in Endocrinology & Metabolism, 2021.
10. MOSER, P. M., et al. Verwendung von alpha-Ketoglutarsäure und 5-Hydroxy-
methylfurfural zur Reduktion von oxidativem Stress. CYLP GmbH. Patent
EP1842536 A, 2007, 1: 148.
11. SU, Yuan, et al. Alpha-ketoglutarate extends Drosophila lifespan by
inhibiting mTOR and activating AMPK. Aging (Albany NY), 2019, 11.12: 4183.
12. CAI, Xingcai, et al. α-Ketoglutarate prevents skeletal muscle protein
degradation and muscle atrophy through PHD3/ADRB2 pathway. The FASEB
Journal, 2018, 32.1: 488.
13. LUO, Zhengshan, et al. Comparative analysis of the chemical and
biochemical synthesis of keto acids. Biotechnology advances, 2021,
47: 107706.
14. BARRETT, Devin G.; YOUSAF, Muhammad N. Poly (triol α-ketoglutarate) as
biodegradable, chemoselective, and mechanically tunable elastomers.
Macromolecules, 2008, 41.17: 6347-6352.
15. LOCKWOOD, Lewis B.; STODOLA, Frank H. Preliminary studies on the production
of α-ketoglutaric acid by Pseudomonas fluorescens. Journal of Biological
Chemistry, 1946, 164.1: 81-83.
16. ASAI, T., et al. On α-ketoglutaric acid fermentation. The Journal of General
and Applied Microbiology, 1955, 1.4: 308-346.
17. CHERNYAVSKAYA, O. G., et al. Synthesis of α-ketoglutaric acid by Yarrowia
lipolytica yeast grown on ethanol. Applied microbiology and biotechnology,
2000, 53: 152-158.
18. VERSECK, S.; KARAU, A.; WEBER, M. Fermentative Herstellung von alpha-
Ketoglutarsäure. Evonik Degussa GmbH. Patent DE, 2007, 10.2007: 051.
19. VERSECK, S.; KARAU, A.; WEBER, M. Fermentative production of alpha-
ketoglutaric acid. Evonik Degussa GmbH. Patent WO2009053489, 2009.
20. ZHANG, Dandan, et al. Enhancement of [alpha]-ketoglutarate production in
Torulopsis glabrata: redistribution of carbon flux from pyruvate to [alpha]-
ketoglutarate. Biotechnology and Bioprocess Engineering: BBE, 2009, 14.2:
134.
21. YOVKOVA, Venelina, et al. Engineering the α-ketoglutarate overproduction
from raw glycerol by overexpression of the genes encoding NADP+-dependent
isocitrate dehydrogenase and pyruvate carboxylase in Yarrowia lipolytica.
Applied microbiology and biotechnology, 2014, 98: 2003-2013.
22. KAMZOLOVA, Svetlana V.; MORGUNOV, Igor G. Optimization of medium composition
and fermentation conditions for α-ketoglutaric acid production from
biodiesel waste by Yarrowia lipolytica. Applied Microbiology and
Biotechnology, 2020, 104.18: 7979-7989.
23. TOMASZEWSKA-HETMAN, Ludwika, et al. Enhancement of α-Ketoglutaric Acid
Production by Yarrowia lipolytica Grown on Mixed Renewable Carbon Sources
through Adjustment of Culture Conditions. Catalysts, 2022, 13.1: 14.
24. CHEN, Xiulai, et al. Pathway engineering of Escherichia coli for α‐
ketoglutaric acid production. Biotechnology and Bioengineering, 2020, 117.9:
2791-2801.
25. 呂泉穎。「醱酵生產生物基化學品的策略」。碩士論文,逢甲大學化學工程學系,2021。26. STOTTMEISTER, U., et al. White biotechnology for green chemistry:
fermentative 2-oxocarboxylic acids as novel building blocks for subsequent
chemical syntheses. Journal of Industrial Microbiology and Biotechnology,
2005, 32.11-12: 651-664.
27. BURGARD, Anthony, et al. Development of a commercial scale
process for production of 1, 4-butanediol from sugar. Current opinion
in biotechnology, 2016, 42: 118-125.
28. GONG, Weibin, et al. Solution structure of LCI, a novel antimicrobial
peptide from Bacillus subtilis. Biochemistry, 2011, 50.18: 3621-3627.
29. RÜBSAM, Kristin, et al. Directed evolution of polypropylene and
polystyrene binding peptides. Biotechnology and bioengineering,
2018, 115.2: 321-330.
30. BARNHART, Michelle M.; CHAPMAN, Matthew R. Curli
biogenesis and function. Annu. Rev. Microbiol., 2006, 60: 131-147.
31. ZDZISIŃSKA, Barbara; ŻUREK, Aleksandra; KANDEFER-
SZERSZEŃ, Martyna. Alpha-ketoglutarate as a molecule with
pleiotropic activity: well-known and novel possibilities of therapeutic
use. Archivum immunologiae et therapiae experimentalis, 2017, 65:21-36.