跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/22 23:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:梁珮蓉
研究生(外文):LIANG, PEI-JUNG
論文名稱:奈米碳管摻雜六苯並蒄 (HBC-x,x=-F、-OMe) 生長 NiCu-LDH 應用於全固態不對稱超級電容器之研究
論文名稱(外文):NiCu-LDH Grown on Hexabenzocoronene (HBC-x,x=-F、-OMe) Doped Carbon Nanotubes and Applied to All-Solid-State Asymmetric Supercapacitors
指導教授:陳協志陳協志引用關係
指導教授(外文):CHEN, HSIEH-CHIH
口試委員:陳協志王迪彥張育誠
口試委員(外文):CHEN, HSIEH-CHIHWANG, DI-YANCHANG, YU-CHENG
口試日期:2023-06-28
學位類別:碩士
校院名稱:逢甲大學
系所名稱:纖維與複合材料學系
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:71
中文關鍵詞:超級電容器六苯並蒄奈米碳管層狀雙氫氧化物
外文關鍵詞:SupercapacitorsHexabenzocoroneneCarbon nanotubeLayered Double Hydroxides
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
將六苯並蒄摻雜在奈米碳管中製作成HBC/CNT 紙作為本次實驗之基材。藉由3D 六苯並蒄堅固的自組裝結構,並摻雜在奈米碳管中,以此來改善奈米碳管在長時間充/放電下產生的團聚,造成電容損失的問題。添加HBC能有效提升電極的電化學性能以及長期循環穩定性。在添加六苯並蒄後,在1 A/g電流密度下,比電容從原本的2528 F/g提升到4562 F/g;在10 A/g電流密度下,經過1000次充/放電循環後,電容保持率從原本的91 %提升至94.3 %。同時,利用不同官能基 (-F以及-OMe) 配位六苯並蒄外部芳香環,改變六苯並蒄的電子傳輸特性,得到不同電子傳輸特性的基材,並在上面生長NiCu-LDH獲得混和型超級電容器材料。NiCu-LDH@HBC-F/CNT電極在1 A/g電流密度下,有最高比電容值為5270 F/g;10 A/g電流密度下,經過1000次充/放電循環後,電容保持率為96 %。接著,組裝不對稱全固態超級電容器NiCu-LDH@HBC-F/CNT//CNT,其具有0–1.6 V的寬工作電位範圍,在能量密度21.3 Wh/kg時,功率密度為800 W/kg。在3 A/g的電流密度下進行1000次循環後,元件電容值增加將近3倍,擁有優良的循環穩定性。
HBC/CNT paper is a substrate developed by incorporating hexabenzocoronene (HBC) into carbon nanotubes (CNT). By doping the three-dimensional self-assembled structure of HBC into carbon nanotubes, the problem of capacitance loss caused by aggregation of carbon nanotubes during long-term charge-discharge cycles can be improved. The addition of HBC effectively improves the electrochemical performance and long-term cycle stability of the electrode. After incorporation of hexabenzocoronene, the specific capacitance of the electrode increased from 2528 F/g to 4562 F/g at a current density of 1 A/g. Moreover, the capacitance retention increased from 91% to 94.3% after 1000 charge-discharge cycles at a current density of 10 A/g. Furthermore, by coordinating different functional groups (-F and -OMe) to the peripheral aromatic ring of hexabenzocoronene, the electron transfer properties of the material can be altered. This allows the creation of substrates with different electron transfer properties on which NiCu-LDH (nickel-copper layered double hydroxide) can be grown to obtain hybrid supercapacitor materials. The NiCu-LDH@HBC-F/CNT electrode exhibits a maximum specific capacitance of 5270 F/g at a current density of 1 A/g. After charging and discharging 1000 times at a current density of 10A/g, the capacity retention rate was 96%. Subsequently, an asymmetric solid-state supercapacitor NiCu-LDH@HBC-F/CNT//CNT was assembled. It operates over a voltage range of 0-1.6 V, with a power density of 800 W/kg and an energy density of 21.3 Wh/kg. After 1000 cycles at a current density of 3 A/g, the capacitance of the device was almost tripled, showing excellent cycling stability.
目 錄

第一章
緒論 1
第一節
超級電容器 背景 1
1.1-1 能源發展 1
1.1-2 超級電容器之介紹 3
1.1-3 組裝超級電容器 7
1.1-4 材料介紹 10
第二節
超級電容器的性能指標 14
1.2-1 電容定義 14
1.2-2 循環伏安法 15
1.2-3 恆定電流充 /放電 17
1.2-4 交流阻抗 19
第三節
研究動機及目的 23

第二章
實驗方法與儀器 24
第 一 節 實驗材料 25
第 二 節 實驗方法 26
2.2-1 HBC-x/CNT紙之製備 26
2.2-2 NiCu-LDH@HBC-x/CNT 電極之製備 28
2.2-3 組裝不對稱全固態超級電容器 29
第 三 節 電極材料分析 30
第 四 節 電化學 分析 31
2.4-1 電極電化學分析參數 31
2.4-2 電容器電化學分析參數 32

第三章
結果與討論 33
第一節
NiCu-LDH@HBC-x/CNT電極 33
3.1-1 添加 HBC對電極的電化學影響 33
3.1-2 改質後的 HBC對電極的電化學性能影響 37
3.1-3 NiCu-LDH@HBC-F/CNT電極之物性分析 41
3.1-4 NiCu-LDH@HBC-F/CNT電極之電化學分析 45
第二節
NiCu-LDH@HBC-F/CNT//CNT ASC 51
3.2-1 NiCu-LDH@HBC-F/CNT//CNT超級電容器電化學分析 51
第四章
結論 54
參考文獻 56

圖目錄
圖1 Ragone圖 2
圖2 超級電容器的種類 6
圖3 區分電雙層、擬電容和電池型材料的標準 6
圖4 電解質種類圖 9
圖5 單壁奈米碳管和多壁奈米碳管示意圖 11
圖6 HBC化學結構示意圖 12
圖7 層狀雙氫氧化物 (LDH)結構示意圖 14
圖8 實際測試不同材料之 CV圖 16
圖9 實際測試不同掃描速率下的 CV圖 16
圖10 實際測試不同材料的 GCD圖 18
圖11 實際測試不同 掃描速率下的 GCD圖 18
圖12 奈奎斯特示意圖 20
圖13 波特圖之示意圖 (a)波特相位角圖 (b)波特幅值圖 22
圖14 HBC-H/CNT紙實際照片 27
圖15 HBC-F/CNT紙實際照片 27
圖16 HBC-OMe/CNT 紙實際照片 28
圖17 NiCu-LDH@HBC-x/CNT電極實驗流程圖 29
圖18 組裝超級電容器示意圖 30
圖19 NiCu-LDH@CNT 和 NiCu-LDH@HBC-H/CNT 電極的電化學測試(a) CV圖 (b) GCD圖 (c) 奈奎斯特圖 (d) 波特相位角圖。 34
圖20 NiCu-LDH@CNT和 NiCu-LDH@HBC-H/CNT循環測試圖 35
圖21 CNT和 HBC-H/CNT的 XRD圖 36
圖22 化學結構示意圖 (a) HBC-H (b) HBC-F (c) HBC-OMe 以及 HR-TEM圖 (d) HBC-H/CNT (e) HBC-F/CNT (f) HBC-OMe/CNT 水接觸角測試圖 : (g) HBC-H/CNT、 (h) HBC-F/CNT以及 (i) HBC-OMe/CNT 38
圖23 NiCu-LDH@HBC-H/CNT、 NiCu-LDH@HBC-F/CNT 和 NiCu-LDH@HBC-OMe/CNT 的電化學性 能 (a) CV圖 (b) GCD 圖 (c) Nyquist 圖 (d)波特相位角圖 40
圖24 NiCu-LDH@HBC-F/CNT(a)FE-SEM圖 (b)HR-TEM圖 (c) SAED圖
(d)Element mapping圖 41
圖25 NiCu-LDH@HBC-F/CNT(a)XRD圖 (b)BET、 BJH圖 42
圖26 NiCu-LDH@HBC-F/CNT的 XPS圖 (a)全譜圖 (b)Ni 2p (c)Cu 2p (d)O 1s (e) F 1s 44
圖27 NiCu-LDH@HBC-F/CNT 電極的電化學性能: :(a)CV 圖 (b) GCD 圖 (c)不同電流密度下的比電容值和庫侖效率總結;;(d) 循環 測試圖 46
圖28 NiCu-LDH@HBC-F/CNT的電化學儲能機制示意圖 48
圖29 NiCu-LDH@HBC-F/CNT電極 (a)峰值電流與掃描速率之間的關係 (b)氧化峰值電流與對數掃描速率之間的相關性 的 b 值 (c)表面控製過程 (綠色區域 )和擴散控製過程 (橘色區域 )的貢獻 (d)在不同掃描速率下的擴散控制法拉第和電容過程的相對電荷貢獻率。 50
圖30 (a)在 6 M KOH 電解質中以 10 mV/s 的掃描速率下,純 CNT和NiCuLDH@HBC-F/CNT 的 CV 圖;超級電容器 (b)不同電位窗 的 CV 圖 (c) CV 圖 (d)GCD圖 (e)Ragone 圖 (f) 循環測試圖;插圖 :元件點亮的 LED 的照片 53
1. Jiang, Y.; Liu, J. (2019). Definitions of Pseudocapacitive Materials: A Brief Review, Energy Environ. Mater., 2, 30–37.
2. Liu, J.; Wang, J.; Xu, C.; Jiang, H.; Li, C.; Zhang, L.; Lin, J.; Shen, Z. X. (2017). Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design, Adv. Sci., 5, 1700322.
3. Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. (2019). Electrolyte selection for supercapacitive devices: a critical review, Nanoscale Adv., 1, 3807–3835.
4. Vandeginste, V. (2022). A Review of Fabrication Technologies for Carbon Electrode-Based Micro-Supercapacitors, Appl. Sci., 12, 862.
5. Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z. (2010). Graphene-Based Supercapacitor with an Ultrahigh Energy Density, Nano Lett., 10, 4863–4868.
6. Senokos, E.; Reguero, V.; Palma, J. J.; Vilatela, J.; Marcilla, R. (2016). Macroscopic fibres of CNTs as electrodes for multifunctional electric double layer capacitors: from quantum capacitance to device performance, Nanoscale, 8, 3620–3628.
7. Down, M. P.; Rowley-Neale, S. J.; Smith, G. C.; Banks, C. E. (2018).
Fabrication of Graphene Oxide Supercapacitor Devices, Appl. Energy Mater., 1, 707−714.
8. Hussain, I.; Mak, T.; Zhang, K. (2021). Boron-Doped Trimetallic Cu-Ni-Co Oxide Nanoneedles for Supercapacitor Application, Appl. Nano Mater., 4, 129–141.
9. Rehman, J.; Eid, K.; Ali, R.; Fan X.; Murtaza, G.; Faizan, M.; Laref, A.; Zheng, W.; Varma, R. S. (2022). Engineering of Transition Metal Sulfide Nanostructures as Efficient Electrodes for High-Performance Supercapacitors, Appl. Energy Mater., 5, 6481−6498.
10. Meng, Q.; Cai, K.; Chen, Y.; Chen L. (2017). Research progress on conducting polymer based supercapacitor electrode materials, Nano Energy, 36, 268–285.
11. Lei, G.; Chen, D.; Li, Q.; Liu, H.; Shi, Q.; Li, C. (2022). NiCo-layered double hydroxide with cation vacancy defects for high-performance supercapacitors, Electrochim. Acta, 413, 140143.
12. Tyagi, A.; Joshi, M. C.; Shah, A.; Thakur, V. K.; Gupta, R. K. (2019). Hydrothermally Tailored Three-Dimensional Ni–V Layered Double Hydroxide Nanosheets as High-Performance Hybrid Supercapacitor Applications, ACS Omega, 4, 3257−3267.
13. Chen, Y.; Yang, H.; Han, Z.; Bo, Z.; Yan, J.; Cen, K.; Ostrikov, K. K. (2022). MXene-Based Electrodes for Supercapacitor Energy Storage,Energy Fuels., 36, 2390–2406.
14. Conway, B. E.; Birss, V.; Wojtowicz, J. J. (1997). The role and utilization of pseudocapacitance for energy storage by supercapacitors, J. Power Sources, 66, 1–14.
15. Vijaykumar V. J.; Rajaram S. M.; Pritamkumar V. S. (2020). Bismuth-Ferrite-Based Electrochemical Supercapacitors, New York: Springer.
16. Conway. (1999). Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, New York: Springer.
17. Xu, K. (2004). Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chem. Rev., 104, 4303–4418.
18. Pal, B.; Krishnan, S. G.; Vijayan, B. L.; Harilal, M.; Yang, C.C.; Ezema, F. I.; Yusoff, M. M.; Jose, R. (2018). In situ encapsulation of tin oxide and cobalt oxide composite in porous carbon for high-performance energy storage applications, J. Electroanal. Chem., 817, 217–225.
19. Francisco, B. E.; Jones, C. M.; Lee, S. H.; Stoldt, C. R. (2012). Nanostructured all-solid-state supercapacitor based on Li2S-P2S5 glass-ceramic electrolyte, Appl. Phys. Lett., 100, 103902.
20. Łatoszynska, A. A.; Zukowska, G. Z.; Rutkowska, I. A.; Taberna, P. L.; Simon, P.; Kulesza, P. J.; Wieczorek, W. (2015). Non-aqueous gel polymer electrolyte with phosphoric acid ester and its application for quasi solid-state supercapacitors, J. Power Sources, 274, 1147–1154.
21. Lota, G.; Frackowiak, E. (2009). Striking capacitance of carbon/iodide interface, Electrochem. Commum., 11, 87–90.
22. Lota, G.; Fic, K.; Frackowiak, E. (2011). Alkali metal iodide/carbon interface as a source of pseudocapacitance, Electrochem. Commun., 13, 38–41.
23. Bose, S.; Khare, R. A.; Moldenaers, P. (2010). Assessing the strengths and weaknesses of various types of pre-treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: A critical review, Polymer, 51, 975-993.
24. Green, M. J.; Behabtu, N.; Pasquali, M.; Adams, W. W. (2009). Nanotubes as polymers, Polymer, 50, 4979-4997.
25. Grady, B. P. (2011). Caron-nanotubes-polymer composites: manufacture, properties and applications. New Jersey: Wiley.
26. Ribeiro, B.; Botelho, E. C.; Costa, M. L.; Bandeira, C. F. (2017). Carbon nanotube buckypaper reinforced polymer composites: a review, Polímeros, 27.
27. Martins-Júnior, P. A.; Alcântara, C. E.; Resende, R. R.; Ferreira, A. J. (2013). Carbon Nanotubes: Directions and Perspectives in Oral Regenerative Medicine, J. Dent. Res., 92, 575-583.
28. Entani, S.; Kaji, T.; Ikeda, S.; Mori, T.; Kikuzawa, Y.; Takeuchi, H.; Saiki, K. (2009). Fluorine Substitution of Hexa-peri-hexabenzocoronene: Change in Growth Mode and Electronic Structure, J. Phys. Chem. C, 113, 6202–6207.
29. Yen, H. J.; Tsai, H.; Zhou, M.; Holby, E. F.; Choudhury, S.; Chen, A.; Adamska, L.; Tretiak, S.; Sanchez, T.; Iyer, S.; Zhang, H.; Zhu, L.; Lin, H.; Dai, L.; Wu, G.; Wang, H. L. (2016). Structurally Defined 3D Nanographene Assemblies via Bottom-Up Chemical Synthesis for Highly Efficient Lithium Storage, Adv. Mater., 28, 10250–10256.
30. Leonidas T. (2014). Functionalization of Nanographenes: Metallic and Insulating Hexabenzocoronene Derivatives, J. Phys. Chem. C, 118, 1347−1352.
31. Park, J.; Lee, C. W.; Park, J. H.; Joo, S. H.; Kwak, S. K.; Ahn, S.; Kang, S. J. (2018). Capacitive Organic Anode Based on Fluorinated-Contorted Hexabenzocoronene: Applicable to Lithium-Ion and Sodium-Ion Storage Cells, Adv. Sci., 5, 1801365.
32. Park, J.; Joo, S. H.; Kang, M.; Park, J. H.; Kim, B.; Kwak, S. K.; Ahn, S.; Kang, S. J. (2022). Effects of Methoxy Substituents in Contorted Polycyclic Aromatic Hydrocarbons for Pseudocapacitive Charge Storage, ACS Energy Lett., 7, 4142–4149.
33. Jing, C.; Dong, B.; Zhang, Y. (2020). Chemical Modifications of Layered Double Hydroxides in the Supercapacitor, Energy Environ. Mater., 3, 346–379.
34. Gao, X.; Liu, X.; Wu, D.; Qian, B.; Kou, Z.; Pan, Z.; Pang, Y.; Miao, L.; Wang, J. (2019). Significant Role of Al in Ternary Layered Double Hydroxides for Enhancing Electrochemical Performance of Flexible Asymmetric Supercapacitor, Adv. Funct. Mater., 29, 1903879.
35. Wang, Q.; O’Hare, D. (2012). Recent Advances in the Synthesis and Application of Layered Double Hydroxide (LDH) Nanosheets, Chem. Rev., 112, 4124–4155.
36. Arrabito, G.; Bonasera, A.; Prestopino, G.; Orsini, A.; Mattoccia, A.; Martinelli, E.; Pignataro, B.; Medaglia, P. G. (2019). Layered Double Hydroxides: A Toolbox for Chemistry and Biology, Crystals, 9, 361.
37. Su, D.; Tang, Z.; Xiea, J.; Bian, Z.; Zhang, J.; Yang, D.; Zhang, D.; Wang, J.; Liu Y.; Yuan, A.; Kong, Q. (2019). Co, Mn-LDH nanoneedle arrays grown on Ni foam for high performance supercapacitors, Appl. Surf. Sci., 469, 487–494.
38. Zhou, H.; Wu, F.; Fang, L.; Hu, J.; Luo, H.; Guan, T.; Hu, B. S.; Zhou, M. (2020). Layered NiFe-LDH/MXene nanocomposite electrode for high-performance supercapacitor, Int. J. Hydrog. Energy, 45, 13080-13089.
39. Sharma, S.; Chand, P. (2023). Supercapacitor and electrochemical techniques: A brief review, Results Chem., 5, 100885.
40. Wang, Y. F.; Yang, S.Y.; Yue, Y.; Bian, S. W. (2020). Conductive copper-based metal-organic framework nanowire arrays grown on graphene fibers for flexible all-solid-state supercapacitors, J. Alloys Compd, 835, 155238.
41. Sahin, M. E.; Blaabjerg, F.; Sangwongwanich, A. (2022). A Comprehensive Review on Supercapacitor Applications and Developments, Energies, 15, 674.
42. Laschuk, N. O.; Easton, E. B.; Zenkina, O. V. (2021). Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry, RSC Adv., 11, 27925.
43. Manjakkal, L.; Djurdjic, E.; Cvejin, K.; Kulawik, J.; Zaraska, K.; Szwagierczak, D. (2015). Electrochemical Impedance Spectroscopic Analysis of RuO2 Based Thick Film pH Sensors, Electrochim. Acta, 168, 246–255.
44. Silva, B. P. G.; Florio, D. Z.; Brochsztain, S. (2014). Characterization of a Perylenediimide Self-Assembled Monolayer on Indium Tin Oxide Electrodes Using Electrochemical Impedance Spectroscopy, J. Phys. Chem. C, 118, 4103–4112.
45. Muthurasu, A.; Ganesh, V. (2012). Electrochemical characterization of Self-assembled Monolayers (SAMs) of silanes on indium tin oxide (ITO) electrodes – Tuning electron transfer behavior across electrode–electrolyte interface, J. Colloid Interface Sci., 374, 241–249.
46. Muglali, M. I.; Bashir, A.; Terfort, A.; Rohwerder, M. (2011). Electrochemical investigations on stability and protonation behavior of pyridine-terminated aromatic self-assembled monolayers, Phys. Chem. Chem. Phys., 13, 15530-15538.
47. Krishnamoorthy, K.; Pazhamalai, P.; Kim, S. J. (2017). Ruthenium sulfide nanoparticles as a new pseudocapacitive material for supercapacitor, Electrochim. Acta, 227, 85–94.
48. Pauline, S. A.; Mudali, U. K.; Rajendran, N. (2013). Fabrication of nanoporous Sr incorporated TiO2 coating on 316L SS: Evaluation of bioactivity and corrosion protection, Mater. Chem. Phys, 142, 27-36.
49. Zhang, K.; Li, P.; Guo, S.; Jong Jeong, Y.; Jin, B.; Li, X.; Zhang, S.; Zeng, H.; Park, J. H. (2018). An Ångström-level d-spacing controlling synthetic route for MoS2 towards stable intercalation of sodium ions, J. Mater. Chem. A, 6, 22513–22518.
50. Li, Z.; Gadipelli, S.; Li, H.; Howard, C. A.; Brett, D. J. L.; Shearing, P. R.; Guo, Z.; Parkin, I. P.; Li, F. (2020). Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage, Nat. Energy, 5, 160–168.
51. Sun, X.; Wang, G.; Sun, H.; Lu, F.; Yu, M.; Lian, J. (2013). Morphology controlled high performance supercapacitor behaviour of the Ni–Co binary hydroxide system, J. Power Sources, 238, 150–156.
52. Ramachandran, R.; Lan, Y.; Xu, Z.X.; Wang, F. (2020). Construction of NiCo-Layered Double Hydroxide Microspheres from Ni-MOFs for High-Performance Asymmetric Supercapacitors, ACS Appl. Energy Mater., 3, 6633–6643.
53. Amin, K. M.; Krois, K.; Muench, F.; Etzold, B. J. M.; Ensinger, W. (2022). Hierarchical pipe cactus-like Ni/NiCo-LDH core–shell nanotube networks as a self-supported battery-type electrode for supercapacitors with high volumetric energy density, J. Mater. Chem. A, 10, 12473-12488.
電子全文 電子全文(網際網路公開日期:20250731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊