跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) GMT+8:2024/09/18 08:21
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

Author my cdr record
 
twitterline
Author:方佳愉
Author (Eng.):FANG, JIA-YU
Title:開發二氧化碳再利用技術:催化合成有機/無機高價值化合物
Title (Eng.):Development on carbon dioxide utilization technologies: catalytic synthesis of organic/inorganic high-value chemicals
Advisor:陳俊吉陳俊吉 author reflink
Oral Defense Committee:陳佳吟劉丞偉
oral defense date:2023-07-21
degree:Master
Institution:逢甲大學
Department:環境工程與科學學系
Narrow Field:工程學門
Detailed Field:環境工程學類
Types of papers:Academic thesis/ dissertation
Publication Year:2023
Graduated Academic Year:111
language:Chinese
number of pages:99
keyword (chi):二氧化碳再利用綠色溶劑環狀碳酸酯碳酸鹽
keyword (eng):Carbon dioxideUtilizationGreen solventCyclic carbonateCarbonate
Ncl record status:
  • Cited Cited :0
  • HitsHits:56
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:0
  • gshot_favorites title msgFav:0
本研究主要開發二氧化碳(CO2)再利用技術:包括催化 CO2合成有機及無機高價值化合物兩部分,由於 CO2為最大宗的溫室氣體,是導致全球暖化的主因,對於 CO2日益增加帶來的危害,如何降低環
境中 CO2濃度將是迫切需要改善的問題。CO2是一種無毒的碳原料,易於取得的再生資源,因此開發再利用 CO2是必要的。再利用 CO2要達到最大效益,應將捕獲的 CO2轉化為有價值的產品。本研究開發新型離子液體(New ionic liquids, NILs)取代傳統催化劑對 CO2轉換,探討綠色溶劑 Green solvent, GS)成份對 CO2轉換的催化活性能力並進一步提出可能反應機制。研究將 CO2轉換為有機高價化合物環狀碳酸酯和無機高價化合物碳酸鹽兩部分。一、環狀碳酸酯轉化部份,使用 NILs 催化可在溫和條件下 T=100℃和 PCO2=0.7MPa,即可獲得與其他文獻相似的轉換率(34%),相對於現今多數反應條件仍須在 T≧100℃和 PCO2≧4MPa 下,能耗大幅降低,同時具有催化劑合成簡易、成本低以及可使用天然成分製備,對於此 CO2轉換途徑發展出新的潛能。二、於碳酸鹽轉化部分,使用 NILs 催化 CO2可在海水環境提供的天然鈣源和環境條件於 T=25℃和不需對 CO2加壓的條件下,以及反應過程可一鍋反應,不必先吸收 CO2後或將海水中鈣離子和鎂離子預處理在進行碳酸化反應,即可成功轉換為碳酸鹽,其中最佳 NILs 配方催化合成的碳酸鈣具有高純度(96.59%)和結晶度(90.71%),亦可在低 CO2濃度(15%)合成碳酸鹽,最終達成 CO2資源化再利用價值化目標。
This research mainly develops carbon dioxide (CO2) reuse technology: including the synthesis of organic and inorganic high-value compounds by catalyzing CO2. Since CO2 is the largest greenhouse gas and the main cause of global warming, the harm caused by the increasing CO2 , how to reduce the CO2 concentration in the environment will be an urgent problem to be improved. CO2 is a non-toxic carbon raw material and easily obtained renewable resource, so it is necessary to develop and reuse CO2. To achieve maximum benefit in reusing CO2, the captured CO2 should be converted into valuable products. This study develops new ionic liquids (New ionic liquids, NILs) to replace traditional catalysts for CO2 conversion, explores the catalytic activity of green solvent (Green solvent, GS) components for CO2 conversion, and further proposes a possible reaction mechanism. The study converts CO2 into two parts: organic high-valent compound cyclic carbonate and inorganic high-valent compound carbonate. 1. For the conversion of cyclic carbonates, NILs can be used to catalyze T=100°C and PCO2=0.7MPa under mild conditions, and the conversion rate (34%) similar to other literatures can be obtained.
Compared with most of the current reaction conditions still Under the conditions of T≧100℃ and P CO2≧4MPa, the energy consumption is greatly reduced, and at the same time, the catalyst is easy to synthesize, low in cost, and can be prepared using natural ingredients. It has developed new potential for this CO2 conversion pathway. 2. In the carbonate conversion part, the use of NILs to catalyze CO2 can be used in the natural calcium source and environmental conditions provided by the seawater environment under the conditions of T=25°C and no pressurize CO2, and the reaction process can be a one-pot reaction without absorbing CO2 or pre-treating calcium ions and magnesium ions in seawater for carbonation reaction, it can be successfully converted into carbonate.
Among them, the calcium carbonate synthesized by the optimal NILs formula has high purity (96.59%) and crystallinity (90.71%), and can also synthesize carbonate at low CO2 concentration (15%), and finally achieve the goal of CO2 resource reuse and value.
致謝 III
摘要 IV
Abstract V
目錄 VII
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 二氧化碳 3
2.2 環狀碳酸酯合成反應 5
2.2.1 二氧化碳與甘油羧化反應 8
2.2.2 甘油活化 9
2.3 碳酸鹽固碳反應 11
2.3.1 碳酸化 13
2.3.2 CO2捕集 15
2.4 新型離子液體於二氧化碳減量的研究進展 18
2.4.1 新型離子液體(NILs) 18
2.4.2 NILs二氧化碳減量應用 21
第三章 材料與方法 25
3.1 實驗架構 25
3.2 實驗藥品 26
3.3 實驗設計與方法 28
3.3.1 GS製備 28
3.3.2 製備環狀碳酸酯 29
3.3.3 海水(Artificial sea water, ASW)製備 29
3.3.4 製備碳酸鹽 30
3.3.5 回收催化之NILs再催化形成碳酸鹽 30
3.4 分析項目及方法 31
3.4.1 SEM 分析 31
3.4.2 XRD 分析 31
3.4.3 FT-IR 分析 31
3.4.4 NMR分析 31
3.4.5 GC -FID分析 32
3.4.6 ICP-OES分析 33
3.4.7 TGA-DTA分析 33
4.1 結果與討論NILs催化形成環狀碳酸酯結果 34
4.1.1 NILs配方 34
4.2 NILs催化形成碳酸鹽結果 40
4.2.1 NILs配方 40
4.2.2 金屬離子轉化率 43
4.2.3 NILs催化形成碳酸鈣後之定性分析 55
4.2.4 NILs催化形成碳酸鈣之機制 78
4.2.5 NILs回收再利用效率分析 80
第五章 結論與建議 87
5.1 結論 87
5.2 建議 88
第六章 參考文獻 89
[1]Gür, Turgut M., Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies. Progress in Energy and Combustion Science, 2022. 89.
[2]Rafiee, Ahmad, Kaveh Rajab Khalilpour, Dia Milani, and Mehdi Panahi, Trends in CO2 conversion and utilization: A review from process systems perspective. Journal of environmental chemical engineering, 2018. 6(5). 5771-5794.
[3]Al‐Ghussain, Loiy Global warming: Review on driving forces and mitigation. Environmental Progress Sustainable Energy, 2019. 38(1). 13-21.
[4]行政院環保署國家溫室氣體減量法規資訊網<https://ghgrule.epa.gov.tw/qa/qa/3>.
[5]Godin, Jessica, Weizao Liu, Shan Ren, and Chunbao Charles Xu, Advances in recovery and utilization of carbon dioxide: A brief review. Journal of Environmental Chemical Engineering, 2021. 9(4). 105644.
[6]Ahmed Al-Mamoori, Anirudh Krishnamurthy, Ali A. Rownaghi, and FatemeRezaei, Carbon Capture and Utilization Update. Energy Technology, 2017. 5(6).
[7]Yoo, Yunsung, Injun Kim, Dongwook Lee, Won Yong Choi, Jeonghoon Choi, Kyumin Jang, Jinwon Park, and Dongwoo Kang, Review of contemporary research on inorganic CO2 utilization via CO2 conversion into metal carbonate-based materials. Journal of Industrial Engineering Chemistry, 2022.
[8]Kamphuis, Aeilke J., Francesco Picchioni, and Paolo P. Pescarmona, CO2-fixation into cyclic and polymeric carbonates: principles and applications. Green Chemistry, 2019. 21(3). 406-448.
[9]Jang, Kyumin, Dongwook Lee, Won Yong Choi, Jinwon Park, and Yunsung Yoo, A novel approach to mineral carbonation using deep eutectic solvents for the synthesis of nano-sized amorphous CaCO3. Separation Purification Technology, 2023. 311. 123118.
[10]Yoo, Yunsung, Dongwoo Kang, Sangwon Park, and Jinwon Park, Carbon utilization based on post-treatment of desalinated reject brine and effect of structural properties of amines for CaCO3 polymorphs control. Desalination, 2020. 479. 114325.
[11]Zhang, Zhien, Shu-Yuan Pan, Hao Li, Jianchao Cai, Abdul Ghani Olabi, Edward John Anthony, and Vasilije Manovic, Recent advances in carbon dioxide utilization. Renewable sustainable energy reviews, 2020. 125. 109799.
[12]Huang, Kuan, Jia-Yin Zhang, Fujian Liu, and Sheng Dai, Synthesis of porous polymeric catalysts for the conversion of carbon dioxide. Acs Catalysis, 2018. 8(10). 9079-9102.
[13]Rehman, Abdul, Faisal Saleem, Farhan Javed, Amir Ikhlaq, Syed Waqas Ahmad, and Adam Harvey, Recent advances in the synthesis of cyclic carbonates via CO2 cycloaddition to epoxides. Journal of Environmental Chemical Engineering, 2021. 9(2).
[14]Aresta, Michele and Eugenio Quaranta, Carbon dioxide: a substitute for phosgene. Chemtech, 1997. 27(3).
[15]Claver, Carmen, Md Bin Yeamin, Mar Reguero, and Anna M. Masdeu-Bultó, Recent advances in the use of catalysts based on natural products for the conversion of CO2into cyclic carbonates. Green Chemistry, 2020. 22(22). 7665-7706.
[16]Aomchad, Vatcharaporn, Àlex Cristòfol, Francesco Della Monica, Bart Limburg, Valerio D'Elia, and Arjan W. Kleij, Recent progress in the catalytic transformation of carbon dioxide into biosourced organic carbonates. Green Chemistry, 2021. 23(3). 1077-1113.
[17]Gade, Swapna M., Vitthal B. Saptal, and Bhalchandra M. Bhanage, Perception of glycerol carbonate as green chemical: Synthesis and applications. Catalysis Communications, 2022. 172.
[18]Lukato, Simon, Gabriel N. Kasozi, Betty Naziriwo, and Emmanuel Tebandeke, Glycerol carbonylation with CO2 to form glycerol carbonate: A review of recent developments and challenges. Current Research in Green and Sustainable Chemistry, 2021. 4.
[19]Ochoa-Gómez, José R, Olga Gómez-Jiménez-Aberasturi, Camilo Ramirez-Lopez, and Mikel Belsué, A brief review on industrial alternatives for the manufacturing of glycerol carbonate, a green chemical. Organic Process Research Development, 2012. 16(3). 389-399.
[20]Luo, Cong, Jiayi Wang, Houfang Lu, Kejing Wu, Yingying Liu, Yingming Zhu, Binshen Wang, and Bin Liang, Atmospheric-pressure synthesis of glycerol carbonate from CO2 and glycerol catalyzed by protic ionic liquids. Green Chemistry, 2022. 24(21). 8292-8301.
[21]George, Jimil, Yogesh Patel, S Muthukumaru Pillai, and Pradip Munshi, Methanol assisted selective formation of 1, 2-glycerol carbonate from glycerol and carbon dioxide using nBu2SnO as a catalyst. Journal of Molecular Catalysis A: Chemical, 2009. 304(1-2). 1-7.
[22]Ozorio, Leonardo P, Rafael Pianzolli, Luciana da Cruz Machado, Jussara L Miranda, Cássia C Turci, Antônio CO Guerra, E Falabella Souza-Aguiar, and Claudio JA Mota, Metal-impregnated zeolite Y as efficient catalyst for the direct carbonation of glycerol with CO2. Applied Catalysis A: General, 2015. 504. 187-191.
[23]Hu, Chechia, Chien-Wei Chang, Masaaki Yoshida, and Ke-Hsuan Wang, Lanthanum nanocluster/ZIF-8 for boosting catalytic CO 2/glycerol conversion using MgCO3 as a dehydrating agent. Journal of Materials Chemistry A, 2021. 9(11). 7048-7058.
[24]Zhang, Juan and Dehua He, Surface properties of Cu/La2O3 and its catalytic performance in the synthesis of glycerol carbonate and monoacetin from glycerol and carbon dioxide. Journal of colloid interface science, 2014. 419. 31-38.
[25]Procopio, Debora and Maria Luisa Di Gioia, An overview of the latest advances in the catalytic synthesis of glycerol carbonate. Catalysts, 2022. 12(1). 50.
[26]Furtado, Isabelle O, Thiago C dos Santos, Larissa F Vasconcelos, Luciano T Costa, Rodolfo G Fiorot, Célia M Ronconi, and José Walkimar de M Carneiro, Combined theoretical and experimental studies on CO2 capture by amine-activated glycerol. Chemical Engineering Journal, 2021. 408. 128002.
[27]Wang, Huajun, Tingting Liu, Chenyang Jiang, Yidan Wang, and Jingjing Ma, Synthesis of glycidol and glycerol carbonate from glycerol and dimethyl carbonate using deep-eutectic solvent as a catalyst. Chemical Engineering Journal, 2022. 442. 136196.
[28]Cui, Ge, Meng Lv, and Dezhong Yang, Efficient CO2 absorption by azolide-based deep eutectic solvents. Chemical Communications, 2019. 55(10). 1426-1429.
[29]Wang, Zonghua, Congyi Wu, Ze Wang, Shaoze Zhang, and Dezhong Yang, CO2 capture by 1, 2, 3-triazole-based deep eutectic solvents: the unexpected role of hydrogen bonds. Chemical Communications, 2022. 58(53). 7376-7379.
[30]Ochoa-Gómez, José R, Olga Gómez-Jiménez-Aberasturi, Camilo A Ramírez-López, Javier Nieto-Mestre, Belén Maestro-Madurga, and Mikel Belsué, Synthesis of glycerol carbonate from 3-chloro-1, 2-propanediol and carbon dioxide using triethylamine as both solvent and CO2 fixation–activation agent. Chemical engineering journal, 2011. 175. 505-511.
[31]Shen, LQ, Xin Zhou, HB Yin, XX Hou, and AL Wang, Selective chlorination of glycerol to 3-chloro-1, 2-propanediol catalyzed by Brønsted acidic ionic liquids. Brazilian Journal of Chemical Engineering, 2018. 35. 659-668.
[32]Hong, Sujin, Gyudae Sim, Seokyoon Moon, and Youngjune Park, Low-temperature regeneration of amines integrated with production of structure-controlled calcium carbonates for combined CO2 capture and utilization. Energy Fuels, 2020. 34(3). 3532-3539.
[33]Liendo, Freddy, Mara Arduino, Fabio A Deorsola, and Samir Bensaid, Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: A review. Powder Technology, 2022. 398. 117050.
[34]Shen, Peiliang, Jianxin Lu, Yangyang Zhang, Yi Jiang, Shipeng Zhang, and Chi Sun Poon, Preparation aragonite whisker-rich materials by wet carbonation of cement: Towards yielding micro-fiber reinforced cement and sequestrating CO2. Cement Concrete Research,2022. 159. 106891.
[35]Saulat, Hammad, Mingli Cao, Muhammad Masood Khan, Mehran Khan, Muhammad Mahmood Khan, and Ali Rehman, Preparation and applications of calcium carbonate whisker with a special focus on construction materials. Construction Building Materials, 2020. 236. 117613.
[36]Boyjoo, Yash, Vishnu K Pareek, and Jian Liu, Synthesis of micro and nano-sized calcium carbonate particles and their applications. Journal of Materials Chemistry A, 2014. 2(35). 14270-14288.
[37]Mustafa, Jawad, Aya A. H. I. Mourad, Ali H. Al-Marzouqi, and Muftah H. El-Naas, Simultaneous treatment of reject brine and capture of carbon dioxide: A comprehensive review. Desalination, 2020. 483.
[38]Kumar, Amit, Gayathri Naidu, Hiroki Fukuda, Fengmin Du, Saravanamuth Vigneswaran, Enrico Drioli, and John H. V. Lienhard, Metals Recovery from Seawater Desalination Brines: Technologies, Opportunities, and Challenges. ACS Sustainable Chemistry & Engineering, 2021. 9(23). 7704-7712.
[39]Bang, Jun-Hwan, Soo-Chun Chae, Kyungsun Song, and Seung-Woo Lee, Optimizing experimental parameters in sequential CO2 mineralization using seawater desalination brine. Desalination, 2021. 519. 115309.
[40]Zhao, Yingying, Junsheng Yuan, Jijun Zhang, Lei Xie, Zhiyong Ji, Min Su, and Jianxin Chen, A different approach for seawater decalcification pretreatment using carbon dioxide as precipitator. Desalination, 2013. 322. 151-158.
[41]Galvez-Martos, Jose-Luis, Ammar Elhoweris, Jennie Morrison, and Yousef Al-horr, Conceptual design of a CO2 capture and utilisation process based on calcium and magnesium rich brines. Journal of CO2 Utilization, 2018. 27. 161-169.
[42]Bang, Jun-Hwan, Soo Chun Chae, Seung-Woo Lee, Ji-Whan Kim, Kyungsun Song, Jeongyun Kim, and Wonbaek Kim, Sequential carbonate mineralization of desalination brine for CO2 emission reduction. Journal of CO2 Utilization, 2019. 33. 427-433.
[43]Bang, Jun-Hwan, Yeongsuk Yoo, Seung-Woo Lee, Kyungsun Song, and Soochun Chae, CO2 mineralization using brine discharged from a seawater desalination plant. Minerals, 2017. 7(11). 207.
[44]Wang, Wenlong, Mingqiang Hu, Yanli Zheng, Peng Wang, and Chunyuan Ma, CO2 fixation in Ca2+-/Mg2+-rich aqueous solutions through enhanced carbonate precipitation. Industrial engineering chemistry research, 2011. 50(13). 8333-8339.
[45]Wang, Wenlong, Xin Liu, Peng Wang, Yanli Zheng, and Man Wang, Enhancement of CO2 mineralization in Ca2+-/Mg2+-rich aqueous solutions using insoluble amine. Industrial Engineering Chemistry Research, 2013. 52(23). 8028-8033.
[46]Rugabirwa, Benoit, David Murindababisha, Yin Li, Yanzhen Hong, Yuzhong Su, Hongtao Wang, and Jun Li, CO2-Responsive Switchable Solvents to Induce Self-Assembled Crystallization and Phase Control of CaCO3. ACS Sustainable Chemistry & Engineering, 2019. 7(6). 6251-6258.
[47]Yang, Tingyu, Jilagamazhi Fu, Liang Ma, Hong Du, Xiaoqing Yue, Bosheng Zhao, and Cuiyan Wang, Biomimetic synthesis of calcium carbonate under phenylalanine: Control of polymorph and morphology. Materials Science Engineering: C, 2020. 114. 111019.
[48]Nematollahi, Mohammad Hadi and Pedro J Carvalho, Green solvents for CO2 capture. Current Opinion in Green Sustainable Chemistry, 2019. 18. 25-30.
[49]Pelaquim, Fernanda Paludetto, Antonio Marinho Barbosa Neto, Irede Angela Lucini Dalmolin, and Mariana Conceição da Costa, Gas solubility using deep eutectic solvents: review and analysis. Industrial Engineering Chemistry Research, 2021. 60(24). 8607-8620.
[50]Hansen, Benworth B, Stephanie Spittle, Brian Chen, Derrick Poe, Yong Zhang, Jeffrey M Klein, Alexandre Horton, Laxmi Adhikari, Tamar Zelovich, and Brian W Doherty, Deep eutectic solvents: A review of fundamentals and applications. Chemical reviews, 2020. 121(3). 1232-1285.
[51]El Achkar, Tracy, Hélène Greige-Gerges, and Sophie Fourmentin, Basics and properties of deep eutectic solvents: a review. Environmental chemistry letters, 2021. 19. 3397-3408.
[52]Chabib, Chahd Maher, Jisha Kuttiani Ali, Maguy Abi Jaoude, Emad Alhseinat, Idowu A Adeyemi, and Inas M Al Nashef, Application of deep eutectic solvents in water treatment processes: A review. Journal of Water Process Engineering, 2022. 47. 102663.
[53]Zainal-Abidin, Mohamad Hamdi, Maan Hayyan, and Won Fen Wong, Hydrophobic deep eutectic solvents: Current progress and future directions. Journal of Industrial Engineering Chemistry, 2021. 97. 142-162.
[54]Ijardar, Sushma P, Vickramjeet Singh, and Ramesh L Gardas, Revisiting the physicochemical properties and applications of deep eutectic solvents. Molecules, 2022. 27(4). 1368.
[55]Shaibuna, M., L. V. Theresa, and K. Sreekumar, Neoteric deep eutectic solvents: history, recent developments, and catalytic applications. Soft Matter, 2022. 18(14). 2695-2721.
[56]Mr, Madhur Babu Singh, Vaishnu S Kumar Mr, Mansi Chaudhary, and Prashant Singh, A mini review on synthesis, properties and applications of deep eutectic solvents. Journal of the Indian Chemical Society, 2021. 98(11). 100210.
[57]Alonso, Diego A, Alejandro Baeza, Rafael Chinchilla, Gabriela Guillena, Isidro M Pastor, and Diego J Ramón, Deep eutectic solvents: the organic reaction medium of the century. European Journal of Organic Chemistry, 2016. 2016(4). 612-632.
[58]Karimi, Mohammad, Saeed Hesaraki, Masoud Alizadeh, and Asghar Kazemzadeh, Synthesis of calcium phosphate nanoparticles in deep-eutectic choline chloride–urea medium: Investigating the role of synthesis temperature on phase characteristics and physical properties. Ceramics International, 2016. 42(2). 2780-2788.
[59]Mańka, Dorota and Agnieszka Siewniak, Deep Eutectic Solvents as Catalysts for Cyclic Carbonates Synthesis from CO2 and Epoxides. Molecules, 2022. 27(24). 9006.
[60]Karimi, M., A. Jodaei, A. Khajvandi, A. Sadeghinik, and R. Jahandideh, In-situ capture and conversion of atmospheric CO2 into nano-CaCO3 using a novel pathway based on deep eutectic choline chloride-calcium chloride. J Environ Manage, 2018. 206. 516-522.
[61]Karimi, M and MJ Eshraghi, One-pot and green synthesis of Mn3O4 nanoparticles using an all-in-one system (solvent, reactant and template) based on ethaline deep eutectic solvent. Journal of Alloys Compounds, 2017. 696. 171-176.
[62]Wibowo, Haryo, Herri Susanto, Nurak Grisdanurak, Dwi Hantoko, Kunio Yoshikawa, Huan Qun, and Mi Yan, Recent developments of deep eutectic solvent as absorbent for CO2 removal from syngas produced from gasification: Current status, challenges, and further research. Journal of Environmental Chemical Engineering, 2021. 9(4). 105439.
[63]Testing, ASTM D-98 American Society for and USA Materials, Standard practice for the preparation of substitute ocean water. 1998.
[64]Liu, Jiaxiong, Yuming Li, Juan Zhang, and Dehua He, Glycerol carbonylation with CO2 to glycerol carbonate over CeO2 catalyst and the influence of CeO2 preparation methods and reaction parameters. Applied Catalysis A: General, 2016. 513. 9-18.
[65]Park, Chan-yi, Huy Nguyen-Phu, and Eun Woo Shin, Glycerol carbonation with CO2 and La2O2CO3/ZnO catalysts prepared by two different methods: Preferred reaction route depending on crystalline structure. Molecular Catalysis, 2017. 435. 99-109.
[66]Zhou, Yishan, Hao Qin, Hongye Cheng, Lifang Chen, Bingjian Zhang, and Zhiwen Qi, Reactive extraction for synthesizing long chain ester butyl hexanoate intensified by deep eutectic solvent. Chinese Journal of Chemical Engineering, 2021. 36. 120-127.
[67]Ruan, Chencong, Fan Mo, Hao Qin, Hongye Cheng, Lifang Chen, and Zhiwen Qi, Bifunctional imidazole-benzenesulfonic acid deep eutectic solvent for fructose dehydration to 5-hydroxymethylfurfural. Catalysis Letters, 2021. 151. 445-453.
[68]Obaleye, Joshua A, Abiodun A Ajibola, Van B Bernardus, and Eric C Hosten, Synthesis, X-ray crystallography, spectroscopic and in vitro antimicrobial studies of a new Cu (II) complex of trichloroacetic acid and imidazole. Journal of Molecular Structure, 2020. 1203. 127435.
[69]Zhang, Jiafei, Yu Qiao, and David W Agar, Improvement of lipophilic-amine-based thermomorphic biphasic solvent for energy-efficient carbon capture. Energy Procedia, 2012. 23. 92-101.
[70]Lasarte-Aragonés, Guillermo, Rafael Lucena, Soledad Cárdenas, and Miguel Valcárcel, Use of switchable solvents in the microextraction context. Talanta, 2015. 131. 645-649.
[71]Ma, Wanwan and Kyung Ho Row, pH-induced deep eutectic solvents based homogeneous liquid-liquid microextraction for the extraction of two antibiotics from environmental water. Microchemical Journal, 2021. 160. 105642.
[72]Sed, Giorgia, Agnese Cicci, Philip G Jessop, and Marco Bravi, A novel switchable-hydrophilicity, natural deep eutectic solvent (NaDES)-based system for bio-safe biorefinery. RSC advances, 2018. 8(65). 37092-37097.
[73]Park, Sangwon, Yeon-Sik Bong, and Chi Wan Jeon, Characteristics of carbonate formation from concentrated seawater using CO2 chemical absorption methodology. International Journal of Environmental Research Public Health, 2021. 18(1). 120.
[74]Harifi-Mood, Ali Reza, Marzieh Sarafrazi, Hamed Akbarzadeh, and Mahnaz Alinejad, Combined experimental and molecular dynamic simulation study on low pressure solubility of CO2 in Thymol-Decanol based hydrophobic deep eutectic solvent and its binary mixtures with ethylene glycol. Separation Purification Technology, 2023. 306. 122575.
[75]Gu, Yanxue, Yucui Hou, Shuhang Ren, Ying Sun, and Weize Wu, Hydrophobic functional deep eutectic solvents used for efficient and reversible capture of CO2. ACS omega, 2020. 5(12). 6809-6816.
[76]Yang, Ziqi, Changqing He, Hong Sui, Lin He, and Xingang Li, Recent advances of CO2-responsive materials in separations. Journal of CO2 Utilization, 2019. 30. 79-99.
[77]Sanna, Aimaro, M Uibu, G Caramanna, R Kuusik, and MM Maroto-Valer, A review of mineral carbonation technologies to sequester CO2. Chemical Society Reviews, 2014. 43(23). 8049-8080.
[78]Long, Xia, Yurong Ma, and Limin Qi, In vitro synthesis of high Mg calcite under ambient conditions and its implication for biomineralization process. Crystal growth design, 2011. 11(7). 2866-2873.
[79]Lenders, Jos JM, Archan Dey, Paul HH Bomans, Jan Spielmann, Marco MRM Hendrix, Gijsbertus de With, Fiona C Meldrum, Sjoerd Harder, and Nico AJM Sommerdijk, High-magnesian calcite mesocrystals: a coordination chemistry approach. Journal of the American Chemical Society, 2012. 134(2). 1367-1373.
[80]Krauss, C, D Chateigner, and O Gil, Fully inorganic electrodeposition of pure aragonite prismatic-like textured layers on titanium foils. Crystal Growth Design, 2008. 8(12). 4378-4382.
[81]Karimi, Mohammad, Saeed Hesaraki, Masoud Alizadeh, and Asghar Kazemzadeh, One-pot and sustainable synthesis of nanocrystalline hydroxyapatite powders using deep eutectic solvents. Materials Letters, 2016. 175. 89-92.
[82]Koga, Nobuyoshi, Daisuke Kasahara, and Tomoyasu Kimura, Aragonite crystal growth and solid-state aragonite–calcite transformation: A physico–geometrical relationship via thermal dehydration of included water. Crystal growth design,2013. 13(5). 2238-2246.
[83]Lee, Seon Yong, Uijin Jo, Bongsu Chang, and Young Jae Lee, Effects of Preferential Incorporation of Carboxylic Acids on the Crystal Growth and Physicochemical Properties of Aragonite. Crystals, 2020. 10(11). 960.
[84]Islam, Kh Nurul, Md Zuki Bin Abu Bakar, Md Eaqub Ali, Mohd Zobir Bin Hussein, Mustapha M Noordin, MY Loqman, Gous Miah, Hanif Wahid, and Uda Hashim, A novel method for the synthesis of calcium carbonate (aragonite) nanoparticles from cockle shells. Powder Technology, 2013. 235. 70-75.
[85]Yoo, Yunsung, Dongwoo Kang, Eunji Choi, Jinwon Park, and Il-Sang Huh, Morphology control of magnesium carbonate for CO2 utilization using Mg2+ ions in industrial wastewater depending on length of alkyl chain of primary alkanolamine, reaction temperature, CO2 concentration, and Mg2+/Na+ ratio. Chemical Engineering Journal, 2019. 370. 237-250.
[86]Lee, Seung-Woo, Yong-Jae Kim, Yun-Hee Lee, Hwanuk Guim, and Seug Min Han, Behavior and characteristics of amorphous calcium carbonate and calcite using CaCO3 film synthesis. Materials Design, 2016. 112. 367-373.
[87]Katsuyama, Yasuro, Akihiro Yamasaki, Atsushi Iizuka, Minoru Fujii, Kazukiyo Kumagai, and Yukio Yanagisawa, Development of a process for producing high‐purity calcium carbonate (CaCO3) from waste cement using pressurized CO2. Environmental progress, 2005. 24(2). 162-170.
[88]De Carvalho, LAE Batista, AM Amorim Da Costa, JJC Teixeira‐Dias, Ester FG Barbosa, and Isabel MS Lampreia, Temperature‐dependent intensities of Raman bands of di‐n‐butylamine. Journal of Raman spectroscopy, 1987. 18(2). 115-118.
[89]Soltani, Sara, Hassan Sereshti, and Nina Nouri, Deep eutectic solvent-based clean-up/vortex-assisted emulsification liquid-liquid microextraction: Application for multi-residue analysis of 16 pesticides in olive oils. Talanta, 2021. 225. 121983.
[90]Jing, Guohua, Fan Liu, Bihong Lv, Xiaobin Zhou, and Zuoming Zhou, Novel ternary absorbent: dibutylamine aqueous–organic solution for CO2 capture. Energy Fuels, 2017. 31(11). 12530-12539.
[91]Karimi, Mohammad, Saeed Hesaraki, Masoud Alizadeh, and Asghar Kazemzadeh, A facile and sustainable method based on deep eutectic solvents toward synthesis of amorphous calcium phosphate nanoparticles: the effect of using various solvents and precursors on physical characteristics. Journal of Non-Crystalline Solids, 2016. 443. 59-64.
[92]Li, Zhuo, Lili Wang, Changping Li, Yingna Cui, Shenmin Li, Guang Yang, and Yongming Shen, Absorption of carbon dioxide using ethanolamine-based deep eutectic solvents. ACS Sustainable Chemistry Engineering, 2019. 7(12). 10403-10414.


Fulltext Fulltext(Public on internet date20250731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
None related journal articles
 
system icon system icon