跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 00:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許慶暄
研究生(外文):HSU, CHING-HSUAN
論文名稱:具 kHz等級的線寬之C+L頻帶摻鉺光纖雷射的探究
論文名稱(外文):Study of C+L Band Erbium-doped Fiber Laser with kHz Linewidth Output
指導教授:葉建宏葉建宏引用關係
指導教授(外文):YEH, CHIEN-HUNG
口試委員:林炆標廖顯奎
口試委員(外文):LIN, WEN-PIAOLIAW, SHIEN-KUEI
口試日期:2023-07-05
學位類別:碩士
校院名稱:逢甲大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:66
中文關鍵詞:單縱模摻鉺光纖雷射雷利背向散射自由頻譜範圍
外文關鍵詞:Single-Longitudinal-ModeErbium-doped Fiber laserRayleigh backscatterFree Spectrum Range
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
在此碩士論文中,我們將提出了兩種基於摻鉺光纖(Erbium–doped Fiber,EDF)的雷射系統架構。此研究目的都是為了抑制摻鉺光纖環形雷射所產生的多縱模(Multi-Longitudinal-Mode,MLM)現象,並使其達到穩定的單縱模(Single-Longitudinal-Mode,SLM)光輸出。在第一個研究上,我們利用光循環器(Optical Circulator,OC)、一個 2 m長的未泵浦 EDF和光纖反射鏡(Fiber Reflected Mirror,FRM)的搭配,用以形成一個具雷利背向散射(Rayleigh Backscattering,RB)反饋注入和同時具飽和吸收(Saturable Absorber,SA)濾波器的光纖雷射架構,使其具有連續性(Continuous-Wave,CW)波長可調輸出之性能,此RB反饋注入可用以縮小雷射線寬,而EDF-SA 產生的濾波器效應亦可抑制密集的MLM振盪,可導致穩定的SLM光波輸出。在第二部分,我們使用多光纖環(Multiple-Fiber-Ring,MFR)的方式使其產生SLM輸出的EDF雷射架構。於此我們將使用三個光耦合器(Optical Coupler,OCP)來設計出一個具有波長可調且穩定 SLM 輸出的四環摻鉺光纖雷射系統,四個光纖環將根據游標尺效應產生模態濾波器的應用以抑制與消除MLM拍頻振盪,此架構不僅可以緩解由較長的光纖長度和鉺離子的均勻展寬效應引起的多縱模效應,同時還可將波長可調範圍從C-波段延伸至部分的L-波段。


In this master’s thesis, we will investigate and study two erbium-doped fiber(EDF)based laser architectures. The two related studies of EDF based lasers are applied to reduce the multi-longitudinal-mode(MLM)phenomenon and also achieve a stable single-longitudinal-mode(SLM)output for tuning different wavelength continuously.
In the first study, we exploit an optical circulator(OC), a 2-m long unpumped EDF, and a fiber reflected mirror(FRM)to construct a fiber laser architecture with Rayleigh backscatter(RB)feedback injection for continuous-wave(CW)tunability. The mode-filter effect generated by EDF-SA also can suppress the dense MLM oscillations and achieve the stable SLM output.
In the second research, we design a multiple fiber ring(MFR)approach based on three optical couplers(OCPs)to cause a four-ring EDF laser for the adjustable wavelength and stable SLM output. The four rings can generate mode-filter behavior through the Vernier effect to decrease MLM oscillations fully. The demonstrated laser architecture not only mitigates the MLM caused by a longer fiber lengths and uniform spreading effect of Er+, but also spreads the tuning scope from C-band to partial L-band.

第一章 緒論 IX
1.1 研究動機及背景 1
1.2 單模光纖與多模光纖 2
1.3 光纖的衰減 4
1.4 摻鉺光纖放大器 6
1.5 自由頻譜範圍 8
第二章 文獻回顧 10
2.1 相關文獻(一) 10
2.2 相關文獻(二) 13
2.3 相關文獻(三) 16
2.4 相關文獻(四) 19
第三章 通過應用雷利反饋光和可飽和吸收濾波器的可調諧穩定單模光纖雷射 22
3.1 實驗介紹 22
3.2 實驗架構 24
3.3 實驗結果 27
第四章 基於多光纖環設計的單模可選波長摻鉺光纖雷射 34
4.1 實驗介紹 34
4.2 實驗架構 36
4.3 實驗結果 39
第五章 結論 47
參考文獻 49
圖片來源 54
個人著作列表 55


1.L. Li, M. Zhang, Y. Liu, Y. Li, and Y. Wang, “Stable single-longitudinal-mode erbium-doped fiber laser with narrow linewidth utilizing parallel fiber ring res-onator incorporating saturable absorber and fiber Bragg grating,” Appl. Opt., vol. 54, no. 13, pp. 4001-4005, 2015.
2.S. Li, J. Shang, Z. Wang, Y. Xu, Y. Qiao, and S. Yu, “Single longitudinal mode polarization maintaining erbium-doped fiber laser with ultra-narrow linewidth,” Proc. of SPIE, vol. 12280, 2021, art. no. 122800G.
3.R. A. Perez-Herrera, P. Roldán-Varona, L. R. Cobo, J. M. López-Higuera, and M. Lopez-Amo, “Single longitudinal mode lasers by using artificially con-trolled backscattering erbium doped fibers,” IEEE Access, vol. 9, pp. 27428-27433, 2021.
4.H.-S. Ko, C.-H. Yeh, L.-H. Liu, Y.-T. Lai, S.-E. Hsieh, S.-K. Liaw, and C.-W. Chow, “Wide and stabilized erbium laser with single-mode and kHz linewidth output”, Opt. Fiber Technol., vol. 73, 2022, art. no. 103079.
5.X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photon-ic crystal fiber,” Opt. Express, vol. 13, no. 1, pp. 142-147, 2005.
6.H. Wan, C. Cai, J. Wang, J. Wang, Y. Chen, and Z. Zhan, “Broadband tunable single-longitudinal-mode erbium-doped fiber ring laser based on a microfiber knot resonator,” Appl. Opt., vol. 59, no. 34, pp. 10929-10932, 2020.
7.C. Zhang, J. Sun, and S. Jian, “A new mechanism to suppress the homogeneous gain broadening for stable multi-wavelength erbium-doped fiber laser,” Opt. Commun., vol. 288, pp. 97-100, 2013.
8.S.-E. Hsieh, C.-H. Hsu, C.-H. Yeh, S.-Y. Jiang, Y.-T. Lai, C.-W. Chow, and S.-K. Liaw, “L-band wavelength-selectable erbium laser with stable single-frequency oscillation”, Electronics, vol. 11, no. 19, 2022, art. no. 2996.
9.Z. Wang, J. Shang, S. Li, K. Mu, S. Yu, and Y. Qiao, “All-polarization maintain-ing single-longitudinal-mode fiber laser with ultra-high OSNR, sub-kHz lin-ewidth and extremely high stability,” Opt. Laser Technol., vol. 141, 2021, art, no. 107135.
10.H. Ahmada, M. Z. Zulkiflia, A. A. Latifa, M. H. Jemangina, S. S. Chongaand, and S. W. Harun, “Tunable single longitudinal mode S-band fiber laser using a 3 m length of erbium-doped fiber,” J. Mod. Opt., vol. 59, no. 3, pp. 268-273, 2012.
11.B. Li, X. Wei, X. Wang, and K. K.-Y. Wong, “Single-longitudinal-mode Bril-louin/erbium fiber laser with high linewidth-reduction ratio,” IEEE Photon. Technol. Lett., vol. 26, no. 22, pp. 2387-2390, 2014.
12.Z. Fan, Z. Dai, Q. Qiu, and J. Ya, “Parity-time symmetry in a single-loop pho-tonic system,” J. Lightw. Technol., vol. 38, no. 15, pp. 3866-3876, 2020.
13.D. Chen, W. Liu, H. Fu, Y. Wei, and S. He, “Single-longitudinal-mode erbium-doped fiber laser based on a fiber-Bragg-grating pair,” Asia Optical Fiber Communication and Optoelectronic Exposition and Conference (AOE), 2008, paper SaG1.
14.C.-H. Yeh, L.-H. Liu, H.-S. Ko, Y.-T. Lai, and C.-W. Chow, “Selectable single-frequency erbium fiber laser with Mach-Zehnder interferometer and Rayleigh injection scheme”, IEEE Photon. J., vol. 14, no. 3, 2022, art. no. 1532904.
15.Y. Liu, M. Zhang, L. Li, and J. Zhang, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser with Mach-Zehnder interferometer and satura-ble absorber loop,” Laser Phys., vol. 28, no. 10, 2018, art. no. 105803.
16.T. Zhu, L. Shi, and S. Huang, “Ultra-narrow linewidth fiber laser with self-injection feedback based on Rayleigh backscattering,” Proc. of CLEO, 2014, paper SW1N.5.
17.J. D. Filoteo-Razo, J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, O. Pottiez, D. Jauregui-Vazquez, J. M. Sierra-Hernandez, J. P. Lauterio-Cruz, C. M. Carrillo-Delgado, and R. Rojas-Laguna, “Multi-wavelength Er–Yb-doped fibre ring laser using a double-pass Mach–Zehnder interferometer with a Sagnac interferome-ter,” Opt. Laser Technol., vol. 139, 2021, art. no. 106994.
18.T. Feng, J. Su, D. Wei, D. Li, C. Li, F. Yan, and X. S. Yao, “Effective linewidth compression of a single-longitudinal-mode fiber laser with randomly distribut-ed high scattering centers in the fiber induced by femtosecond laser pulses,” Opt. Express, vol. 31, no. 3, pp. 4238-4252, 2023.
19.C.-H. Yeh, H.-S. Ko, L.-H. Liu, S.-K. Liaw, and C.-W. Chow, “A stable and wavelength-selectable quad-ring based erbium laser with 2-kHz linewidth out-put”, Opt. Laser Technol., vol. 149, 2022, art. no. 107819.
20.Y. Hsu, C.-H. Yeh, H.-Y. Cheng, Y.-C. Chang, and C.-W. Chow, “Employment of silicon-micro-ring resonator and compound-ring architecture for stable and tun-able single-longitudinal-mode fiber laser”, Opt. Laser Technol., vol. 105, pp. 114-117, 2018.
21.D. Chen, H. Fu, and W. Liu, “Single-longitudinal-mode erbium-doped fiber la-ser based on a fiber Bragg grating Fabry-Perot filter,” Laser Phys., vol. 17, no. 10, pp. 1246-1248, 2007.
22.L. Huang, C. Yang, T. Tan, W. Lin, Z. Zhang, K. Zhou, Q. Zhao, X. Teng, S. Xu, Z. Yang, “Sub-kHz-linewidth wavelength-tunable single-frequency ring-cavity fiber laser for C- and L-band operation,” J. Lightw. Technol., vol. 39, no. 14, pp. 4794-4799, 2021.
23.T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscat-tering: a method to highly compress laser linewidth,” Chin. Sci. Bull., vol. 59, no. 33, pp. 4631-4636, 2014.
24.Z. Wang, D.-C. Li, G.-Y. Chen, L.-E. Wang, S.-K. Liaw, C.-H. Yeh, Y.-L. Yu, and H.-H. Tsai, “One kHz order narrow linewidth fiber laser using Rayleigh backscattering mechanism in an additional piece optical fiber”, Photonics, vol. 9, no. 9, 2022, art. no. 601.
25.D. Li, T. Feng, W. Sun, S. Wu, F. Yan, Q. Li, and X. S. Yao, “Eight-wavelength-switchable narrow linewidth erbium-doped fiber laser based on cascaded super-imposed high-birefringence fiber Bragg grating,” Electronics, vol. 11, no. 12, 2022, art. no. 3688.
26.D. Chen, H. Fu, and W. Liu, “Single-longitudinal-mode erbium-doped fiber la-ser based on a fiber Bragg grating Fabry-Perot filter,” vol. 17, pp. 1246–1248, 2007.
27.G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett., vol. 8, no. 12, 2011, art. no. 880.
28.X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Perot etalon,” IEEE Photon. Technol. Lett., vol. 20, no. 12, pp. 976–978, 2008.
29.M. R. K. Soltanian, I. S. Amiri, S. E. Alavi, and H. Ahmad, “Dual-wavelength erbium-doped fiber laser to generate terahertz tadiation using photonic crystal fiber,” J. Lightw. Technol., vol. 33, no. 24, pp. 5038–5046, 2015.
30.Z. G. Lu and C.P. Grover, “A widely tunable narrow-linewidth triple-wavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 22–24, 2005.
31.Z. Wang, J. Shang, K. Mu, S. Yu, and Y. Qiao, “Stable Single-Longitudinal-Mode Fiber Laser With Ultra-Narrow Linewidth Based on Convex-Shaped Fiber Ring and Sagnac Loop,” IEEE Access, vol. 7, pp. 166398–166403, 2019.
32.J. Shang, S. Li, Z. Wang, Y. Qiao, and S. Yu, “Linewidth limit of a single longi-tude-mode fiber laser with different cavity length,” in 2021 Optical Fiber Communications Conference and Exhibition(OFC), Jun. 2021, pp. 1–3.
33.Y. He, Z. Wang, and Y. Qiao, “Ultra-Narrow Linewidth Single Longitudinal Mode Erbium-Doped Fiber Laser with Four-Ring Passive Subring Resonator,” in 2022 Asia Communications and Photonics Conference(ACP), Jan. 2022, pp. 207–209.
34.B. Yin, S. Feng, Z. Liu, Y. Bai, and S. Jian, “Single-Frequency and Single-Polarization DFB Fiber Laser Based on Tapered FBG and Self-Injection Lock-ing,” IEEE Photonics Journal, vol. 7, no. 3, pp. 1–9, Jun. 2015.
35.Y.-T. Lai, L.-C. Chen, C.-H. Yeh, C.-W. Chow, and S.-K. Liaw, “Vernier effect based fiber laser with switchable and stable single-mode output behavior”, Opt. Quantum Electron., vol. 54, no. 6, 2022, art. no. 378.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top