|
1.L. Li, M. Zhang, Y. Liu, Y. Li, and Y. Wang, “Stable single-longitudinal-mode erbium-doped fiber laser with narrow linewidth utilizing parallel fiber ring res-onator incorporating saturable absorber and fiber Bragg grating,” Appl. Opt., vol. 54, no. 13, pp. 4001-4005, 2015. 2.S. Li, J. Shang, Z. Wang, Y. Xu, Y. Qiao, and S. Yu, “Single longitudinal mode polarization maintaining erbium-doped fiber laser with ultra-narrow linewidth,” Proc. of SPIE, vol. 12280, 2021, art. no. 122800G. 3.R. A. Perez-Herrera, P. Roldán-Varona, L. R. Cobo, J. M. López-Higuera, and M. Lopez-Amo, “Single longitudinal mode lasers by using artificially con-trolled backscattering erbium doped fibers,” IEEE Access, vol. 9, pp. 27428-27433, 2021. 4.H.-S. Ko, C.-H. Yeh, L.-H. Liu, Y.-T. Lai, S.-E. Hsieh, S.-K. Liaw, and C.-W. Chow, “Wide and stabilized erbium laser with single-mode and kHz linewidth output”, Opt. Fiber Technol., vol. 73, 2022, art. no. 103079. 5.X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photon-ic crystal fiber,” Opt. Express, vol. 13, no. 1, pp. 142-147, 2005. 6.H. Wan, C. Cai, J. Wang, J. Wang, Y. Chen, and Z. Zhan, “Broadband tunable single-longitudinal-mode erbium-doped fiber ring laser based on a microfiber knot resonator,” Appl. Opt., vol. 59, no. 34, pp. 10929-10932, 2020. 7.C. Zhang, J. Sun, and S. Jian, “A new mechanism to suppress the homogeneous gain broadening for stable multi-wavelength erbium-doped fiber laser,” Opt. Commun., vol. 288, pp. 97-100, 2013. 8.S.-E. Hsieh, C.-H. Hsu, C.-H. Yeh, S.-Y. Jiang, Y.-T. Lai, C.-W. Chow, and S.-K. Liaw, “L-band wavelength-selectable erbium laser with stable single-frequency oscillation”, Electronics, vol. 11, no. 19, 2022, art. no. 2996. 9.Z. Wang, J. Shang, S. Li, K. Mu, S. Yu, and Y. Qiao, “All-polarization maintain-ing single-longitudinal-mode fiber laser with ultra-high OSNR, sub-kHz lin-ewidth and extremely high stability,” Opt. Laser Technol., vol. 141, 2021, art, no. 107135. 10.H. Ahmada, M. Z. Zulkiflia, A. A. Latifa, M. H. Jemangina, S. S. Chongaand, and S. W. Harun, “Tunable single longitudinal mode S-band fiber laser using a 3 m length of erbium-doped fiber,” J. Mod. Opt., vol. 59, no. 3, pp. 268-273, 2012. 11.B. Li, X. Wei, X. Wang, and K. K.-Y. Wong, “Single-longitudinal-mode Bril-louin/erbium fiber laser with high linewidth-reduction ratio,” IEEE Photon. Technol. Lett., vol. 26, no. 22, pp. 2387-2390, 2014. 12.Z. Fan, Z. Dai, Q. Qiu, and J. Ya, “Parity-time symmetry in a single-loop pho-tonic system,” J. Lightw. Technol., vol. 38, no. 15, pp. 3866-3876, 2020. 13.D. Chen, W. Liu, H. Fu, Y. Wei, and S. He, “Single-longitudinal-mode erbium-doped fiber laser based on a fiber-Bragg-grating pair,” Asia Optical Fiber Communication and Optoelectronic Exposition and Conference (AOE), 2008, paper SaG1. 14.C.-H. Yeh, L.-H. Liu, H.-S. Ko, Y.-T. Lai, and C.-W. Chow, “Selectable single-frequency erbium fiber laser with Mach-Zehnder interferometer and Rayleigh injection scheme”, IEEE Photon. J., vol. 14, no. 3, 2022, art. no. 1532904. 15.Y. Liu, M. Zhang, L. Li, and J. Zhang, “Dual-wavelength single-longitudinal-mode erbium-doped fiber laser with Mach-Zehnder interferometer and satura-ble absorber loop,” Laser Phys., vol. 28, no. 10, 2018, art. no. 105803. 16.T. Zhu, L. Shi, and S. Huang, “Ultra-narrow linewidth fiber laser with self-injection feedback based on Rayleigh backscattering,” Proc. of CLEO, 2014, paper SW1N.5. 17.J. D. Filoteo-Razo, J. C. Hernandez-Garcia, J. M. Estudillo-Ayala, O. Pottiez, D. Jauregui-Vazquez, J. M. Sierra-Hernandez, J. P. Lauterio-Cruz, C. M. Carrillo-Delgado, and R. Rojas-Laguna, “Multi-wavelength Er–Yb-doped fibre ring laser using a double-pass Mach–Zehnder interferometer with a Sagnac interferome-ter,” Opt. Laser Technol., vol. 139, 2021, art. no. 106994. 18.T. Feng, J. Su, D. Wei, D. Li, C. Li, F. Yan, and X. S. Yao, “Effective linewidth compression of a single-longitudinal-mode fiber laser with randomly distribut-ed high scattering centers in the fiber induced by femtosecond laser pulses,” Opt. Express, vol. 31, no. 3, pp. 4238-4252, 2023. 19.C.-H. Yeh, H.-S. Ko, L.-H. Liu, S.-K. Liaw, and C.-W. Chow, “A stable and wavelength-selectable quad-ring based erbium laser with 2-kHz linewidth out-put”, Opt. Laser Technol., vol. 149, 2022, art. no. 107819. 20.Y. Hsu, C.-H. Yeh, H.-Y. Cheng, Y.-C. Chang, and C.-W. Chow, “Employment of silicon-micro-ring resonator and compound-ring architecture for stable and tun-able single-longitudinal-mode fiber laser”, Opt. Laser Technol., vol. 105, pp. 114-117, 2018. 21.D. Chen, H. Fu, and W. Liu, “Single-longitudinal-mode erbium-doped fiber la-ser based on a fiber Bragg grating Fabry-Perot filter,” Laser Phys., vol. 17, no. 10, pp. 1246-1248, 2007. 22.L. Huang, C. Yang, T. Tan, W. Lin, Z. Zhang, K. Zhou, Q. Zhao, X. Teng, S. Xu, Z. Yang, “Sub-kHz-linewidth wavelength-tunable single-frequency ring-cavity fiber laser for C- and L-band operation,” J. Lightw. Technol., vol. 39, no. 14, pp. 4794-4799, 2021. 23.T. Zhu, S. Huang, L. Shi, W. Huang, M. Liu, and K. Chiang, “Rayleigh backscat-tering: a method to highly compress laser linewidth,” Chin. Sci. Bull., vol. 59, no. 33, pp. 4631-4636, 2014. 24.Z. Wang, D.-C. Li, G.-Y. Chen, L.-E. Wang, S.-K. Liaw, C.-H. Yeh, Y.-L. Yu, and H.-H. Tsai, “One kHz order narrow linewidth fiber laser using Rayleigh backscattering mechanism in an additional piece optical fiber”, Photonics, vol. 9, no. 9, 2022, art. no. 601. 25.D. Li, T. Feng, W. Sun, S. Wu, F. Yan, Q. Li, and X. S. Yao, “Eight-wavelength-switchable narrow linewidth erbium-doped fiber laser based on cascaded super-imposed high-birefringence fiber Bragg grating,” Electronics, vol. 11, no. 12, 2022, art. no. 3688. 26.D. Chen, H. Fu, and W. Liu, “Single-longitudinal-mode erbium-doped fiber la-ser based on a fiber Bragg grating Fabry-Perot filter,” vol. 17, pp. 1246–1248, 2007. 27.G.-R. Lin and Y.-C. Lin, “Directly exfoliated and imprinted graphite nano-particle saturable absorber for passive mode-locking erbium-doped fiber laser,” Laser Phys. Lett., vol. 8, no. 12, 2011, art. no. 880. 28.X. P. Cheng, P. Shum, C. H. Tse, J. L. Zhou, M. Tang, W. C. Tan, R. F. Wu, and J. Zhang, “Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Perot etalon,” IEEE Photon. Technol. Lett., vol. 20, no. 12, pp. 976–978, 2008. 29.M. R. K. Soltanian, I. S. Amiri, S. E. Alavi, and H. Ahmad, “Dual-wavelength erbium-doped fiber laser to generate terahertz tadiation using photonic crystal fiber,” J. Lightw. Technol., vol. 33, no. 24, pp. 5038–5046, 2015. 30.Z. G. Lu and C.P. Grover, “A widely tunable narrow-linewidth triple-wavelength erbium-doped fiber ring laser,” IEEE Photon. Technol. Lett., vol. 17, no. 1, pp. 22–24, 2005. 31.Z. Wang, J. Shang, K. Mu, S. Yu, and Y. Qiao, “Stable Single-Longitudinal-Mode Fiber Laser With Ultra-Narrow Linewidth Based on Convex-Shaped Fiber Ring and Sagnac Loop,” IEEE Access, vol. 7, pp. 166398–166403, 2019. 32.J. Shang, S. Li, Z. Wang, Y. Qiao, and S. Yu, “Linewidth limit of a single longi-tude-mode fiber laser with different cavity length,” in 2021 Optical Fiber Communications Conference and Exhibition(OFC), Jun. 2021, pp. 1–3. 33.Y. He, Z. Wang, and Y. Qiao, “Ultra-Narrow Linewidth Single Longitudinal Mode Erbium-Doped Fiber Laser with Four-Ring Passive Subring Resonator,” in 2022 Asia Communications and Photonics Conference(ACP), Jan. 2022, pp. 207–209. 34.B. Yin, S. Feng, Z. Liu, Y. Bai, and S. Jian, “Single-Frequency and Single-Polarization DFB Fiber Laser Based on Tapered FBG and Self-Injection Lock-ing,” IEEE Photonics Journal, vol. 7, no. 3, pp. 1–9, Jun. 2015. 35.Y.-T. Lai, L.-C. Chen, C.-H. Yeh, C.-W. Chow, and S.-K. Liaw, “Vernier effect based fiber laser with switchable and stable single-mode output behavior”, Opt. Quantum Electron., vol. 54, no. 6, 2022, art. no. 378.
|