跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/14 05:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:夏偉良
研究生(外文):SIA, WEI-LIANG
論文名稱:韌性水城市降雨熱點調適能力之研究 -以台中地區為例
論文名稱(外文):Rainfall Hotspot and Adaptive Capacity of a Resilient Water City-A case study of Taichung area
指導教授:鄭明仁鄭明仁引用關係
指導教授(外文):CHENG, MING-JEN
口試委員:鄭明仁趙幼嬋梁漢溪潘乃欣張郁靂
口試委員(外文):CHENG, MING-JENCHAO, YU-CHANLIANG, HAN-HSIPAN, NAI-HSINCHANG, YU-LI
口試日期:2023-06-19
學位類別:博士
校院名稱:逢甲大學
系所名稱:土木水利工程與建設規劃博士學位學程
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:544
中文關鍵詞:極端降雨韌性城市雨型公式地理資訊系統災害潛勢
外文關鍵詞:extreme rainfallresilient citiesrain pattern formulageographic informationdisaster potential
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
氣候變遷所導致的極端降雨,已為各國所重視之重要議題,人們生活的土地受到無法迴避的破壞與侵擾,國際間不斷的討論各種調適與減緩的方法,且設法讓各領域與區域能夠相互合作,試圖降低災害所帶來的損害,台灣因地理位置與地勢的關係,具備著充沛的雨量,當極端暴雨事件發生時,常造成區域積、淹水的現象,因此本研究探討在極端暴雨發生時,都市土地容納暴雨的能力以及區域是否具備足夠抵抗暴雨的韌性,以有效舒緩瞬間暴雨。
本研究範圍為台中地區。本研究分為兩階段,第一階段為整合各測站的雨量數據與位置,計算降雨延時之最大降雨量,進行頻率分析與使用最小二乘法產生重現期資訊,推導雨型公式並計算重現期延時最大降雨量;第二階段運用地理資訊系統,藉由影像辨識分析都市綠帶、藍帶、建築及道路面積,觀察透水與不透水鋪面的範圍,計算各區域可容納之最大暴雨量。最後將兩階段的結果加以整合,推估人為活動較為頻繁的區域範圍,瞬間暴雨產生積、淹水的潛勢區域。本研究將與氣象局所訂定的雨量分級、經濟部水利署所發布淹水潛勢圖以及過去災害事件所發生的區域做疊圖比較,以了解都市在有、無排水設備的狀況下,積、淹水潛勢區域的差異性;都市土地透過綠帶減緩積、淹水的可能性;評估都市開發對於韌性水城市建構的影響性,提供未來在極端氣候下,規劃更具安全且具韌性的水城市。
本研究觀察數據分析結果以及政府相關資料得知降雨負荷能力較差的區域,多位於沿海地區、低海拔河川匯流區域以及舊市中心。沿海地區自然滲透較差的區域雖然較少,但因臨海且地勢較低,因此當暴雨來時,會因為高處的水匯流至低窪沿海地區導致災害的生成,造成農作、漁業的損失。河川匯流區域因高海拔大量的雨水藉由河川往低處流,導致河川超出負荷溢堤,危害居民的安全。
Extreme rainfall caused by climate change has become an important issue for all countries, and the land where people live has been unavoidably damaged and disturbed. Internationally, various adaptation and mitigation methods are constantly being discussed, and various fields and regions try to cooperate with each other in an attempt to minimize the damages caused by disasters. Due to its geographic location and topography, Taiwan has abundant rainfall. When extreme rainstorms occur, it often causes regional waterlogging and flooding. Therefore, taking Taichung area as the study area, this study aims to explore the capacity of urban land to accommodate heavy rainfall and whether the resilience of the area enough to withstand heavy rainfall during extreme rainstorms, so as to effectively mitigate the instantaneous rainfall.
This study is divided into two stages. In Stage 1, the rainfall data and location of each station were integrated to calculate the maximum rainfall of the rainfall duration, perform frequency analysis and the least square method was used to get the return period information, and the rainfall pattern formulas were derived to calculate the maximum rainfall during the return period. In Stage 2, a geographic information system was used to analyze the area of urban green belt, blue belt, buildings and roads by image recognition, and to calculate the maximum rainfall bearing capacity of each area by observing the extent of permeable and impermeable surfaces. Finally, the results of the two stages were integrated to estimate the extent of areas with more frequent human activities and the potential areas of waterlogging and flooding caused by instantaneous rainstorms. This study compared with the rainfall classification established by the Meteorological Bureau, the flooding potential maps published by the Department of Water Resources of the Ministry of Economic Affairs, and the areas where disasters occurred in the past, in order to understand the differences in the potential areas of waterlogging and flooding in urban areas with and without drainage facilities, to evaluate the possibilities of mitigating the waterlogging and flooding in urban land through the green belts, and to assess the impacts of urban development on the establishment of a resilient water city. This study provides a basis for planning a safer and more resilient water city under extreme weather conditions in the future.
According to the results and governmental data, the areas with poor rainfall bearing capacity are mostly located in coastal areas, river confluence areas of low elevation, and old city centers. Although there are fewer areas with poor natural percolation in the coastal areas, they are located near the sea and have a low topography. Hence, when heavy rainfall occurs, the water from the highlands flows into the low-lying coastal areas and causes disasters, resulting in the loss of agriculture and fisheries. In the river confluence areas, a large amount of rainwater from high altitude flows through the river to the lower part, causing the river to overflow its banks and jeopardizing the safety of the residents.
目錄
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機 2
第三節 研究目的 3
第四節 研究範圍 4
第五節 研究流程 5
第二章 文獻回顧 6
第一節 氣候變遷 6
第二節 韌性城市的定義 11
第三節 國際上韌性水城市之策略 14
第四節 台灣現行韌性水城市之策略 18
第三章 研究方法 22
第一節 資料蒐集 23
第二節 雨型公式的推導 25
第三節 反距離加權法 34
第四節 影像辨識 37
第五節 降雨負荷評估公式 42
第四章 都市降雨分析 44
第一節 雨量觀測站篩選 45
第二節 降雨分析分布型態 47
第三節 各測站回歸期雨量 49
第四節 都市降雨情境模擬 51
第五章 都市土地利用型態分析 57
第一節 影像辨識 58
第二節 疊圖分析 59
第三節 影像辨識數值整合 74
第四節 都市土地降雨致災潛勢區 76
第六章 研究結果 79
第一節 高風險區數據整合 79
第二節 各區域可負荷雨量 80
第三節 實證研究 83
第七章 結論與建議 93

參考文獻 97
附錄一 雨型公式推導過程 104

一.英文部分
Panel on Climate Change (IPCC), (2019). Global Warming of 1.5°C.
International Energy Agency, (2020). Energy Technology Perspectives 2020.
United Nations, (1992). Intergovernmental Negotiating Committee for a Framework Convention on Climate Change, New York.
United Nations, (1994). Yokohama Strategy and Plan of Action for a Safer World, 1994, Yokohama, Japan.
United Nations, (2002). Report of the World Summit on Sustainable Development, Johannesburg, South Africa.
World Conference on Disaster Reduction (WCDR), (2005). Hyogo Declaration, Hyogo, Japan
Donna Childs, (2013). Implementation of the Hyogo Framework for Action, United Nations Office for Disaster Risk Reduction (UNDRR), 2013
Jane A. Leggett, (2012). Nicole T. Carter. Rio+20: The United Nations Conference on Sustainable Development, Congressional Research Service.
United Nations, (2012). Outcome document of the United : The Future we want, United Nations Conference on Sustainable Development, Nations Conference on Sustainable Development, 2012
Pelling, Mark (ed.). (2014). Pathways for Transformation: Disaster risk management to enhance development goals. Background Paper prepared for the 2015 Global Assessment Report on Disaster Risk Reduction. Geneva, Switzerland: UNISDR
United Nations, (2015). Global Assessment Report on Disaster Risk Reduction 2015, United Nations Office for Disaster Risk Reduction.
UNISDR (2016). UNISDR Science and Technical Roadmap. UNISDR Science and Technology Conference on the Implementation of the Sendai Framework for Disaster Risk Reduction 2015 ~ 2030.
The States Members of the United Nations World Conference, (2015). Sendai Framework for Disaster Risk Reduction 2015 - 2030, The World Conference on Natural Disaster Reduction3, Sendai, Japan.
United Nations, (2017). 2017 Global Platform for Disaster Risk Reduction, United Nations Office for Disaster Risk Reduction.
United Nations, (2019). 2019 Global Platform for Disaster Risk Reduction, United Nations Office for Disaster Risk Reduction.
United Nations, (2022). 2022 Global Platform for Disaster Risk Reduction, United Nations Office for Disaster Risk Reduction.
Arctic Council, (2013). Glossary of terms. In: Arctic Resilience Interim Report 2013. Stockholm Environment Institute and Stockholm Resilience Centre, Stockholm, Sweden, pp. viii.
Diemen, R. V. (2019), Annex I: Glossary, Intergovernmental Panel on Climate Change(IPCC), The Netherlands/United Kingdom.
Park, S. E. et al., (2012). 2012: Informing adaptation responses to climate change through theories of transformation. Global Environmental Change, 22(1), 115–126.
Organisation for Economic Cooperation and Development(OECD). (2022). Resilient Cities Glossary. https://www.oecd.org/cfe/resilient-cities.htm
United Nations, (2009), 2009 UNISDR Terminology on Disaster Risk Reduction, International Strategy for Disaster Reduction (ISDR), https://www.undrr.org/terminology
UNDRR. (2020). Ecosystem-based disaster risk reduction: Implementing nature-based solutions for resilience. United Nations Office for Disaster Risk Reduction, Geneva, Switzerland.
Dewan, A. M., & Yamaguchi, Y. (2009). Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Applied Geography, 29, 390–401.
Bizzotto, M., Huseynova, A., & Estrada, V. (2019). Resilient cities, thriving cities: The evolution of urban resilience, Resilience Cities 2019, ICLEI.
Glaus, A., Mosimann, M., Rothlisberger, V., & Ingold, K. (2020). How flood risks shape policies: Flood exposure and risk perception in Swiss municipalities. Regional Environmental Change, 20(4), 120.
Schilling, J., Hertig, E., Tramblay, Y., & Scheffran, J. (2020). Climate change vulnerability, water resources, and social implications in North Africa. Regional Environmental Change, 20(1), 15.
Onamuti, O. Y., Okogbue, E. C., & Orimoloye, I. R. (2017). Remote sensing appraisal of lake chad shrinkage connotes severe impacts on green economics and socio-economics of the catchment area. Royal Society Open Science, 4, 11.
Ekundayo, O. Y., Okogbue, E. C., Akinluri, F. O., Kalumba, A. M., & Orimoloye, I. R. (2020). Spatiotemporal drought assessment using vegetation health index and standardized precipitation index over Sudano-Sahelian region of Nigeria. African Geographical Review, 40(4), 412–424.
Forrest, S. A., Trell, E. M., & Woltjer, J. (2020). Socio-spatial inequalities in flood resilience: Rainfall flooding in the city of Arnhem. Cities, 105.
UNDRR. (2019). Regional Office for Asia and the Pacific. Disaster Risk Reduction in the Philippines: Status Report, 2019 United Nations Office for Disaster Risk Reduction Switzerland.
Le, H. D., Smith, C., & Herbohn, J. (2014). What drives the success of reforestation projects in tropical developing countries? The case of the Philippines. Global Environmental Change, 24, 334–348.
Orimoloye, I. R., Belle, J., Olusola, A., Busayo, E. T., & Ololade, O. O. (2021a). Spatial assessment of drought disasters, vulnerability, severity and water shortages: A potential drought disaster mitigation strategy. Natural Hazards, 105, 2735–2754.
Orimoloye, I. R., Ololade, O. O., & Belle, J. A. (2021b). Satellitebased application in drought disaster assessment using terra MOD13Q1 data across free state province, South Africa. Journal of Environmental Management, 285, 112112.
Orimoloye, I. R., Belle, J. A., & Ololade, O. O. (2021c). Drought disaster monitoring using MODIS derived index for drought years: A space-based information for ecosystems and environmental conservation. Journal of Environmental Management, v284, 112028
Ministry of Construction, Deutsche Zusammenarbeit, Swiss Cooperation Office in Vietnam. (2018). Climate Resilience in Vietnam: An Assessment in Metropolitan Regions. German International Cooperation Agency, Hanoi.
Nguyen, H. D., Fox, D., Dang, D. K., Pham, L. T., Du Viet, Q.,& V., Nguyen, T. H. T., Dang, T. N., Tran, V. T., Vu, P. L., Nguyen, Q. H., Nguyen, T. G., Bui, Q. T., & Petrisor, A. I. (2021). Predicting future urban flood risk using land change and hydraulic modeling in a river watershed in the central province of Vietnam. Remote Sensing, 13(2), 262.
Duy, P. N., Chapman, L., & Tight, M. (2019). Resilient transport systems to reduce urban vulnerability to floods in emerging-coastal cities: A case study of Ho Chi Minh City. Travel Behaviour and Society, 15, 28–43
Floyd, R., Kapoor, K., Laura, S. (2019). G20 Compact with Africa. JICA Research Institute.
United Nation, (2017), How To Make Cities More Resilient A Handbook For Local Government Leaders, UN Office for Disaster Risk Reduction(UNDRR). UN Office for Disaster Risk Reduction(UNDRR)
UN Office for Disaster Risk Reduction, (2022), Making Cities Resilient,https://mcr2030.undrr.org/
Dyosi, M., Kalumba, A. M., Magagula, H. B. Zhou, L., Orimoloye, I. R. (2021). Drought conditions appraisal using geoinformatics and multi-influencing factors. Environmental Monitoring and Assessment, 193
Weber, D., Englund, E. (1992). Evaluation and comparison of spatial interpolators. Mathematical Geology, 24, 381-391
Yavuz, S., Erdoğan, S. (2012). Spatial Analysis of Monthly and Annual Precipitation Trends in Turkey. Water Resources Management, 26, 609-621
Ly, S., Charles, C., Degre, A. (2011). Geostatistical interpolation of daily rainfall at catchment scale: the use of several variogram models in the Our the and Ambleve catchments, Belgium. Hydrol. Earth Syst. Sci, V15(7), 2259-2274
Soo, E. Z. X., Jaafer, W. Z. W., Lai, S. H., Islam, T., Srivastava, P. (2019). Evaluation of satellite precipitation products for extreme flood events: case study in Peninsular Malaysia. Journal of Water and Climate Change, V10(4), 871–892
Cheng, M. J., Sia, W. L., Liao, F. C., Chang, L. S.(2022).Adaptation capability of rainfall hotspots in water resilient cities using Qgis:a case study of Taichung City in Taiwan. Environmental Monitoring and Assessment, 194, 219
二.中文部分
陳姜琦(2002)。應用衛星遙測於區域蒸發散量之估算。成功大學水利及海洋工程研究所碩士論文,台南市。
楊松毅(2011)。都市環境熵之評分系統研究─以桃園縣都市計畫區為例。國立中央大學地質研究所碩士論文,桃園市
洪證易(2022)。都市連接生態綠網之研究-以原台中市為例。逢甲大學建築碩士學位學程碩士論文,台中市 。
李仁翔(2022)。整合SLAM與BIM於水理數值模擬之研究-以筏子溪水岸廊道為例。逢甲大學土木水利工程與建設規劃博士學位學程博士論文,台中市。
陳育昇(2021)。國小校園調適評估系統建構-以中部地區為例。逢甲大學建築碩士學位學程碩士論文,台中市 。
吳俊鋐(2021)。應用關聯結構與修正型Huff雨型發展序率雨量繁衍模式。逢甲大學土木水利工程與建設規劃博士學位學程博士論文,台中市。
陳緯恩(2019)。應用雨型公式探討都市暴雨熱點之研究-以彰化洋仔溪流域為例。逢甲大學建築碩士學位學程碩士論文,台中市。
張慧中(2018)。韌性社區評估系統建構之研究-以台中市公寓大樓型社區為例。逢甲大學建築碩士學位學程碩士論文,台中市。
黃詩涵(2018)。台北都會區土地使用變遷對綠色基盤及生態系統服務的影響。台北大學都市計劃研究所碩士論文,台北市。
陳澤騰(2017)。綠建築於都市水環境涵構中之設計提案探討-以台中地區為例。逢甲大學建築碩士學位學程碩士論文,台中市。
蔣佩穎(2017)。都市宜居性評估因子之研究。台北科技大學建築系建築與都市設計碩士班碩士論文,台北市。
三.書籍
林憲德, 林子平, 蔡耀賢,(2019),2019綠建築評估手冊-基本型,內政部建築研究所
何明錦、廖慧燕、陳伯勳,(2016),智慧建築評估手冊2016年版,內政部建築研究所,五南書局:台北
經濟部水利署、財團法人成大研究發展基金會,(2019),因應極端氣候之水韌性提升與推動(1/2),五南書局
經濟部水利署、財團法人成大研究發展基金會、游保杉,(2020),韌性水城市評估與調適研究(2/2),五南書局
經濟部水利署,(2017),台灣地區雨量測站降雨強度-延時Horner公式參數分析
趙忠明、周天穎、嚴泰來 (2015),空間資訊技術原理及其應用技術應用篇,台灣:儒林圖書
趙忠明、周天穎、嚴泰來 (2017),空間資訊技術原理及其應用技術理論基礎篇,台灣:儒林圖書
謝宇,(2013),研究方法-迴歸分析,五南書局
余濬,(2013),降雨強度之推算與應用,科技圖書
吳瑞賢,(2019),工程水文學第二版,科技圖書
李光敦,(2019),水文學,五南書局
四.網站
中央氣象局,(2022),豪(大)雨雨量分級定義對照表及警戒事項,https://www.cwb.gov.tw/V8/C/K/CommonFaq/rain_all.html
國土測繪中心,(2022),政府開放圖資資料,https://maps.nlsc.gov.tw/
地理資訊圖資雲服務平台(TGOS),(2022),圖資查詢與運用,https://www.tgos.tw/tgos/web/tgos_home.aspx
通部中央氣象局,(2022),觀測資料查詢系統V7.2,https://e-service.cwb.gov.tw/HistoryDataQuery/
中央氣象局,(2022),自動氣象站觀測資料彙整, http://farmer.iyard.org/
鄭子璉,(2022),水文系統線上分析,http://www.tlcheng.tk/Tools/stat/Stat.asp
經濟部水利署,(2022),水文資訊網整合服務系統,https://gweb.wra.gov.tw/Hydroinfo/
經濟部中央地質調查所,(2022),地質資料整合查詢,https://gis3.moeacgs.gov.tw/gwh/gsb97-1/sys8/t3/index1.cfm
國立中央大學太空及遙測研究中心(2022)。衛星影像相關資料。https://www.csrsr.ncu.edu.tw/rsrs/DataChosen.php

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊