跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/23 20:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宗賢
研究生(外文):CHEN, TSUNG-HSIEN
論文名稱:廚餘亞臨界水解物在厭氧二階段消化模廠產製沼氣之研究
論文名稱(外文):Biogas Production from Subcritical Water Hydrolysate of Food Waste in a Two-stage Anaerobic Digestion Pilot Plant
指導教授:朱正永
指導教授(外文):CHU, CHEN-YEON
口試委員:吳石乙林俊德吳亘承朱正永
口試委員(外文): PETRACCHINI, FRANCESCO
口試日期:2023-06-09
學位類別:博士
校院名稱:逢甲大學
系所名稱:機械與航空工程博士學位學程
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:112
語文別:英文
論文頁數:106
中文關鍵詞:廚餘亞臨界水解厭氧消化沼氣模廠
外文關鍵詞:Food WasteSubcritical Water HydrolysisAnaerobic DigestionBiogasPilot plant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討廚餘經過亞臨界水解後的物質,循序透過批次試驗進行厭氧消化反應以找出其產沼氣的潛能,再投入日處理量為0.8 m3的模廠產製沼氣,討論亞臨界水解壓力、文氏管攪拌裝置、水解物化學需氧量(COD)濃度、揮發性固體物(VS)濃度等參數對沼氣生成的影響,找出最適合的操作參數做為商業化放大的參考依據。
在如今全球非洲豬瘟的影響下,廚餘去化的問題已然是一個燙手山芋,如何有效又經濟地解決此問題,是本研究想要達成的目的之一。亞臨界水解是利用高壓高溫來破壞及降解高有機濃度的物質,使其變成容易被微生物消化的小分子單體;文氏管攪拌裝置是一個將流體流動截面積縮小再放大的三向簡單元件,根據白努利定律在縮小的喉頭會產生相對負壓,藉著負壓造成的吸力產生微氣泡,幫助流體進行垂直的擾動。厭氧二階段醱酵是已知效率較厭氧一階段醱酵高的技術,藉由調整不同進料基質COD濃度、VS濃度、與及水力滯留時間(HRT),可以得到最佳的生質沼氣產率。本實驗的測試模廠是於2022年4月建置啟用的再生能源沼氣生產示範模廠,系統除了厭氧二階段醱酵程序之外,亦包含了廢水後處理製程如沉澱及曝氣,由於設計理念是為了將系統大部分的水回收使用,因此規劃了廢水後處理系統使水體的COD濃度能更進一步降解,完成一個全循環再利用的操作模式。
經過200多天的操作,在平均環境溫度27℃,以10 kg/cm2處理的廚餘水解物在OLR、HRT分別為 4.28 kg COD/m3day及11天的操作條件下,進行連續厭氧二階段醱酵處理,可以得到最佳的沼氣產率為1.20 m3/m3day。

The purpose of this study is to investigate the subcritical hydrolysis of food waste and conduct anaerobic digestion through batch tests to find out the biogas potential, and then put it into a pilot plant with a daily capacity of 0.8 m3 to produce advanced biogas. The parameters like sub-critical hydrolysis pressure, venturi nozzle device, the chemical oxygen demand (COD) concentration of hydrolysate, the volatile solids (VS) will be discussed about the affection of the generation of advanced biogas and find out the optimal parameter for commercial scale-up. Finally, the life cycle assessment of the food waste will be analyzed between composting process and the processes in this study.
Subcritical water hydrolysis is the use of high pressure and high temperature to destroy and degrade high-organic substances, making them into small monomers that are easily digested by microorganisms. The Venturi nozzle stirring device is a three-way simple component that cause the reduction in fluid pressure which results when a fluid flows through a constricted section (or choke) of a pipe. According to Bernoulli's principle, relative negative pressure will be generated in the narrowed choke, and microbubbles will be generated by the suction caused by the negative pressure, which will help the fluid to stir vertically. An-aerobic two-stage digestion is known to be more efficient than anaerobic one-stage digestion technology, by adjusting different COD concentrations, VS concentrations, and hydraulic retention time (HRT), the best biogas production rate can be obtained. The pilot plant in this study is a demo pilot plant of renewable energy that be built and starts operating in April 2022. Beside the anaerobic digestion process, the system also includes wastewater post-treatment processes such as sedimentation and aeration. Since the design concept is to recycle most of the water in the system, the wastewater post-treatment is planned, therefore, the COD concentration can be further degraded.
After more than 200 days of operation, under the operating conditions, OLR of 4.28 kg COD/m3day, HRT of 11 days, and an average ambient temperature of 27°C for the food waste hydrolysate treated at 10 kg/cm2, the best biogas yield can be obtained at 1.20 m3/m3day in the continuous anaerobic digestion.

Contents
誌 謝 i
摘 要 iii
Abstract v
Abbreviations vii
Contents xi
List of figures xiv
List of tables xvi
1. Introduction 1
1.1. Motivation 1
1.2. Purposes 2
1.3. Thesis structure 2
2. Literature review 4
2.1. Bubble behavior in hydrodynamic 4
2.1.1. Bubble diameter 4
2.1.2. Bubble rising velocity 5
2.2. Biogas 6
2.3. Food waste 8
2.4. Subcritical water hydrolysis 10
2.5. Setting up advanced biogas power commercial plant in Taiwan 11
3. Materials and methods 19
3.1. Bubble behavior 19
3.1.1. Experimental setup 19
3.1.2. Venturi nozzle design 20
3.1.3. Experimental procedure 22
3.2. Biogas potential from food waste hydrolysate 23
3.2.1. Substrate and seed sludge 23
3.2.2. Experimental design and procedure 24
3.3. Biogas production from industrial SCWH FW 25
3.3.1. Substrate and seed sludge 25
3.3.2. Experimental design and procedure 26
3.4. Two-stage anaerobic biogas pilot plant 27
3.4.1. Substrate and seed sludge 27
3.4.2. Experimental design and procedure 28
3.5. Analysis methods 33
3.5.1. Chemical analysis 33
3.5.2. Microbial community analysis 33
3.5.3. Statistical analysis for bubble diameter 34
4. Hydrodynamics & bubble behavior 35
4.1. Overview 35
4.2. Results and discussion 35
4.2.1. Bubble distribution 35
4.2.2. Bubble diameter 38
4.2.3. Mixing performance 41
4.3. Summary 43
5. Biogas production from FW hydrolysate 45
5.1. Overview 45
5.2. Results and discussion 45
5.2.1. Effect of temperature on SCWH 45
5.2.2. Effect of VS ratio on biogas production 49
5.2.3. Effect of substrate concentration 51
5.2.4. Biogas production performance 53
5.3. Summary 55
6. Biogas production from industrial SCWH FW 56
6.1. Overview 56
6.2. Results and discussion 56
6.2.1. Effect of temperature 56
6.2.2. Effect of substrate concentration 57
6.2.3. Biogas production performance 59
6.3. Summary 61
7. Two-stage anaerobic biogas pilot plant 62
7.1. Overview 62
7.2. Results and discussion 63
7.2.1. Biogas production performance 63
7.2.2. COD removal efficiency 68
7.2.3. Microbial community analysis 69
7.2.4. Comparative analysis of biogas and methane yields 72
7.3. Summary 74
8. Conclusions 75
References 76
Appendix 87
A. Publications / Journal papers 87
B. Publications / Conference paper 88
C. Study records 89
D. Curriculum Vitae 90


References
1.Lee, C.H., et al., Experimental investigation of microbubble generation in the venturi nozzle. International Journal of Heat and Mass Transfer, 2019. 136: p. 1127-1138.
2.Sakamatapan, K., et al., Experimental investigation of the microbubble generation using a venturi-type bubble generator. Case Studies in Thermal Engineering, 2021. 27: p. 101238.
3.Wang, X., et al., Performance comparison of swirl-venturi bubble generator and conventional venturi bubble generator. Chemical Engineering and Processing-Process Intensification, 2020. 154: p. 108022.
4.Zhao, L., et al., Effects of the divergent angle on bubble transportation in a rectangular Venturi channel and its performance in producing fine bubbles. International Journal of Multiphase Flow, 2019. 114: p. 192-206.
5.Huang, J., et al., An investigation on the performance of a micro-scale Venturi bubble generator. Chemical engineering journal, 2020. 386: p. 120980.
6.Huang, J., et al., Experimental investigation on the effect of throat size on bubble transportation and breakup in small Venturi channels. International Journal of Multiphase Flow, 2021. 142: p. 103737.
7.Li, X.L., C.J. Qin, and H.С. Zhang. Effects of Bubble Dynamic Characteristics on Flow Field in Venturi. in Advanced Materials Research. 2013. Trans Tech Publ.
8.Fatih Demirbas, M., M. Balat, and H. Balat, Biowastes-to-biofuels. Energy Conversion and Management, 2011. 52(4): p. 1815-1828.
9.Marín, D., et al., Anaerobic digestion of food waste coupled with biogas upgrading in an outdoors algal-bacterial photobioreactor at pilot scale. Fuel, 2022. 324: p. 124554 %@ 0016-2361.
10.Xu, F., et al., Anaerobic digestion of food waste–Challenges and opportunities. Bioresource technology, 2018. 247: p. 1047-1058 %@ 0960-8524.
11.Nielfa, A., R. Cano, and M. Fdz-Polanco, Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnology Reports, 2015. 5: p. 14-21 %@ 2215-017X.
12.Han, S., et al., Reactor performances and microbial communities of biogas reactors: effects of inoculum sources. Applied Microbiology and Biotechnology, 2016. 100(2): p. 987-995.
13.Werner, J.J., et al., Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proceedings of the National Academy of Sciences, 2011. 108(10): p. 4158-4163.
14.Ta, D.-T., C.-Y. Lin, and C.-Y. Chu, Biohythane production via single-stage fermentation using gel-entrapped anaerobic microorganisms: Effect of hydraulic retention time. Bioresource technology, 2020. 317: p. 123986.
15.Chu, C.-Y. and Z.-F. Wang, Dairy cow solid waste hydrolysis and hydrogen/methane productions by anaerobic digestion technology. International Journal of Hydrogen Energy, 2017. 42(52): p. 30591-30598.
16.Ta, D.T., et al., Biohythane production via single-stage anaerobic fermentation using entrapped hydrogenic and methanogenic bacteria. Bioresource Technology, 2020. 300: p. 122702.
17.Chu, C.-Y., T.-P. Vo, and T.-H. Chen, A novel of biohythane gaseous fuel production from pineapple peel waste juice in two-stage of continuously stirred anaerobic bioreactors. Fuel, 2020. 279: p. 118526.
18.Nguyen, T.-T., C.-Y. Chu, and C.-M. Ou, Pre-treatment study on two-stage biohydrogen and biomethane productions in a continuous co-digestion process from a mixture of swine manure and pineapple waste. International Journal of Hydrogen Energy, 2021. 46(20): p. 11325-11336.
19.Schievano, A., et al., Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass? Applied Energy, 2014. 124: p. 335-342.
20.Lee, K.-S., et al., Operation strategies for biohydrogen production with a high-rate anaerobic granular sludge bed bioreactor. Enzyme and Microbial Technology, 2004. 35(6): p. 605-612.
21.Lee, K.-S., P.-J. Lin, and J.-S. Chang, Temperature effects on biohydrogen production in a granular sludge bed induced by activated carbon carriers. International Journal of Hydrogen Energy, 2006. 31(4): p. 465-472.
22.Chu, C.-Y., et al., High performance of biohydrogen production in packed-filter bioreactor via optimizing packed-filter position. International Journal of Environmental Research and Public Health, 2021. 18(14): p. 7462.
23.Lin, C.-N., S.-Y. Wu, and J.-S. Chang, Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge. International Journal of Hydrogen Energy, 2006. 31(15): p. 2200-2210.
24.Wu, S.-Y., C.-Y. Chu, and W.-Z. Yeh, Aspect ratio effect of bioreactor on fermentative hydrogen production with immobilized sludge. international journal of hydrogen energy, 2013. 38(14): p. 6154-6160.
25.Chu, C.-Y., S.-Y. Wu, and Y.-C. Shen, Biohydrogen production performance in a draft tube bioreactor with immobilized cell. International journal of hydrogen energy, 2012. 37(20): p. 15658-15665.
26.Chu, C.-Y., et al., Phase holdups and microbial community in high-rate fermentative hydrogen bioreactors. international journal of hydrogen energy, 2011. 36(1): p. 364-373.
27.Lin, C.-Y., et al., Pilot-scale hydrogen fermentation system start-up performance. International Journal of Hydrogen Energy, 2010. 35(24): p. 13452-13457.
28.Lin, C.-Y., et al., Biogas production from beverage factory wastewater in a mobile bioenergy station. Chemosphere, 2021. 264: p. 128564.
29.Liu, C.-M., et al., Fermentative hydrogen production potential from washing wastewater of beverage production process. International Journal of Hydrogen Energy, 2016. 41(7): p. 4466-4473.
30.Blakeney, M., Food loss and food waste: Causes and solutions. 2019.
31.Yaqoob, A.A., et al., Oxidation of food waste as an organic substrate in a single chamber microbial fuel cell to remove the pollutant with energy generation. Sustainable Energy Technologies and Assessments, 2022. 52: p. 102282.
32.Yao, H., et al., Tradeoff analysis of the pork supply and food security under the influence of African swine fever and the COVID-19 outbreak in China. Geography and Sustainability, 2022. 3(1): p. 32-43 %@ 2666-6839.
33.Wang, W.-H., et al., Detection of African swine fever virus in pork products brought to Taiwan by travellers. Emerging microbes & infections, 2019. 8(1): p. 1000-1002 %@ 2222-1751.
34.Tsai, W.-T. and Y.-Q. Lin, Analysis of Promotion Policies for the Valorization of Food Waste from Industrial Sources in Taiwan. Fermentation, 2021. 7(2): p. 51 %@ 2311-5637.
35.Grimberg, S.J., et al., Anaerobic digestion of food waste through the operation of a mesophilic two-phase pilot scale digester – Assessment of variable loadings on system performance. Bioresource Technology, 2015. 178: p. 226-229.
36.Xiao, B., et al., Comparison of single-stage and two-stage thermophilic anaerobic digestion of food waste: Performance, energy balance and reaction process. Energy Conversion and Management, 2018. 156: p. 215-223.
37.Jo, Y., et al., A comparative study of single- and two-phase anaerobic digestion of food waste under uncontrolled pH conditions. Waste Management, 2018. 78: p. 509-520.
38.Abd Allah, W.E., et al., Methane production enhancement of a family-scale biogas digester using cattle manure and corn stover under cold climates. Sustainable Energy Technologies and Assessments, 2021. 45: p. 101163.
39.Deepanraj, B., V. Sivasubramanian, and S. Jayaraj, Effect of substrate pretreatment on biogas production through anaerobic digestion of food waste. International Journal of Hydrogen Energy, 2017. 42(42): p. 26522-26528 %@ 0360-3199.
40.Sarker, T.R., et al., Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. Chemosphere, 2021. 284: p. 131372.
41.Zhang, J., et al., Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends in Food Science & Technology, 2020. 95: p. 183-195.
42.Ramos, L., E.M. Kristenson, and U.A.T. Brinkman, Current use of pressurised liquid extraction and subcritical water extraction in environmental analysis. Journal of Chromatography A, 2002. 975(1): p. 3-29.
43.Sereewatthanawut, I., et al., Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Bioresource Technology, 2008. 99(3): p. 555-561.
44.Zaini, A., et al. Mini review: Extraction of allicin from allium sativum using subcritical water extraction. in IOP Conference Series: Materials Science and Engineering. 2020. IOP Publishing.
45.Goto, M., et al., Hydrothermal conversion of municipal organic waste into resources. Bioresource technology, 2004. 93(3): p. 279-284 %@ 0960-8524.
46.Papadimitriou, E.K., Hydrolysis of organic matter during autoclaving of commingled household waste. Waste Management, 2010. 30(4): p. 572-582 %@ 0956-053X.
47.Yoshida, H. and O. Tavakoli, Sub-critical water hydrolysis treatment for waste squid entrails and production of amino acids, organic acids, and fatty acids. Journal of chemical engineering of Japan, 2004. 37(2): p. 253-260 %@ 0021-9592.
48.Wagle, A., et al., Multi-stage pre-treatment of lignocellulosic biomass for multi-product biorefinery: A review. Sustainable Energy Technologies and Assessments, 2022. 49: p. 101702.
49.Sun, Y. and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology, 2002. 83(1): p. 1-11 %@ 0960-8524.
50.Banu, J.R., et al., Impact of pretreatment on food waste for biohydrogen production: a review. International Journal of Hydrogen Energy, 2020. 45(36): p. 18211-18225 %@ 0360-3199.
51.Palmqvist, E. and B. Hahn-Hägerdal, Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource technology, 2000. 74(1): p. 25-33 %@ 0960-8524.
52.Ding, L., et al., Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production. Bioresource Technology, 2017. 241: p. 491-499.
53.Baldi, F., I. Pecorini, and R. Iannelli, Comparison of single-stage and two-stage anaerobic co-digestion of food waste and activated sludge for hydrogen and methane production. Renewable Energy, 2019. 143: p. 1755-1765.
54.Massanet-Nicolau, J., et al., Utilising biohydrogen to increase methane production, energy yields and process efficiency via two stage anaerobic digestion of grass. Bioresource Technology, 2015. 189: p. 379-383.
55.Su, J.-J. and Y.-J. Chen, Monitoring of greenhouse gas emissions from farm-scale anaerobic piggery waste-water digesters. The Journal of Agricultural Science, 2018. 156(6): p. 739-747.
56.Panin, S., et al., Biohydrogen and biogas production from mashed and powdered vegetable residues by an enriched microflora in dark fermentation. International Journal of Hydrogen Energy, 2021. 46(27): p. 14073-14082.
57.Chu, C.-Y., et al., Effects of substrate concentration and hydraulic retention time on hydrogen production from common reed by enriched mixed culture in continuous anaerobic bioreactor. International Journal of Hydrogen Energy, 2021. 46(27): p. 14036-14044.
58.Faulkner, B.E. and F.M. Ytreberg, Understanding Bernoulli’s principle through simulations. American Journal of Physics, 2011. 79(2): p. 214-216.
59.Dapelo, D. and J. Bridgeman, Assessment of mixing quality in full-scale, biogas-mixed anaerobic digestion using CFD. Bioresource Technology, 2018. 265: p. 480-489.
60.Issa, T. and P. Isaias, Usability and Human–Computer Interaction (HCI), in Sustainable design. 2022, Springer. p. 23-40.
61.Shen, M.-Y., et al., Production, downstream processing, and characterization of polyhydroxyalkanoates (PHAs) boosted by pyruvate supplement using mixed microbial culture (MMC) and organic wastewater. Biomass Conversion and Biorefinery, 2022: p. 1-9 %@ 2190-6823.
62.ISO, ISO 15705:2002 Water quality — Determination of the chemical oxygen demand index (ST-COD) — Small-scale sealed-tube method. 2002, ISO.
63.Kim, T.K., Understanding one-way ANOVA using conceptual figures. kja, 2017. 70(1): p. 22-26.
64.Wasserstein, R.L. and N.A. Lazar, The ASA Statement on p-Values: Context, Process, and Purpose. The American Statistician, 2016. 70(2): p. 129-133.
65.Nuzzo, R., Scientific method: Statistical errors. Nature, 2014. 506(7487): p. 150-152.
66.Yu, G., et al., Distributions of carbon and nitrogen in the products from hydrothermal liquefaction of low-lipid microalgae. Energy & Environmental Science, 2011. 4(11): p. 4587-4595.
67.Meena, R.A.A., et al., Biohythane production from food processing wastes – Challenges and perspectives. Bioresource Technology, 2020. 298: p. 122449.
68.Lai, C.-W., et al., A Two-stage strategy for polyhydroxybutyrate (PHB) production by continuous Biohydrogen fermenter and sequencing batch reactor from food industry wastewater. Sustainable Energy Technologies and Assessments, 2022. 53: p. 102445.
69.Chen, T.-H., et al., Biogas production from food waste hydrolysate using a subcritical water pretreated process and pulp wastewater seed sludge. Sustainable Energy Technologies and Assessments, 2023. 59: p. 103392.
70.Maciel-Silva, F.W., S.I. Mussatto, and T. Forster-Carneiro, Integration of subcritical water pretreatment and anaerobic digestion technologies for valorization of açai processing industries residues. Journal of Cleaner Production, 2019. 228: p. 1131-1142.
71.Kumar, S., et al., Cellulose pretreatment in subcritical water: Effect of temperature on molecular structure and enzymatic reactivity. Bioresource Technology, 2010. 101(4): p. 1337-1347.
72.Liu, Y., X. Li, and X. Kang, Effect of volume ratio on anaerobic co-digestion of thermal hydrolysis of food waste with activated sludge. International Biodeterioration & Biodegradation, 2015. 102: p. 154-158 %@ 0964-8305.
73.Ismail, A., et al., Combined thermal hydrolysis pretreatment and anaerobic co-digestion of waste activated sludge and food waste. Renewable Energy %@ 0960-1481, 2022.
74.Ding, L., et al., Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production. Bioresource technology, 2017. 241: p. 491-499 %@ 0960-8524.
75.Atasoy, M., et al., Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresource Technology, 2018. 268: p. 773-786.
76.Pakarinen, O., A. Lehtomäki, and J. Rintala, Batch dark fermentative hydrogen production from grass silage: the effect of inoculum, pH, temperature and VS ratio. International Journal of Hydrogen Energy, 2008. 33(2): p. 594-601 %@ 0360-3199.
77.Lateef, S.A., et al., Batch anaerobic co-digestion of cow manure and waste milk in two-stage process for hydrogen and methane productions. Bioprocess Biosyst Eng, 2014. 37(3): p. 355-63.
78.Shen, M.-Y., et al., Improvement of gaseous bioenergy production from spent coffee grounds Co-digestion with pulp wastewater by physical/chemical pretreatments. International Journal of Hydrogen Energy, 2022. 47(96): p. 40664-40671.
79.Usmanbaha, N., et al. Optimization of Batch Dark Fermentation of Chlorella sp. Using Mixed-Cultures for Simultaneous Hydrogen and Butyric Acid Production. Energies, 2019. 12, DOI: 10.3390/en12132529.
80.El-Mashad, H.M. and R. Zhang, Biogas production from co-digestion of dairy manure and food waste. Bioresource technology, 2010. 101(11): p. 4021-4028.
81.Thompson, T.M., B.R. Young, and S. Baroutian, Enhancing biogas production from caribbean pelagic Sargassum utilising hydrothermal pretreatment and anaerobic co-digestion with food waste. Chemosphere, 2021. 275: p. 130035.
82.Ye, J., et al., Improved biogas production from rice straw by co-digestion with kitchen waste and pig manure. Waste management, 2013. 33(12): p. 2653-2658.
83.da Rosa, R.G., et al., Sustainable bioprocess combining subcritical water pretreatment followed by anaerobic digestion for the valorization of jabuticaba (Myrciaria cauliflora) agro-industrial by-product in bioenergy and biofertilizer. Fuel, 2023. 334: p. 126698.
84.Nguyen, D.D., et al., Dry semi-continuous anaerobic digestion of food waste in the mesophilic and thermophilic modes: New aspects of sustainable management and energy recovery in South Korea. Energy Conversion and Management, 2017. 135: p. 445-452.
85.Wade, L.G., Organic Chemistry. 1999, New Jersey: Prentice-Hall. 1164-1168.
86.Rasit, N., et al., Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: An overview. Renewable and Sustainable Energy Reviews, 2015. 45: p. 351-358.
87.Chen, Y., J.J. Cheng, and K.S. Creamer, Inhibition of anaerobic digestion process: A review. Bioresource Technology, 2008. 99(10): p. 4044-4064.
88.Czatzkowska, M., et al., Inhibitors of the methane fermentation process with particular emphasis on the microbiological aspect: A review. Energy Science & Engineering, 2020. 8(5): p. 1880-1897.
89.Toma, L., et al., THE INFLUENCE OF THE TEMPERATURE ON BIOGAS PRODUCTION IN A SMALL CAPACITY PLANT. Acta Technica Corviniensis-Bulletin of Engineering, 2016. 9(4): p. 153.
90.Babaee, A., J. Shayegan, and A. Roshani, Anaerobic slurry co-digestion of poultry manure and straw: effect of organic loading and temperature. Journal of Environmental Health Science and Engineering, 2013. 11(1): p. 1-6.
91.Blasius, J.P., et al., Effects of temperature, proportion and organic loading rate on the performance of anaerobic digestion of food waste. Biotechnology Reports, 2020. 27: p. e00503.
92.Wang, N.X., et al., A comprehensive review of anaerobic digestion of organic solid wastes in relation to microbial community and enhancement process. Journal of the Science of Food and Agriculture, 2019. 99(2): p. 507-516.
93.Wainaina, S., et al., Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: a critical review. Bioengineered, 2019. 10(1): p. 437-458.
94.Demirel, B. and P. Scherer, The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Reviews in Environmental Science and Bio/Technology, 2008. 7: p. 173-190.
95.Rajendran, K., et al., Advancing anaerobic digestion through two-stage processes: Current developments and future trends. Renewable and Sustainable Energy Reviews, 2020. 123: p. 109746.
96.Micolucci, F., et al., Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste. Journal of Cleaner Production, 2018. 171: p. 1376-1385.
97.Zhang, L., Y.-W. Lee, and D. Jahng, Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresource Technology, 2011. 102(8): p. 5048-5059.
98.Cavinato, C., et al., Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: A long-term pilot scale experience. International Journal of Hydrogen Energy, 2012. 37(15): p. 11549-11555.
99.Ferreira, J.n.S., I. Volschan Jr, and M. C. Cammarota, Enhanced biogas production in pilot digesters treating a mixture of sewage sludge, glycerol, and food waste. Energy & Fuels, 2018. 32(6): p. 6839-6846.
100.Miller, K.E., et al., Pilot-scale biogas production in a temperate climate using variable food waste. Biomass and bioenergy, 2020. 138: p. 105568.
101.Liu, X., et al., Pilot-scale anaerobic co-digestion of municipal biomass waste: Focusing on biogas production and GHG reduction. Renewable energy, 2012. 44: p. 463-468.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊