一、中文部分
林柏辰(2017)。基於伺服驅動器輸出資料以模糊方法估測軸承損壞程度(碩士論文)。取自台灣博碩士論文系統。取自https://hdl.handle.net/11296/9hutkq.徐翊玲(2021)。基於支持向量機與邏輯迴歸應用於蒸汽渦輪發動機軸承健康評估與故障診斷之研究。取自台灣博碩士論文系統。取自https://hdl.handle.net/11296/287dz2.張淵仁(2021)。智能製造與工程管理碩士在職學位學程工業務聯網與大數據與智慧製造系統特論。未出版課堂講義,逢甲大學,台中市。
許驥(2021)。用於銑刀磨損檢測之自我感知模型開發。未出版之碩士論文,逢甲大學航太與系統工程學系,台中市。
劉彥君(2018)。以預測與健康管理於銑床之應用。未出版之碩士論文,逢甲大學航太與系統工程學系,台中市。蔡旻修(2020)。SVM法在齒輪轉子系統異常檢測研究(碩士論文)。取自台灣博碩士論文系統。取自https://hdl.handle.net/11296/zvbd65.鄭允睿(2015)。應用時頻轉換振動訊號分析於軸承異常監視之研究(碩士論文)。取自台灣博碩士論文系統。取自https://hdl.handle.net/11296/stv8bu.二、英文部分
A. Widodo, B. Yang (2007). “Support Vector Machine in Machine Condition Monitoring and Fault Diagnosis,” Mechanical Systems and Signal Processing, Volume 21, Issue 6, pp.2560-2574.
B. Lu, D. Durocher, P. Stemper (2009). “Predictive Maintenance Tec hniaues,” IEEE Industry Applications Magazine, 15 (6), pp.52-60.
C. Ly, K. Tom, C. S. Byington, R. Patrick and G. J. Vachtsevanos (2009), “Fault Diagnosis and Failure Prognosis for Engineering Systems: A Global Perspective,” 2009 IEEE International Conference on Automation Science and Engineering, Bangalore, India, pp.108-115.
C. Stenström, P. Norrbin, A. Parida, & U. Kumar (2016). “Preventive and Corrective Maintenance – Cost Comparison and Cost-Benefit Analysis,” Structure and Infrastructure Engineering, vol.12, pp.603- 617.
G. Lee, M. Kim, Y. Quan et al. (2018). “Machine Health Management in Smart Factory: A Review,” J Mech Sci Technol 32, pp.987–1009.
J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, D. Siegel (2014). “Prognostics and Health Management Design for Rotary Machinery Systems—Reviews, Methodology and Applications,” Mechanical Systems and Signal Processing, Volume 42, Issues 1–2.
J. Lee, F. Wu, W. Zhao, M. Ghaffari, L. Liao, D. Siegel (2014). “Prognostics and Health Management Design for Rotary Machinery Systems—Reviews Methodology and Applications,” Mechanical Systems and Signal Processing, 42, pp.314–334.
L. Liao, & D. Siegel (2014). “Prognostics and Health Management Design for Rotary Machinery Systems—Reviews, Methodology and Applications,” Mechanical Systems and Signal Processing, 42(1), pp.314–334.
P. Goswami, P. Sahu, R. Rai (2022). “An Optimum Segmentation of Gear Vibration Signals for an Effective Fault Classification Using Time-Domain Feature and Multi-class Support Vector Machines,” In: S. Udgata, S. Sethi, X. Gao (eds) Intelligent Systems- Lecture Notes in Networks and Systems, vol 431. Springer, Singapore.
R. Mobley (1990). An Introduction to Predictive Maintenance. New York, NY: Van Nostrand Reinhold.
S. Duffuaa, M. Ben-Daya, K. Al-Sultan, &A. Andijani (2001). “A Generic Conceptual Simulation Model for Maintenance Systems,” Journal of Quality in Maintenance Engineering, 7 (3), pp.207-219.
S. Frank, & M. Slatkin (1992). “Fisher's Fundamental Theorem of Natural Selection,” TREE, 7(3).
X. Zou, L. Tao, L. Sun, C. Wang, J. Ma, C. Lu (2023), “A Case-Learning-Based Paradigm for Quantitative Recommendation of Fault Diagnosis Algorithms: A Case Study of Gearbox,” Reliability Engineering & System Safety, Volume 237.
Y. Liu, Y. Chang, S. Liu, S. Chen (2019). “Data-Driven Prognostics of Remaining Useful Life for Milling Machine Cutting Tools,” 2019 IEEE International Conference on Prognostics and Health Management, pp.92, San Francisco, USA.
三、網路部分
台達電子。Delta ASDA-Soft擷取模組。上網日期:2023年5月22日,檢自https://downloadcenter.deltaww.com/zhTW/DownloadCenter?v=1&CID=06&itemID=060201&downloadID=B3%20Series&sort_expr=cdate&sort_dir=DESC
高文嬙,馬旭東(2021)。刀庫式加工中心自動換刀系統故障診斷與維修。上網日期: 2023年5月22日,檢自http://www.skjcsc.com/newsdetail/2021/11/17/31509.html
陳玨(2022)。非預警停機帶來嚴重損失,機器人狀態維護服務 可降低非預期性停機。上網日期:2022年08月01日,檢自 https://www.ctimes.com.tw/DispNews/tw/%E6%A9%9F%E5% 99%A8%E4%BA%BA/%E7%8B%80%E6%85%8B%E7%B6 %AD%E8%AD%B7%E6%9C%8D%E5%8B%99/ABB/22060 71621NB.shtml
聖杰國際。鑽孔攻牙機刀庫。上網日期:2023年5月22日,檢自
https://online.fliphtml5.com/jtqov/gwfj/#p=5
劉慧蘭(2018)。預測性維護大幅降低非預期停機風險。上網日 期:2022年08月01日,檢自 https://www.digitimes.com.tw/iot/article.asp?cat=158&id=0000 539223_0U517SRU32PUKD2OG5EFZ
Pylnvest(2020)。[機器學習部曲]K-近鄰演算法 KNN。上網日 期:2022年07月04日,檢自 https://pyecontech.com/2020/04/19/knn/