跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/14 22:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李玠霖
論文名稱:無人機之機翼設計與流固耦合模擬
論文名稱(外文):Design and Fluid-Structure Interaction Simulation of an Unmanned Aerial Vehicle Wing
指導教授:方俊方俊引用關係
指導教授(外文):FANG, JIUNN
口試委員:方俊黃振鴻管衍德
口試委員(外文):FANG, JIUNNHUANG, CHEN-HUNGKUAN, YEAN-DER
口試日期:2023-07-25
學位類別:碩士
校院名稱:逢甲大學
系所名稱:智能製造與工程管理碩士在職學位學程
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:51
中文關鍵詞:無人飛行載具計算流體力學結構設計流固耦合分析
外文關鍵詞:UAVCFDStructural DesignFluid-Structure Interaction Analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究無人載具機翼結構設計,在機翼內不同翼肋數量設計下,為達到減輕重量且結構強度仍需符合設計需求。設計尺寸主要參考國軍某中型無人機,模型由機身、機翼、起落架組成。此研究使用電腦輔助工程分析軟體-ANSYS Workbench進行探討,藉由分析結果來預測機翼的應力變化,在未來開發下一代新型載具時,於研發階段提供設計工程師作為參考使用。
本研究首先使用CATIA繪圖軟體進行建模,接著匯入Fluid Flow(Fluent)模組,模擬飛機在巡航速度40m/s狀態下,以及前起落架是否收放,求出載具於不同攻角飛行時機翼壓力分佈。再將外流場模擬結果匯入Static Structure模組求出機翼受力情形,比較不同材質、結構設計之應力變化。
由模擬結果顯示,前起落架收起時具有較大升力及較小阻力,且飛行攻角於5度時載具有最大升阻比,由此得到最佳的飛行姿態。並以前起落架收起之模擬結果進行結構分析,藉由翼肋數量設計觀察機翼之等效應力、正向應力、變形量等數值,達到輕量化之設計目的。
This paper mainly studies the wing structure design of unmanned vehicles. Under the design of different wing ribs in the wing, in order to achieve weight reduction and structural strength still meet the design requirements. The design size mainly refers to a medium-sized UAV of the national army. The model is composed of fuselage, wings and landing gear. This study uses the computer-aided engineering analysis software - ANSYS Workbench to conduct discussions. The analysis results are used to predict the stress change of the wing. When developing the next generation of new vehicles in the future, it can be used as a reference for design engineers in the research and development stage.
This study first uses CATIA drawing software for modeling, and then imports it into the Fluid Flow (Fluent) module to simulate the aircraft at a cruising speed of 40m/s, and whether the nose landing gear is retracted or not, to find out the flight of the vehicle at different angles of attack airfoil pressure distribution. Then import the simulation results of the external flow field into the Static Structure module to obtain the stress on the wing, and compare the stress changes of different materials and structural designs.
The simulation results show that when the nose landing gear is retracted, it has greater lift and less drag, and when the flight angle of attack is 5 degrees, the load has the largest lift-to-drag ratio, thus obtaining the best flight attitude. Structural analysis was performed on the simulation results of retracting landing gear, and the equivalent stress, normal stress, and deformation of the wing were observed through the design of the number of ribs, so as to achieve the purpose of lightweight design.
誌  謝 I
摘  要 II
ABSTRACT III
目  錄 IV
圖目錄 VI
表目錄 IX
第一章、緒論 1
1.1研究動機及背景 1
1.2研究目的 2
1.3文獻回顧 3
1.4論文架構 5
第二章、基礎理論介紹 6
2.1流場統御方程式 6
2.1.1連續方程式(Continuity equation) 6
2.1.2動量守恆方程式(Momentum equation) 7
2.2紊流模型 7
2.3數值模擬計算方法 8
2.4基礎複合材料力學 9
第三章、研究方法與步驟 10
3.1幾何模型建立 10
3.2外流場分析 12
3.2.1模型建立 12
3.2.2網格建立 14
3.2.3參數設定及模擬 19
3.3流固耦合分析 26
3.3.1模型前處理 26
3.3.2模型參數建立 26
3.3.3網格建立 28
3.3.4匯入外流場模擬結果進行計算 30
第四章、結果與分析討論 34
4.1起落架影響模擬分析結果 34
4.2最佳攻角模擬分析結果 36
4.3流固耦合分析結果 41
第五章、結論與未來展望 48
參考文獻 50
[1]Mark Drela and Michael B. Giles (1987). “Viscous-inviscid analysis of transonic and low Reynolds number airfoils”, AIAA Journal, 25 (10), 1347-1355.
[2]Sravan Kumar Khuntia & Amandeep Singh Ahuja (2018). “OPTIMAL DESIGN AND CFD ANALYSIS OF WING OF A SMALL-SCALE UAV TO OBTAIN MAXIMUM EFFICIENCY”, International Journal of Computer Application, 1(8), 148-164.
[3]P. Prabhakara Rao, Sri Sampath. V (2014). “CFD Analysis on Airfoil at High Angles of Attack”, International Journal of Engineering Research, 3(7), 430-434.
[4]Sahil Soni, Mahendra Singh Khidiya, Mohit Sharma, Mragank Pratap Singh, Naresh Singh, Virendra Singh Ranawat (2016). “Comparative Analysis of Two Airfoils by CFD Simulation”, International Journal of Scientific Research in Science, Engineering and Technology, 2(3), 777-781.
[5]Dumitru PEPELEA, Marius Gabriel COJOCARU, Adrian TOADER, Mihai Leonida NICULESCU (2016). “CFD ANALYSIS FOR UAV OF FLYING WING”, SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE-AFASES, 1, 171-176.
[6]Muhammad A. B., Muhammad E. F. (2019). “Study of Unmanned Aerial Vehicle With Variation of Dihedral Angle And Configuration of Empennage Using Computational Fluid Dynamics Methods”, International Journal of Scientific & Technology Research, 8(10), 256-259.
[7]劉振東、鄭錫濤、馮雁、張迪 (2016),”無人機全複合材料機翼結構設計與試驗驗證”,複合材料學報,35(5),1055-1063。
[8]王凱、熊晨曦、賀強 (2020),”超輕複合材料機翼結構設計及成型技術研究”,複合材料科學與工程,4,72-78。
[9]Karkoulias, D. G.; Tzoganis, E.D.; Panagiotopoulos, A. G.; Acheimastos, S.-G. D.; Margaris, D. P. (2022). “Computational Fluid Dynamics Study of Wing in Air Flow and Air–Solid Flow Using Three Different Meshing Techniques and Comparison with Experimental Results in Wind Tunnel”, Computation, 10 (3), 1-24.
[10]Shivasharanayya Hiremath, Anandkumar. S. Malipatil (2014). “CFD Simulations of Aircraft Body with Different Angle of Attack and Velocity”, International Journal of Innovative Research in Science, Engineering and Technology. 3 (10), 16965-16972.
[11]MATEC Web of Conferences (2019). Retrieved January 23, 2019, from https://doi.org/10.1051/matecconf/201925602004
[12]賴柏瑞 (2016),”同軸雙旋翼無人機之機體設計、振動模態分析與旋翼流固耦合分析”,逢甲大學航太與系統工程所,台中市。
[13]江民聖 (2019),ANSYS Workbench 19.0基礎入門與工程實踐,中國:人民郵電出版社。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top