跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖偲妤
研究生(外文):LIAO, SZU-YU
論文名稱:中高齡消費者對遠距照護智慧衣的 使用意願研究
論文名稱(外文):The Impact Factors of Telecare Smart Clothing on Usage Intention of Middle and Elderly Consumers
指導教授:廖國鋒廖國鋒引用關係
指導教授(外文):LIAW, GOU-FONG
口試委員:王湧水朱宗緯尤政平廖國鋒
口試委員(外文):WANG, YUNG-SHUIZHU, ZONG-WEIYU, CHENG-PINGLIAW, GOU-FONG
口試日期:2022-07-19
學位類別:碩士
校院名稱:輔仁大學
系所名稱:織品服裝學系碩士在職專班
學門:民生學門
學類:服飾學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:68
中文關鍵詞:遠距照護智慧衣使用意願科技接受模式健康理論模型
外文關鍵詞:TelecareSmart clothingUsage intentionTechnology acceptance modelHealth belief model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:100
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
遠距照護智慧衣作為醫療照護成本增加、照護人力與資源不足的解決方案,可提供居家健康照護與追蹤、健身狀況追蹤等服務。而中高齡使用者作為遠距照護智慧衣的主要使用族群,並非熟悉操作與願意接納新科技產品與服務。然而,過去的研究多對於遠距照護智慧衣本身創新的技術及消費者對其看法做探討,較少針對驅使高齡消費者使用的心態與外部驅動原因做更深入的了解。因此除了透過科技接受模式外,擴展健康理論模型等構面探討中高齡消費者的感知有用性、感知易用性、感知嚴重性、感知益處、社會影響及自我效能對遠距照護智慧衣使用意圖之影響。本研究採用問卷調查法,以電子問卷的形式,透過社群通訊軟體作為發放管道,對中高齡消費者發放問卷並回收340份有效問卷,問卷數據採用偏最小平方法進行問卷資料分析與處理。感知有用性、社會影響及自我效能對使用意願達顯著影響;感知易用性、感知疾病嚴重性及感知益處未達顯著影響。依研究結果顯示感知有用性、社會影響及自我效能對中高齡消費者遠距照護智慧衣的使用意願具有顯著影響,因此,針對以上研究結果提出具體建議。
As a solution of increasing medical care and insufficient nursing resources, telecare smart clothing can provide home health care, fitness tracking, and other healthcare services. The main user group of telecare smart clothing, middle-aged and elderly, are not familiar with operation and willing to accept new technology products and services. However, in the past studies, most of the research has discussed the innovative technology of the telecare smart clothing, and less have done internal and extrinsic motivation that drive the usage intention of them. The study explores the effects of middle-aged and elderly consumers’ perceived usefulness, perceived ease of use, perceived disease severity, perceived benefit, social influence, and self-efficacy on their intention to use telecare smart clothing. This study adopts the questionnaire survey method, in the form of electronic questionnaires, through Facebook, Messenger, LINE, etc., to distribute questionnaires to middle-aged and elderly consumers and collect 340 valid questionnaires. The data collection is from May 2 to May 21, 2022, after collecting 340 valid questionnaires, the study uses the partial least squares method to analyze and process the questionnaire data. Perceived usefulness, social influence, and self-efficacy had a significant impact on intention to use; perceived ease of use, perceived disease severity, and perceived benefit had no significant impact. According to the research results, perceived usefulness, social influence and self-efficacy have a significant impact on the usage intention of middle-aged and elderly consumers to use Telecare smart clothing. Therefore, specific suggestions are put forward for the above independent variables.

中文摘要 i
英文摘要 ii
目錄 v
圖目錄 vii
表目錄 viii
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機與目的 2
第二章 文獻探討 4
第一節 遠距照護 4
第二節 智慧衣及遠距照護智慧衣 4
第三節 科技接受模型 6
第四節 健康信念模型 8
第五節 社會影響 10
第六節 自我效能 10
第三章 研究方法 12
第一節 研究流程 12
第二節 研究架構 13
第三節 研究假設 13
第四節 研究變項操作型定義及衡量方法 16
第五節 研究範圍 22
第六節 問卷 22
第七節 資料分析方法 23
第四章 研究結果分析 25
第一節 敘述性統計分析 25
第二節 共同方法變異分析 27
第三節 信度與效度分析 28
第四節 結構模型分析與假說檢定 35
第五節 多群組分析 40
第五章 結論 44
第一節 研究結論 44
第二節 理論貢獻與管理意涵 46
第三節 研究限制與後續研究建議 47
參考文獻 44
附錄 64
王本正、吳文智、孫銓(2017)。以整合型科技接受模式探討高齡者對於照護型機器人之接受度。福祉科技與服務管理學刊,5(2),109-120。https://doi.org/10.6283/jocsg.2017.5.2.109
李佩真、朱蕙君(2019)。探討臺灣高中、高職學生對於行動學習的社會影響、知識分享與科技接受度之影響模式分析。國立臺灣科技大學人文社會學報,15(1),57-80。
https://dx.doi.org/ 10.29506/JLASS
邱創乾、藍振晏、石天威、謝靜玟(2012)。未來服飾—智慧衣。科學發展,470,10-14。
洪新原、梁定澎、張嘉銘(2005)。科技接受模式之彙總研究。資訊管理學報,12(4),211-234。https://doi.org/10.6382/jim.200510.0211
徐業良(2020)。智慧科技在長者照護應用的發展與創新。國土及公共治理季刊,29,44-54。
國家發展委員會(2020)。中華民國人口推估 2020至2070年(109 017.0804)。臺北市:國發會(2020)。
郭家瑜、李思慧(2019)。智慧醫療在復健醫學的應用。臨床醫學月刊,83(2),100-107。
陳俊廷、黃明月(2016)。社會影響因素對我國公務人員數位學習意向及行為之影響-以性別、年齡及經驗為調節變項。文官制度,8(2),89-119。
陳恆順(2020)。遠距醫療與遠距健康照護法律管制之探討。國立政治大學法學院碩士在職專班未出版碩士論文,台北市。
陳詩雯、廖敏雯、許建隆(2015)。智慧型健康體適能系統設計與使用者接受度研究。醫療資訊雜誌,24(3),1-15。
彭台光、高月慈、林鉦棽(2006)。管理研究中的共同方法變異:問題本質、影響、測試和補救。管理學報,23(1),77-98。
黃翠瑛、黃琇屏、陳霖瑩、陳泓均(2012)。影響消費者購買生技保健食品之因素探討。管理實務與理論研究,6(1),99-121。
劉立凡、田維華、溫敏杰(2010)。老年人屬性,自覺健康與健康照護利用相關性之研究(國科會計畫報告編號:RW10012-3667)。
劉美玲(2019)。以科技接受模式探討穿戴式裝置購買意願之研究。中華大學工業管理學系未出版碩士論文,新竹市。
謝秀梓(2017)。運用健康信念模式探討民眾加選大腸鏡檢查之信念及相關因素。國立臺灣師範大學健康促進與衛生教育學系未出版碩士論文,台北市。
Ab Hamid, M. R., Sami, W., & Mohmad Sidek, M. H. (2017). Discriminant validity assessment: Use of fornell & Larcker criterion versus HTMT Criterion. Journal of Physics: Conference Series, 890, 012163. https://doi.org/10.1088/1742-6596/890/1/012163
Abdullah, F., Ward, R., & Ahmed, E. (2016). Investigating the influence of the most commonly used external variables of TAM on students’ Perceived Ease of Use (PEOU) and Perceived Usefulness (PU) of e-portfolios. Computers in Human Behavior, 63, 75-90. https://doi.org/https://doi.org/10.1016/j.chb.2016.05.014
Ahadzadeh, A. S., Pahlevan Sharif, S., Ong, F. S., & Khong, K. W. (2015). integrating health belief model and technology acceptance model: An investigation of health-related internet use. Journal of Medical Internet Research, 17(2), e45. https://doi.org/10.2196/jmir.3564
Ahmad, A., Rasul, T., Yousaf, A., & Zaman, U. (2020). Understanding factors influencing elderly diabetic patients’ continuance intention to use digital health wearables: Extending the Technology Acceptance Model (TAM). Journal of Open Innovation: Technology, Market, and Complexity, 6(3), 81.
https://doi.org/10.3390/joitmc6030081
Andreas Lymberis, S. O. (2003). Intelligent biomedical clothing for personal health and disease management: State of the art and future vision. Telemedicine Journal and e-Health, 9(4), 379-386. https://doi.org/10.1089/153056203772744716
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191-215. https://doi.org/10.1037/0033-295X.84.2.191
Borui, L., Qiong, G., Ali, H. B., Huiyang, L., & Zhanpeng, J. (2016, December 3). A wearable sit-to-stand detection system based on angle tracking and lower limb EMG. 2016 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), PA, United States. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7846876&isnumber=7846842
Bowes, A., & McColgan, G. (2012). Telecare for older people: Promoting independence, participation, and identity. Research on Aging, 35(1), 32-49.
https://doi.org/10.1177/0164027511427546
Braithwaite, J. (2018). Changing how we think about healthcare improvement. British Medical Journal, 361, k2014.
Brown, S. A., Massey, A. P., Montoya-weiss, M. M., & Burkman, J. R. (2002). Do I really have to? User acceptance of mandated technology. European Journal of Information Systems, 11(4), 283-295.
Calvaresi, D., Schumacher, M., Marinoni, M., Hilfiker, R., Dragoni, A. F., & Buttazzo, G. (2017). Agent-Based Systems for Telerehabilitation: Strengths, Limitations and Future Challenges. Agents and Multi-agent Systems for Health Care, 10685, 3-24. https://doi.org/10.1136/bmj.k2014
Carpenter, C. J. (2010). A meta-analysis of the effectiveness of health belief model variables in predicting behavior. Health Communication, 25(8), 661-669. https://doi.org/10.1080/10410236.2010.521906
Chau, K. Y., Lam, M. H. S., Cheung, M. L., Tso, E. K. H., Flint, S. W., Broom, D. R., Tse, G., & Lee, K. Y. (2019). Smart technology for healthcare: Exploring the antecedents of adoption intention of healthcare wearable technology. Health Psychology Research, 7(1), 8099.
Chen, E., Moracco, K. E., Kainz, K., Muessig, K. E., & Tate, D. F. (2022). Developing and validating a new scale to measure the acceptability of health apps among adolescents. Digital Health, 8. https://doi.org/10.1177/20552076211067660
Chen, M., Ma, Y., Song, J., Lai, C.-F., & Hu, B. (2016). Smart clothing: Connecting human with clouds and big data for sustainable health monitoring. Mobile Networks and Applications, 21(5), 825-845. https://doi.org/10.1007/s11036-016-0745-1
Cheung, M. L., Chau, K. Y., Lam, M. H. S., Tse, G., Ho, K. Y., Flint, S. W., Broom, D. R., Tso, E. K. H., & Lee, K. Y. (2019). Examining consumers’ adoption of wearable healthcare technology: The role of health attributes. International Journal of Environmental Research and Public Health, 16(13), 2257. https://www.mdpi.com/1660-4601/16/13/2257
Cheung, R., & Vogel, D. (2013). Predicting user acceptance of collaborative technologies: An extension of the technology acceptance model for e-learning. Computers & Education, 63, 160-175. https://doi.org/https://doi.org/10.1016/j.compedu.2012.12.003
Chi, T. (2018). Understanding Chinese consumer adoption of apparel mobile commerce: An extended TAM approach. Journal of Retailing and Consumer Services, 44, 274-284. https://doi.org/https://doi.org/10.1016/j.jretconser.2018.07.019
Childers, T. L., & Rao, A. R. (1992). The influence of familial and peer-based reference groups on consumer decisions. Journal of Consumer Research, 19(2), 198-211. https://doi.org/10.1086/209296
Cho, G. (2009). Smart clothing: Technology and applications. CRC press. https://doi.org/10.1201/9781420088533
Chuang, B., Tsai, C., Hsieh, H., & Tumurtulga, T. (2013, 16-20 June). Applying health belief model to explore the adoption of telecare. 2013 IEEE/ACIS 12th International Conference on Computer and Information Science (ICIS), SDS, Niigata, Japan.
Federal Communications Commission. (2022, April 3) Telehealth, telemedicine and telecare: What’s What? https://www.fcc.gov/general/telehealth-telemedicine-and-telecare-whats-what
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/ 10.2307/249008
Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research. Philosophy and Rhetoric, 10(2).
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104
Gao, Y., Li, H., & Luo, Y. (2015). An empirical study of wearable technology acceptance in healthcare. Industrial Management & Data Systems, 115(9), 1704-1723. https://doi.org/10.1108/IMDS-03-2015-0087
Gold, A. H., Malhotra, A., & Segars, A. H. (2001). Knowledge management: An organizational capabilities perspective. Journal of Management Information Systems, 18(1), 185-214. https://doi.org/10.1080/07421222.2001.11045669
Ha, S., & Stoel, L. (2009). Consumer e-shopping acceptance: Antecedents in a technology acceptance model. Journal of Business Research, 62(5), 565-571. https://doi.org/https://doi.org/10.1016/j.jbusres.2008.06.016
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139-152. https://doi.org/10.2753/MTP1069-6679190202
Hair Jr, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2021). A primer on partial least squares structural equation modeling (PLS-SEM). Sage publications, 220-221. https://doi.org/10.1080/1743727X.2015.1005806
Harst, L., Lantzsch, H., & Scheibe, M. (2019). Theories predicting end-user acceptance of telemedicine use: Systematic review. Journal of Medical Internet Research, 21(5), e13117. https://doi.org/10.2196/13117
Holden, R. J., & Karsh, B.-T. (2010). The technology acceptance model: Its past and its future in health care. Journal of Biomedical Informatics, 43(1), 159-172. https://doi.org/https://doi.org/10.1016/j.jbi.2009.07.002
Hu, L., Yang, J., Chen, M., Qian, Y., & Rodrigues, J. J. P. C. (2018). SCAI-SVSC: Smart clothing for effective interaction with a sustainable vital sign collection. Future Generation Computer Systems, 86, 329-338. https://doi.org/https://doi.org/10.1016/j.future.2018.03.042
Huang, J.-C., & Lin, S.-P. (2009). Exploring the key factors in the choice of home telehealth by using the health belief model. Telemedicine and e-Health, 15(1), 87-92. https://doi.org/10.1089/tmj.2008.0069
Huang, Y.-M., Shiyanbola, O. O., & Smith, P. D. (2018). Association of health literacy and medication self-efficacy with medication adherence and diabetes control. Patient Preference and Adherence, 12, 793. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5953319/
Hughes, C., Mariscal, T., Sera, M., Ontiveros, J., Encarnacion, A., Padilla, A., Hintze, A., Peng, T., Lo, L. Y., Warner, S., Cruz, Z. A., Ling, B., Weidner, S., Sany, K., & Baye, M. (2018, 9-11 May 2018). A cross-cultural comparison of design feature preferences required for a stroke tele-rehabilitation system. 2018 IST-Africa Week Conference ,IST, Africa.
Inoue, M., Takahashi, M., & Kai, I. (2013). Impact of communicative and critical health literacy on understanding of diabetes care and self-efficacy in diabetes management: a cross-sectional study of primary care in Japan. BMC Family Practice, 14(1), 40. https://doi.org/10.1186/1471-2296-14-40
Johns, R. (2010). Likert items and scales. Survey Question Bank: Methods Fact Sheet, 1(1), 11-28.
Jöreskog, K. G., & Sörbom, D. (1989). LISREL 7: A guide to the program and applications. SPSS.
Kamal, S. A., Shafiq, M., & Kakria, P. (2020). Investigating acceptance of telemedicine services through an extended technology acceptance model (TAM). Technology in Society, 60, 101212. https://doi.org/https://doi.org/10.1016/j.techsoc.2019.101212
Kao, H.-Y., Wei, C.-W., Yu, M.-C., Liang, T.-Y., Wu, W.-H., & Wu, Y. J. (2018). Integrating a mobile health applications for self-management to enhance Telecare system. Telematics and Informatics, 35(4), 815-825. https://doi.org/https://doi.org/10.1016/j.tele.2017.12.011
Karademas, E. C., & Kalantzi-Azizi, A. (2004). The stress process, self-efficacy expectations, and psychological health. Personality and Individual Differences, 37(5), 1033-1043. https://doi.org/https://doi.org/10.1016/j.paid.2003.11.012
Kim, R.-H., & Cho, G. (2013). Effectiveness of the smart healthcare glove system for elderly persons with hypertension. Human Factors and Ergonomics in Manufacturing & Service Industries, 23(3), 198-212. https://doi.org/https://doi.org/10.1002/hfm.20361
Korzeniewska, E., Krawczyk, A., Mróz, J., Wyszyńska, E., & Zawiślak, R. (2020). Applications of smart textiles in post-stroke rehabilitation. Sensors, 20(8), 2370. https://www.mdpi.com/1424-8220/20/8/2370
Lai, Y.-H., & Huang, F.-F. (2019). The factors that influence patients' use of telecare system in Taiwan. 3rd International Conference on Computational Biology and Bioinformatics, Nagoya, Japan. https://doi.org/10.1145/3365966.3365973
Lee, S. M., & Lee, D. (2020). Healthcare wearable devices: an analysis of key factors for continuous use intention. Service Business, 14(4), 503-531. https://doi.org/10.1007/s11628-020-00428-3
Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191-204. https://doi.org/https://doi.org/10.1016/S0378-7206(01)00143-4
Li, J., Ma, Q., Chan, A. H. S., & Man, S. S. (2019). Health monitoring through wearable technologies for older adults: Smart wearables acceptance model. Applied Ergonomics, 75, 162-169. https://doi.org/https://doi.org/10.1016/j.apergo.2018.10.006
Lin, W.-Y., Chou, W.-C., Tsai, T.-H., Lin, C.-C., & Lee, M.-Y. (2016). Development of a wearable instrumented vest for posture monitoring and system usability verification based on the technology acceptance model. Sensors, 16(12), 2172. https://www.mdpi.com/1424-8220/16/12/2172
Luo, J., Mao, A., & Zeng, Z. (2020). Sensor-based smart clothing for women’s menopause transition monitoring. Sensors, 20(4), 1093. https://www.mdpi.com/1424-8220/20/4/1093
Luszczynska, A., & Schwarzer, R. (2015). Social cognitive theory. Fac Health Sci Publ, 225-251.
Matthews, L. (2017). Applying Multigroup Analysis in PLS-SEM: A step-by-step process. In H. Latan & R. Noonan (Eds.), Partial least squares path modeling: Basic concepts, methodological issues and applications, 219-243. Springer International Publishing. https://doi.org/10.1007/978-3-319-64069-3_10
McQueen, A., Vernon, S. W., Rothman, A. J., Norman, G. J., Myers, R. E., & Tilley, B. C. (2010). Examining the role of perceived susceptibility on colorectal cancer screening intention and behavior. Annals of Behavioral Medicine, 40(2), 205-217. https://doi.org/10.1007/s12160-010-9215-3
Niknejad, N., Ismail, W. B., Mardani, A., Liao, H., & Ghani, I. (2020). A comprehensive overview of smart wearables: The state of the art literature, recent advances, and future challenges. Engineering Applications of Artificial Intelligence, 90, 103529. https://doi.org/https://doi.org/10.1016/j.engappai.2020.103529
Pai, F.-Y., & Huang, K.-I. (2011). Applying the technology acceptance model to the introduction of healthcare information systems. Technological Forecasting and Social Change, 78(4), 650-660. https://doi.org/https://doi.org/10.1016/j.techfore.2010.11.007
Pakarinen, A., Parisod, H., Smed, J., & Salanterä, S. (2017). Health game interventions to enhance physical activity self-efficacy of children: a quantitative systematic review. Journal of Advanced Nursing, 73(4), 794-811. https://doi.org/https://doi.org/10.1111/jan.13160
Pal, D., Funilkul, S., & Vanijja, V. (2020). The future of smartwatches: assessing the end-users’ continuous usage using an extended expectation-confirmation model. Universal Access in the Information Society, 19(2), 261-281. https://doi.org/10.1007/s10209-018-0639-z
Park, E., Kim, K. J., & Kwon, S. J. (2016). Understanding the emergence of wearable devices as next-generation tools for health communication. Information Technology & People, 29(4), 717-732. https://doi.org/10.1108/ITP-04-2015-0096
Park, H.-H., & Noh, M.-J. (2012). The influence of innovativeness and price sensitivity on purchase intention of smart wear. Journal of the Korean Society of Clothing and Textiles, 36(2), 218-230. https://www.koreascience.or.kr/article/JAKO201209640673772.page
Pikkarainen, T., Pikkarainen, K., Karjaluoto, H., & Pahnila, S. (2004). Consumer acceptance of online banking: an extension of the technology acceptance model. Internet Research, 14(3), 224-235. https://doi.org/10.1108/10662240410542652
Pribadi, E. T., & Devy, S. R. (2020). Application of the health belief model on the intention to stop smoking behavior among young adult women. Journal of Public Health Research, 9(2), 1817-1817. https://doi.org/10.4081/jphr.2020.1817
Qian, H., & Yuan, C. (2012). Factors associated with self-care self-efficacy among gastric and colorectal cancer patients. Cancer Nursing, 35(3), e22-31. https://doi.org/10.1097/NCC.0b013e31822d7537
Quaosar, G. A. A., Hoque, M. R., & Bao, Y. (2018). Investigating factors affecting elderly's intention to use m-health services: An empirical study. Telemedicine and e-Health, 24(4), 309-314.
https://doi.org/10.1089/tmj.2017.0111
Reisi, M., Mostafavi, F., Javadzade, H., Mahaki, B., Tavassoli, E., & Sharifirad, G. (2016). Impact of health literacy, self-efficacy, and outcome expectations on adherence to self-care behaviors in Iranians with type 2 diabetes. Oman Medical Journal, 31(1), 52. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4720937/
Reith, R., Buck, C., Eymann, T., & Lis, B. (2020). Integrating privacy concerns into the unified theory of acceptance and use of technology to explain the adoption of fitness trackers. International Journal of Innovation and Technology Management, 17(07), 2050049. https://www.worldscientific.com/doi/abs/10.1142/S0219877020500492?af=R&
Rheingans, F., Cikit, B., & Ernst, C.-P. H. (2016). The potential influence of privacy risk on activity tracker usage (Ed.), the drivers of wearable device usage: Practice and perspectives, 25-35. Springer International Publishing.
https://doi.org/10.1007/978-3-319-30376-5_3
Roca, J. C., & Gagné, M. (2008). Understanding e-learning continuance intention in the workplace: A self-determination theory perspective. Computers in Human Behavior, 24(4), 1585-1604. https://doi.org/10.1016/j.chb.2007.06.001
Rudnicka, E., Napierała, P., Podfigurna, A., Męczekalski, B., Smolarczyk, R., & Grymowicz, M. (2020). The World Health Organization (WHO) approach to healthy ageing. Maturitas, 139, 6-11. https://doi.org/10.1016/j.maturitas.2020.05.018
Schaar, A. K., & Ziefle, M. (2011, 23-26 May). Smart clothing: Perceived benefits vs. perceived fears. 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, Dublin, Ireland.
Shahrabani, S., & Benzion, U. (2012). How experience shapes health beliefs: The case of influenza vaccination. Health Education & Behavior, 39(5), 612-619. https://doi.org/10.1177/1090198111427411
Stephan, Y., Deroche, T., Brewer, B. W., Caudroit, J., & Le Scanff, C. (2009). Predictors of perceived susceptibility to sport‐related injury among competitive runners: The role of previous experience, neuroticism, and passion for running. Applied Psychology, 58(4), 672-687. https://doi.org/10.1111/j.1464-0597.2008.00373.x
Steverson, M. (2018). Ageing and health. World Health Organization, Fact Sheets, 1-7. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
Strecher, V. J., & Rosenstock, I. M. (1997). The health belief model (113). https://books.google.com.tw/books?hl=zh-TW&lr=&id=zVh30FrAuDsC&oi=fnd&pg=PA113&dq=The+health+belief+model&ots=Im4OqzwLAn&sig=vC9sETaQut1bm_cYDbFs0hOpyXQ&redir_esc=y#v=onepage&q=The%20health%20belief%20model&f=false
Sun, Y., Wang, N., Guo, X., & Peng, Z. (2013). Understanding the acceptance of mobile health services: a comparison and integration of alternative models. Journal of Electronic Commerce Research, 14(2), 183.
Syduzzaman, M. (2015). Smart textiles and nano-technology: A general overview. Journal of Textile Science & Engineering 5(1), 7. https://doi.org/10.4172/2165-8064.1000181
Syed-Abdul, S., Malwade, S., Nursetyo, A. A., Sood, M., Bhatia, M., Barsasella, D., Liu, M. F., Chang, C.-C., Srinivasan, K., M, R., & Li, Y.-C. J. (2019). Virtual reality among the elderly: A usefulness and acceptance study from Taiwan. BMC Geriatrics, 19(1), 223. https://doi.org/10.1186/s12877-019-1218-8
Taasoobshirazi, G., & Wang, S. (2016). The performance of the SRMR, RMSEA, CFI, and TLI: An examination of sample size, path size, and degrees of freedom. Journal of Applied Quantitative Methods, 11(3), 31-39. http://jaqm.ro/issues/volume-11,issue-3/pdfs/2_GI_SH_.pdf
Tsai, T.-H., Lin, W.-Y., Chang, Y.-S., Chang, P.-C., & Lee, M.-Y. (2020). Technology anxiety and resistance to change behavioral study of a wearable cardiac warming system using an extended TAM for older adults. PLOS ONE, 15(1), e0227270. https://doi.org/10.1371/journal.pone.0227270
Van den Berg, N., Schumann, M., Kraft, K., & Hoffmann, W. (2012). Telemedicine and telecare for older patients—A systematic review. Maturitas, 73(2), 94-114. https://doi.org/https://doi.org/10.1016/j.maturitas.2012.06.010
Van Langenhove, L., & Hertleer, C. (2004). Smart clothing: A new life. International Journal of Clothing Science and Technology, 16(1/2), 63-72. https://doi.org/10.1108/09556220410520360
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204. https://doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
Walrave, M., Waeterloos, C., & Ponnet, K. (2020). Adoption of a contact tracing app for containing COVID-19: A health belief model approach. JMIR Public Health Surveill, 6(3), e20572. https://doi.org/10.2196/20572
Wang, H., Wang, L., Kang, H., Hwang, M.-H., Lee, D. G., & Ju, D. Y. (2021). Public needs for wearable particulate matter devices and their influencing factors. Electronics, 10(24), 3069. https://doi.org/10.3390/electronics10243069
Wang, Y., Chung, C., Lin, C.-C., & Lin, C.-M. (2018, 30 June-6 July). The study of the electrocardiography monitoring for the elderly based on smart clothes. 2018 Eighth International Conference on Information Science and Technology (ICIST), Cordoba, Granada, and Seville, Spain.
Wu, D., Gu, H., Gu, S., & You, H. (2021). Individual motivation and social influence: a study of telemedicine adoption in China based on social cognitive theory. Health Policy and Technology, 10(3), 100525. https://doi.org/https://doi.org/10.1016/j.hlpt.2021.100525
Zhang, M., Luo, M., Nie, R., & Zhang, Y. (2017). Technical attributes, health attribute, consumer attributes and their roles in adoption intention of healthcare wearable technology. International Journal of Medical Informatics, 108, 97-109. https://doi.org/https://doi.org/10.1016/j.ijmedinf.2017.09.016
Zhou, J., & Zhou, M. (2021, July). Research on influencing factors of elderly wearable device use behavior based on TAM model. In International Conference on Human-Computer Interaction, 305-320.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊