跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/07 21:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁弘諺
研究生(外文):WENG,HUNG-YEN
論文名稱:氧化石墨烯複合材料的製備與應用於吸附印刷製程的甲醛廢氣之效能探討
論文名稱(外文):Preparation of Graphene Oxide Composites and Assessment of their Adsorption Performance for Formaldehyde Emissions from Printing Processes
指導教授:劉惠銘劉惠銘引用關係
指導教授(外文):LIU,HUI-MING
口試委員:陳昌佑林子賢
口試委員(外文):CHEN,CHANG-YULIN,ZI-XIAN
口試日期:2023-07-06
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:87
中文關鍵詞:氧化石墨烯甲醛複合材料廢棄物
外文關鍵詞:Graphene oxideFormaldehydeComposite materialsWaste material
相關次數:
  • 被引用被引用:0
  • 點閱點閱:59
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在印刷業製程中會使用到酚醛樹酯,這些樹酯的原料含有甲醛
(formaldehyde)的成分,若印刷廠的甲醛暴露濃度超過時量平均容許濃度 1ppm
時,會刺激勞工的眼睛鼻腔與咽喉,導致水腫、發炎等。
印刷廠業者常使用的活性碳吸附甲醛,但是單獨使用活性碳吸附設備無
法滿足排放標準要求,常要搭配其他技術處理,因此,本研究應用鉛筆為石
墨來源,以製備氧化石墨烯(graphene oxide),添加不同比例的橘子皮與咖啡渣
以合成複合物(composite materials),作為吸附甲醛的材料,代替印刷廠業者常
用的活性碳。
本實驗使用 GilAir Plus 高/低流量採樣幫浦選擇模擬人類呼吸頻率之流
速,以線香為甲醛的來源,將直讀式空氣測定儀器放入自行組裝設備進行實
驗,偵測並記錄甲醛濃度的變化,進一步探討甲醛吸附效能的最佳吸附之比
例與重量。
結果發現使用氧化石墨烯與咖啡渣比例為 1:3 時,1.5 克所製成之複合
材料的吸附效果最佳,其去除率達到 88.3%,而吸附效能最差為氧化石墨烯
與咖啡渣比例為 1:1 時,1.5 克製成之複合材料的去除率為 75.7%;此外,本
研究製備之氧化石墨烯複合材料在甲醛濃度為 1.40 mg/m3 時,1:3 比例的氧
化石墨烯與咖啡渣製備之複合材料對於空氣甲醛去除率可達 92.5%。
iii
本研究以 Freundlich 以及 Langmuir 等溫吸附模式以及動力學吸附模式進
行探討,發現本研究製備之複合材料吸附甲醛的模式不適用 Freundlich 與
Langmuir 兩者等溫吸附模式,甲醛的吸附較符合動力學吸附模式之擬二階吸
附動力學模式。

Phenolic resins contain formaldehyde are used in the printing process.
If the exposure concentration of formaldehyde in the printing factory exceeds
the average allowable concentration of 1ppm, it will irritate the eyes, nose
and throat of workers, resulting in edema, Inflammation etc.
Activated carbon is often used to adsorb formaldehyde in printing
factories, but activated carbon adsorption equipment alone cannot meet the
emission standards and often needs to be treated with other technologies.
Therefore, this study utilizes pencils as a graphite source to prepare graphene
oxide, and then add different proportions of orange peel or coffee grounds to
synthesize composite materials, which are used as materials for adsorbing
formaldehyde, instead of activated carbon commonly used by printing
manufacturers.
In this experiment, the GilAir Plus high/low flow sampling pump is used
to select the flow rate that simulates the human respiratory rate, and the
incense sticks are used as the source of formaldehyde. The direct-reading air
measuring instrument is put into the self-assembled equipment, and the
formaldehyde concentration is detected and recorded changes, and further
explore the ratio and weight of the optimal adsorption for formaldehyde
adsorption performance.
It was found that when the ratio of graphene oxide and coffee grounds
was 1:3, the adsorption effect of 1.5 grams of the composite material was the
best, and the removal rate reached 88.3%, while the adsorption performance
of graphene oxide and coffee grounds was the worst. When the ratio is 1:1,
the removal rate of 1.5 grams of the composite material is 75.7%; in addition,
when the formaldehyde concentration of the graphene oxide composite
material prepared in this study is 1.40 mg/m3, the ratio of 1:3 graphite The
v
composite material prepared by graphene oxide and coffee grounds can
remove 92.5% of air formaldehyde.
In this study, Freundlich and Langmuir isothermal adsorption models
and kinetic adsorption models were investigated. It was found that the
composite materials prepared in this study did not apply to the isothermal
adsorption models of Freundlich and Langmuir. The formaldehyde
adsorption kinetics followed the pseudo-second order kinetic model.


目錄
致謝 ...........................................................................................................................i
摘要..........................................................................................................................ii
Abstract...................................................................................................................iv
目錄.........................................................................................................................vi
表目錄 ..................................................................................................................... x
圖目錄 ...................................................................................................................xii
第一章 緒論 ........................................................................................................ 1
1-1 研究動機............................................................................................. 1
1-2 研究目的............................................................................................. 3
第二章 文獻回顧................................................................................................ 4
2-1 室內空氣品質 ..................................................................................... 4
2-2 甲醛 .................................................................................................... 7
2-3 氧化石墨烯與其製備.......................................................................... 9
2-3-1 Brodie 法 .....................................................................................12
2-3-2 Staudenmaier 法 ..........................................................................12
2-3-3 Hummers 法 ................................................................................13
vii
2-3-4 Tour 法 ........................................................................................14
2-3-5 修飾型的 Hummers 法及 Iron-based Approach 法......................15
2-3-6 Tang-Lau’s 法 ............................................................................17
2-3-7 電化學法....................................................................................18
2-4 植物纖維複合材料.............................................................................20
2-5 印刷業甲醛的空氣汙染 .....................................................................22
2-6 吸附理論............................................................................................24
2-6-1 吸附作用 .....................................................................................24
2-6-2 吸附作用之種類..........................................................................24
2-6-3 等溫吸附模式 .............................................................................26
2-6-4 動力學吸附模式..........................................................................29
2-7 去除效率............................................................................................31
第三章 研究方法.............................................................................................. 32
3-1 研究流程............................................................................................32
3-2 實驗材料與方法 ................................................................................34
3-2-1 實驗藥品 .....................................................................................34
3-2-2 實驗設備 .....................................................................................34
viii
3-3 研究方法............................................................................................35
3-3-1 氧化石墨烯製備..........................................................................35
3-3-2 氧化石墨烯複合材料製備 ..........................................................36
3-3-3 氧化石墨烯複合材料之實驗流程 ...............................................38
3-4 實驗儀器分析與方法.........................................................................39
3-4-1 拉曼光譜儀(Raman)....................................................................39
3-4-2 ESCA 化學分析電子能譜儀(ESCA/XPS) ...................................40
3-4-3 高解析熱場發射掃描式電子顯微鏡(FE-SEM) ...........................41
3-4-4 X-ray 繞射分析(X-ray Diffraction,XRD)..................................42
3-4-5 傅立葉紅外光譜(FTIR)...............................................................43
第四章 結果與討論.......................................................................................... 44
4-1 氧化石墨烯及氧化石墨烯複合材料定性分析 ...................................44
4-1-1 紅外線光譜分析(FT-IR) .............................................................44
4-1-2 電子能質譜儀之表面分析(XPS).................................................46
4-1-3 拉曼光譜分析(Raman) ................................................................48
4-1-4 X-ray 繞射分析(XRD).................................................................50
4-1-5 掃描電子顯微鏡(SEM) ..............................................................52
ix
4-2 廢棄物與氧化石墨烯之不同比例與不同重量吸附甲醛的效能探討56
4-2-1 不同重量氧化石墨烯與不同比例橘子皮吸附甲醛之效能探討..57
4-2-2 不同重量氧化石墨烯與不同比咖啡渣例吸附甲醛之效能探討..61
4-3 應用最佳比例之複合材料探討甲醛之吸附效能 ...............................65
4-4 使用不同起始濃度甲醛之吸附效能 ..................................................67
4-5 等溫吸附模式探討.............................................................................68
4-6 動力學吸附模式探討.........................................................................72
第五章 結論與建議.......................................................................................... 76
5-1 結論 ...................................................................................................76
5-2 本研究的限制與建議.........................................................................77
參考文獻 ............................................................................................................... 78

Atmakuri, A., Palevicius, A., Vilkauskas, A., & Janušas, G. (2022). Numerical and Experimental Analysis of Mechanical Properties of Natural-Fiber-Reinforced Hybrid Polymer Composites and the Effect on Matrix Material. Polymers, 14, 2612.
Ballesteros, L., Teixeira, J., & Mussatto, S. (2014). Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food and Bioprocess Technology, 7.
Bathla, A., Kukkar, D., Heynderickx, P. M., Younis, S. A., & Kim, K.-H. (2023). Removal of gaseous formaldehyde by portable photocatalytic air purifier equipped with bimetallic Pt@Cu-TiO2 filter. Chemical Engineering Journal, 469, 143718.
Batista, M. J. P. A., Torres, S. S., Franca, A. S., & Oliveira, L. S. (2023). Effect of zinc chloride solution assisted by ultrasound on polysaccharides of spent coffee grounds. Carbohydrate Polymer Technologies and Applications, 5, 100298.
Bianco, A., Cheng, H.-M., Enoki, T., Gogotsi, Y., Hurt, R. H., Koratkar, N., . . . Zhang, J. (2013). All in the graphene family – A recommended nomenclature for two-dimensional carbon materials. Carbon, 65, 1-6.
Brodie, B. C. (1859). XIII. On the atomic weight of graphite. Philosophical transactions of the Royal Society of London(149), 249-259.
Brown, S. K. (1999). Assessment of pollutant emissions from dry-process photocopiers. Indoor Air, 9(4), 259-267.
Chand, N., & Fahim, M. (2020). Tribology of natural fiber polymer composites: Woodhead publishing.
Chen, J., Yao, B., Li, C., & Shi, G. (2013). An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon, 64, 225-229.
Chu, J. H., Kwak, J., Kim, S.-D., Lee, M. J., Kim, J. J., Park, S.-D., . . . Kwon, S.-Y. (2014). Monolithic graphene oxide sheets with controllable composition. Nature Communications, 5(1), 3383.
Cross, G. (2012). The world’s worst pollution problems: Assessing health risks at hazardous waste sites. Retrieved from Green Cross.
Dai, X., Liu, J., & Zhang, X. (2019). Monte Carlo simulation to control indoor pollutants from indoor and outdoor sources for residential buildings in Tianjin, China. Building and Environment, 165,106376.
Deshwal, N., Singh, M. B., Bahadur, I., Kaushik, N., Kaushik, N. K., Singh, P., & Kumari, K. (2023). A review on recent advancements on removal of harmful metal/metal ions using graphene oxide: Experimental and theoretical approaches. Science of The Total Environment, 858, 159672.
Dimiev, A. M., & Tour, J. M. (2014). Mechanism of Graphene Oxide Formation. ACS Nano, 8(3), 3060-3068.
Duong, A., Steinmaus, C., McHale, C. M., Vaughan, C. P., & Zhang, L. (2011). Reproductive and developmental toxicity of formaldehyde: A systematic review. Mutation Research/Reviews in Mutation Research, 728(3), 118-138.
Farhadi, R., & Bayrami, Z. (2023). Formaldehyde. In Reference Module in Biomedical Sciences: Elsevier.
Gómez-Navarro, C., Weitz, R. T., Bittner, A. M., Scolari, M., Mews, A., Burghard, M., & Kern, K. (2007). Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Letters, 7(11), 3499-3503.
Gao, W., Alemany, L. B., Ci, L., & Ajayan, P. M. (2009). New insights into the structure and reduction of graphite oxide. Nature Chemistry, 1(5), 403-408.
GHS化學品全球調和制度. (2022). .
Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore- and Solid-Diffusion Kinetics in Fixed-Bed Adsorption under Constant-Pattern Conditions. Industrial & Engineering Chemistry Fundamentals, 5(2), 212-223.
Haring, M. M. (1926). Colloid and Capillary Chemistry (Freundlich, Herbert). Journal of Chemical Education, 3(12), 1454.
He, H., Klinowski, J., Forster, M., & Lerf, A. (1998). A new structural model for graphite oxide. Chemical Physics Letters, 287(1), 53-56.
Hontoria-Lucas, C., López-Peinado, A. J., López-González, J. d. D., Rojas-Cervantes, M. L., & Martín-Aranda, R. M. (1995). Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon, 33(11), 1585-1592.
Hummers, W. S., Jr., & Offeman, R. E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6), 1339-1339.
Kaden, D. A., Mandin, C., Nielsen, G. D., & Wolkoff, P. (2010). Formaldehyde. In WHO Guidelines for indoor air quality: selected pollutants: World Health Organization.
Kagi, N., Fujii, S., Horiba, Y., Namiki, N., Ohtani, Y., Emi, H., . . . Kim, Y. S. (2007). Indoor air quality for chemical and ultrafine particle contaminants from printers. Building and Environment, 42(5), 1949-1954.
Kilburn, K. H., Warshaw, R., & Thornton, J. C. (1987). Formaldehyde Impairs Memory, Equilibrium, and Dexterity in Histology Technicians: Effects Which Persist for Days after Exposure. Archives of Environmental Health: An International Journal, 42(2), 117-120.
Kilburn, K. H., & Warshaw, R. H. (1992). Neurobehavioral effects of formaldehyde and solvents on histology technicians: Repeated testing across time. Environmental Research, 58(1), 134-146.
Kiurski, J., Lj, N., Adamovic, S., Oros, I., Krstic, J., & Comic, L. (2012). Formaldehyde as Screen Printing Indoor Pollutant. International Journal of Structural and Civil Engineering, 1, 18-25.
Komnitsas, K., Zaharaki, D., Bartzas, G., Kaliakatsou, G., & Kritikaki, A. (2014). Efficiency of pecan shells and sawdust biochar on Pb and Cu adsorption. Desalination and Water Treatment, 57, 1-10.
Kovtyukhova, N. I., Ollivier, P. J., Martin, B. R., Mallouk, T. E., Chizhik, S. A., Buzaneva, E. V., & Gorchinskiy, A. D. (1999). Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chemistry of Materials, 11(3), 771-778.
Kumar, R., Ul Haq, M. I., Raina, A., & Anand, A. (2019). Industrial applications of natural fibre-reinforced polymer composites – challenges and opportunities. International Journal of Sustainable Engineering, 12(3), 212-220.
Langmuir, I. (1916). The Evaporation, Condensation and Reflection of Molecules and the Mechanism of Adsorption. Physical Review, 8(2), 149-176.
Lee, C. H., Khalina, A., & Lee, S. H. (2021). Importance of Interfacial Adhesion Condition on Characterization of Plant-Fiber-Reinforced Polymer Composites: A Review. Polymers, 13(3).
Leovic, K., Whitaker, D., Northeim, C., & Sheldon, L. (1998). Evaluation of a Test Method for Measuring Indoor Air Emissions from Dry-Process Photocopiers. Journal of The Air & Waste Management Association - J AIR WASTE MANAGE ASSOC, 48, 915-923.
Li, X., Tabil, L. G., & Panigrahi, S. (2007). Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. Journal of Polymers and the Environment, 15(1), 25-33.
Liu, J., Chen, S., Liu, Y., & Zhao, B. (2022). Progress in preparation, characterization, surface functional modification of graphene oxide: A review. Journal of Saudi Chemical Society, 26(6), 101560.
Liu, L., Zhang, J., Zhao, J., & Liu, F. (2012). Mechanical properties of graphene oxides. Nanoscale, 4(19), 5910-5916.
Mallick, P. K. (2023). Fundamentals of molecular spectroscopy: Springer Singapore.
Mao, S., Pu, H., & Chen, J. (2012). Graphene oxide and its reduction: modeling and experimental progress. RSC Advances, 2(7), 2643-2662.
Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., . . . Tour, J. M. (2010). Improved Synthesis of Graphene Oxide. ACS Nano, 4(8), 4806-4814.
Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K., Celik, O., . . . Chhowalla, M. (2009). Evolution of Electrical, Chemical, and Structural Properties of Transparent and Conducting Chemically Derived Graphene Thin Films. Advanced Functional Materials, 19, 2577-2583.
McAllister, M. J., Li, J.-L., Adamson, D. H., Schniepp, H. C., Abdala, A. A., Liu, J., . . . Aksay, I. A. (2007). Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chemistry of Materials, 19(18), 4396-4404.
McGregor, D. B., Partensky, C., Wilbourn, J., & Rice, J. M. (1998). An IARC evaluation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans as risk factors in human carcinogenesis. Environ Health Perspect, 106 Suppl 2(Suppl 2), 755-760.
Mills-Knapp, S., Traore, K., Ericson, B., Keith, J., Hanrahan, D., & Caravanos, J. (2012). The world’s worst pollution problems: Assessing health risks at hazardous waste sites. Retrieved from Green Cross:
Mkhoyan, K. A., Contryman, A. W., Silcox, J., Stewart, D. A., Eda, G., Mattevi, C., . . . Chhowalla, M. (2009). Atomic and Electronic Structure of Graphene-Oxide. Nano Letters, 9(3), 1058-1063.
Monteserin, C., Blanco, M., Aranzabe, E., Aranzabe, A., Laza, J., Larrañaga, A., & Vilas, J. (2017). Effects of Graphene Oxide and Chemically-Reduced Graphene Oxide on the Dynamic Mechanical Properties of Epoxy Amine Composites. Polymers, 9, 449.
Nanda, S., Mohanty, P., Pant, K., Naik, S., Kozinski, J., & Dalai, A. (2012). Characterization of North American Lignocellulosic Biomass and Biochars in Terms of their Candidacy for Alternate Renewable Fuels. BioEnergy Research, 6.
Netravali, A. N., & Chabba, S. (2003). Composites get greener. Materials Today, 6(4), 22-29.
Novoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., . . . Firsov, A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Nat. Mater., 6.
Ojha, K., Anjaneyulu, O., & Ganguli, A. (2014). Graphene-based hybrid materials: Synthetic approaches and properties. Current science, 107, 397-418.
Oosthuizen, J. (2012). Environmental health: Emerging issues and practice: BoD–Books on Demand.
Peng, l., xu, Z., Liu, Z., Wei, Y., Sun, H., Li, Z., . . . Gao, C. (2015). An iron-based green approach to 1-h production of single-layer graphene oxide. Nature Communications, 6, 5716.
Prathmesh, B., & Abhijit, M. (2023). Preparation and characterization of graphene oxide and pineapple leaf fibers reinforced rice starch bio-composite. Materials Today: Proceedings, 72, 86-91.
Sagadevan, S., Pal, K., Koteeswari, P., & Subashini, A. (2017). Synthesis and characterization of TiO2/graphene oxide nanocomposite. Journal of Materials Science: Materials in Electronics, 28(11), 7892-7898.
Saraga, D., Pateraki, S., Papadopoulos, A., Vasilakos, C., & Maggos, T. (2011). Studying the indoor air quality in three non-residential environments of different use: A museum, a printery industry and an office. Building and Environment, 46(11), 2333-2341.
Shamaila, S., Sajjad, A. K. L., & Iqbal, A. (2016). Modifications in development of graphene oxide synthetic routes. Chemical Engineering Journal, 294, 458-477.
Siti, H. I., & Baba, M. D. (2010). Indoor air quality issues for non-industrial work place. International Journal of Research and Reviews In Applied Sciences, 5(3), 235-244.
Staudenmaier, L. (1898). Verfahren zur Darstellung der Graphitsäure. Berichte der deutschen chemischen Gesellschaft, 31(2), 1481-1487.
Szabó, T., Berkesi, O., Forgo, P., Josepovits, K., Sanakis, Y., Petridis, D., & Dekany, I. (2006). Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chemistry of Materials, 18, 2740-2749.
Tang, C., Wu, J., Yimin, W., Zhang, Z., Kang, J., Xiang, Y., & Zhu, W. (2015). Geometric Structure, Electronic Property, and Hydrogen Storage Capacity of the Sc Atoms Decorated Expanded Sandwich Type Structure Graphene-Sc-graphene. Acta Chimica Sinica, 73, 1189.
Tang, X., Bai, Y., Duong, A., Smith, M. T., Li, L., & Zhang, L. (2009). Formaldehyde in China: Production, consumption, exposure levels, and health effects. Environment International, 35(8), 1210-1224.
Uhl, F. M., & Wilkie, C. A. (2004). Preparation of nanocomposites from styrene and modified graphite oxides. Polymer Degradation and Stability, 84(2), 215-226.
Vazquez-Ferreiro, P., Carrera-Hueso, F. J., Lopez, B., Diaz-Rey, M., Martinez-Casal, X., & Barrios, M. (2018). Evaluation of Formaldehyde as an ocular Irritant: a systematic Review and Meta-analysis. Cutaneous and Ocular Toxicology, 38, 1-20.
Zhou, A. a., Bai, J., Hong, W., & Bai, H. (2022). Electrochemically reduced graphene oxide: Preparation, composites, and applications. Carbon, 191, 301-332.
施柔宇. (2013). 胺基修飾磁性吸附劑之製備與其應用於水中重金屬離子之去除. (碩士), 東海大學, 台中市.
陳冠豪. (2021). 綠色方法製備鐵基層的氧化石墨烯與去除廢水重金屬的應用. (碩士), 弘光科技大學, 台中市.
傅政豪. (2002). 以活性碳為擔體之觸媒/吸附劑應用於焚化廢氣SO2之研究. (碩士), 國立中興大學, 台中市.
劉明翰. (2001). 粉狀活性碳吸附氣相氯化汞之研究:操作參數之探討及恆溫吸附模式之建立. (碩士), 國立中山大學, 高雄市.
鄧有偉. (2022). 改質生物鈣淨化室內空氣品質與綠色建材應用之研究. (博士), 國立臺北科技大學, 台北市.
謝國鎔, 葉佳瑋, 甘其詮, 張恩旗, 蘇暄, & 萬孟瑋. (2011). 以幾丁聚醣固定於淨水廠污泥處理水中銅金屬之研究. [The Study of Cupper Adsorption by Using Chitosan Immobilized on Sludge]. (37), 165-171.
勞動部職業安全衛生署. (2022). 職業暴露甲醛引起之中毒及癌症認定參考指引.
國家衛生研究院. (2021). 甲醛.
全國法規資料庫. (2012). <室內空氣品質標準.pdf>.
行政院環保署. (2017). <應符合室內空氣品質管理法之第二批公告場所.pdf>.

電子全文 電子全文(網際網路公開日期:20250831)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊