跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/22 21:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏裕峰
研究生(外文):Yu-Feng Wei
論文名稱:非小細胞肺癌腸道微生態失調與具有表皮生長因子接受體的晚期肺癌病人預後影響因子之探討
論文名稱(外文):Gut Dysbiosis and Factors Associated with Outcomes in Advanced EGFR-mutant Non-Small Cell Lung Cancer
指導教授:洪志勳洪志勳引用關係
指導教授(外文):Chih-Hsin Hung
口試委員:孫灼均蕭崇德葉耀宗邱建智王金洲
口試委員(外文):Cheuk-Kwan SunChung-Der HsiaoYao-Tsung YehChien-Chih ChiuChin-Chou Wang
口試日期:2023-01-12
學位類別:博士
校院名稱:義守大學
系所名稱:化學工程學系暨生物技術與化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:90
中文關鍵詞:腸道微菌叢微生態失調肺癌標靶藥物表皮生長因子接受體-酪胺酸激酶抑制劑預後影響因子
外文關鍵詞:afatinibdysbiosisEGFR-TKIlung cancermicrobiotaPD-L1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:55
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肺癌高居惡性腫瘤死亡率的第一位,如何找出肺癌的風險因子並降低其發生,以及發展更有效的治療方式,是肺癌相關研究重要的課題。
肺癌的發生機轉複雜且因素眾多,除了眾所皆知的內在基因及抽菸等外在環境因子外,腸道微菌叢(microbiota)及微生態失調(dysbiosis)與肺癌的相關性在近幾年也是大家研究的熱門主題。在肺癌治療方面,隨著標靶藥物的問世,為晚期肺癌病人開啟一扇大門,除了可以精準地對抗腫瘤,且相較於傳統化療藥物,已大幅減少副作用所帶來的不適,並讓這些肺癌病人活得更久更好。標靶藥物如表皮生長因子接受體-酪胺酸激酶抑制劑(EGFR-TKIs)為治療具有EGFR突變之晚期肺癌之標準第一線治療。然而,臨床上仍有許多標靶治療的重要問題無法依賴大型臨床試驗獲得解答。
本研究第一部分分析比較34位非小細胞肺癌病人與268位非肺癌健康人的腸道微菌叢,結果發現,肺癌病人有較高的Anaerotruncus spp.及Bacteroides caccae菌叢,這些微生態失調是否跟肺癌發生的致病機轉相關,有待未來更多的研究來驗證。研究結果也可以提供利用益生菌或糞便移植來改變腸道微菌叢作為預防或治療肺癌的方式之一。
第二部分的研究是針對具有EGFR基因突變的晚期非小細胞肺癌病人,做預後影響因子之分析探討。在這些具有EGFR基因突變的晚期非小細胞肺癌病人,腫瘤細胞上的PDL1表現量,是否會影響病人治療的預後,並無一致性結果。我們收錄了114位病人,分析結果發現,腫瘤細胞上的PDL1表現量高低,並不影響EGFR-TKI的治療效果,包含無惡化存活期(PFS)、以及整體存活期(OS),皆無明顯差異。此研究結果提供臨床醫師不需因PDL1表現量高低而改變這些病人的治療方針。
Afatinib是一種第二代EGFR-TKI藥物,臨床上常作為具有EGFR基因突變的晚期非小細胞肺癌的第一線治療藥物。Afatinib在臨床上常因藥物副作用而需要調降劑量。先前的研究顯示,調降藥物劑量可減低與治療相關的不良反應,但不會影響藥物的有效性。然而,調降藥物劑量是否會影響肺癌合併腦轉移病人的顱內治療效果,卻未被探討研究。我們收錄了74位晚期非小細胞肺癌合併腦轉移的病人且接受afatinib做為第一線治療。分結果發現,接受第一線afatinib不同的起始劑量及平均劑量,無論單獨使用或合併局部治療,皆不會不影響顱內腫瘤的治療效果。此研究結果指出臨床醫師不需擔心因藥物副作用調降劑量會影響這些病人的治療預後。
年紀過大或體能狀態較差的晚期肺癌病人,因為預後較差,常常被排除在臨床試驗之外。我們研究探討老年(大於等於65歲)包含體能狀態較差(ECOG-PS=2-4)的病人,對於標靶藥物治療是否有相同的效益。我們收錄237位接受EGFR-TKI做為標準第一線治療的病人,分析這些病人的預後影響因子。分析後發現,較好的體能狀態(ECOG-PS=0-1)、小於三處的轉移部位、以及第一線使用第二代afatinib作為治療藥物,有較佳的PFS。年紀在老年裡相對年輕、較好的體能狀態(ECOG-PS=0-1)、小於三處的轉移部位、以及診斷時無腦部轉移,有較佳的OS。此研究結果可以補足大型臨床試驗中,幾乎排除了體能狀態較差的病人族群,並提供臨床醫師作為治療這些病人族群的參考。
Lung cancer is the leading cause of cancer deaths in most countries, including Taiwan. The imbalance of gut microbiome, dysbiosis, is associated with various chronic diseases, including lung cancer. Understanding the pathways and risk factors associated with lung cancer is crucial to make an early diagnosis and improve treatment strategies and outcomes in those patients.
The first part of the current study tried to identify gut microbiota characteristics in non-small cell lung cancer (NSCLC) patients and healthy individuals to investigate the gut dysbiosis in NSCLC patients. A total of 34 NSCLC patients and 268 healthy individuals were enrolled for analysis. Our results indicated fecal Anaerotruncus spp. and Bacteroides caccae were prominently enrichment in NSCLC patients after adjusting for potential confounding factors. Further large-scale studies to validate gut dysbiosis and the association with NSCLC are warranted.
Clinically, epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is the standard first-line treatment for advanced EGFR-mutated NSCLC patients. The second part of this study focused on the clinical factors associated with outcomes in the treatment of advanced EGFR-mutated NSCLC patients. Afatinib, a commonly used second-generation EGFR-TKI, that frequently required dose adjustment due to intolerable adverse events in previous studies. Dose reduction may result in an insufficient concentration of afatinib in the cerebrospinal fluid and lead to a low efficacy against brain metastases. The effect of dose reduction for afatinib against brain metastasis was seldom investigated. Eighty-four NSCLC patients with brain metastases at diagnosis who received first-line afatinib therapy were enrolled for analyses. The results indicated no significant differences in intracranial treatment responses between patients treated with afatinib monotherapy or afatinib combined local treatments. In addition, dose reduction of afatinib did not affect intracranial treatment response, either alone or combined with local treatments.
Several immune checkpoint inhibitors have been introduced to cancer treatment and successful in improving patient outcomes, including lung cancer. The role of programmed cell death-ligand 1 (PD-L1) expression in lung tumors with EGFR mutation and its effect on clinical outcomes remain controversial. One hundred and fourteen patients with advanced NSCLC who received EGFR-TKIs as the first-line treatment were enrolled for analyses. PD-L1 expression levels were assessed in these patients for outcome analysis. Our results indicated advanced NSCLC patients with EGFR mutation, PD-L1 expression is not uncommon, but no significant impact on clinical outcomes in patients receiving standard first-line EGFR-TKI treatment.
The efficacy of EGFR-TKIs in older patients including poor Eastern Cooperative Oncology Group (ECOG) performance status (PS) was seldom investigated. We enrolled EGFR-mutant advanced NSCLC patients 65 years or older and evaluated the efficacy and prognosis of first-line EGFR-TKI treatment. The results indicated a good PS and < 3 metastatic sites at diagnosis were associated with a longer PFS and OS. Additionally, afatinib as the first-line treatment was associated with a longer PFS, whereas a relatively younger age, and no brain metastasis at diagnosis were associated with better OS. These findings may provide insights into the improved clinical care of those older, including poor ECOG-PS patients treated with EGFR-TKIs.
中文摘要 I
英文摘要(ABSTRACT) III
致謝(ACKNOWLEDGMENTS) V
目錄(CONTENT) VI
圖目錄(FIGURE CONTENTS) VIII
表目錄(TABLE CONTENTS). X
1. INTRODUCTION 1
1.1 Background of microbiota in human disease 1
1.2 Background of lung cancer 5
1.3 Gut dysbiosis and lung cancer 10
1.4 EGFR mutation and lung cancer 13
2. MATERIAL and METHODS 18
2.1 Gut dysbiosis and lung cancer 18
2.1.1 Participants of this study 18
2.1.2 Fecal, Saliva, and Bronchoalveolar lavage (BAL) specimen collection and fecal DNA extraction 18
2.1.3 16S rDNA next-generation sequencing (NGS) 18
2.1.4 Metagenomic analysis 19
2.1.5 Bioinformatics analysis 19
2.2 Factors associated with outcomes in advanced EGFR-mutant NSCLC 20
2.2.1 Impact of different dose of afatinib on outcomes in advanced EGFR-mutant NSCLC with brain metastases 20
2.2.1.1 Study subjects 20
2.2.1.2 Treatment outcomes evaluation 21
2.2.2 Impact of PD-L1 expression on outcomes in advanced EGFR-mutant NSCLC 21
2.2.2.1 Study patients 21
2.2.2.2 Outcome measurements 22
2.2.3 First-line EGFR-TKI in older adults with advanced EGFR-mutant NSCLC 22
2.2.3.1 Patient selection and data collection 22
2.2.3.2 Outcome measurements 22
2.3 Statistical analysis 22
2.3.1 Gut dysbiosis and lung cancer 22
2.3.2 Factors associated with outcomes in advanced EGFR-mutant NSCLC 23
3. RESULTS 24
3.1 Gut dysbiosis and lung cancer 24
3.1.1 Demographic characteristics 24
3.1.2 Microbial diversity in NSCLC patients and healthy controls 25
3.1.3 The core gut microbiome in the NSCLC patients 25
3.1.4 The gut microbes and related functional pathways in NSCLC patients 31
3.2 Factors associated with outcomes in advanced EGFR-mutant NSCLC 35
4. DISCUSSION 64
4.1 Gut dysbiosis and lung cancer 64
4.2 Factors associated with outcomes in advanced EGFR-mutant NSCLC 65
4.3 Limitations 67
4.4 Ongoing and future studies on the dysbiosis and advanced EGFR-mutant NSCLC 69
4.4.1 The link of microbiota in different human body sites to lung cancer 69
4.4.2 Gut microbiota in different EGFR gene mutation patients 71
4.4.3 The association of gut microbiota and EGFR-TKI treatment response 71
5. CONCLUSION 74
5.1 Gut dysbiosis and lung cancer 74
5.2 Factors associated with outcomes in advanced EGFR-mutant NSCLC 74
DECLARATIONS 75
REFERENCES 76
LIST OF PUBLICATIONS 83
1. Fan, Y. and O. Pedersen, Gut microbiota in human metabolic health and disease. Nat Rev Microbiol, 2021. 19(1): p. 55-71.
2. de Vos, W.M., et al., Gut microbiome and health: mechanistic insights. Gut, 2022. 71(5): p. 1020-1032.
3. Belkaid, Y. and T.W. Hand, Role of the microbiota in immunity and inflammation. Cell, 2014. 157(1): p. 121-41.
4. Hou, K., et al., Microbiota in health and diseases. Signal Transduct Target Ther, 2022. 7(1): p. 135.
5. Vivarelli, S., et al., Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers (Basel), 2019. 11(1).
6. Ma, P.J., M.M. Wang, and Y. Wang, Gut microbiota: A new insight into lung diseases. Biomed Pharmacother, 2022. 155: p. 113810.
7. Li, X., et al., Gut microbiome in modulating immune checkpoint inhibitors. EBioMedicine, 2022. 82: p. 104163.
8. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249.
9. https://twcr.tw/?page_id=1855&lang=en. [cited 2023 20, January].
10. Yang, P., PS01.02 National Lung Cancer Screening Program in Taiwan: The TALENT Study. Journal of Thoracic Oncology, 2021. 16(3): p. S58.
11. https://topics.amcham.com.tw/2018/03/higher-usual-lung-cancer-incidence-taiwanese-non-smokers/. 2018 [cited 2023 20, January].
12. Lee, T. and F. Gany, Cooking oil fumes and lung cancer: a review of the literature in the context of the U.S. population. J Immigr Minor Health, 2013. 15(3): p. 646-52.
13. He, F., et al., The relationship of lung cancer with menstrual and reproductive factors may be influenced by passive smoking, cooking oil fumes, and tea intake: A case-control study in Chinese women. Medicine (Baltimore), 2017. 96(46): p. e8816.
14. Yu, I.T., et al., Dose-response relationship between cooking fumes exposures and lung cancer among Chinese nonsmoking women. Cancer Res, 2006. 66(9): p. 4961-7.
15. Chen, Y.J., et al., Proteogenomics of Non-smoking Lung Cancer in East Asia Delineates Molecular Signatures of Pathogenesis and Progression. Cell, 2020. 182(1): p. 226-244 e17.
16. Hamra, G.B., et al., Outdoor particulate matter exposure and lung cancer: a systematic review and meta-analysis. Environ Health Perspect, 2014. 122(9): p. 906-11.
17. Tan, A.C. and D.S.W. Tan, Targeted Therapies for Lung Cancer Patients With Oncogenic Driver Molecular Alterations. J Clin Oncol, 2022. 40(6): p. 611-625.
18. Zhou, F., M. Qiao, and C. Zhou, The cutting-edge progress of immune-checkpoint blockade in lung cancer. Cell Mol Immunol, 2021. 18(2): p. 279-293.
19. Howlader N, N.A., Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA, SEER Cancer Statistics Review, 1975-2017, National Cancer Institute. Bethesda, MD. 2020.
20. Hendriks, L.E., et al., Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Annals of Oncology. 2023 Jan 3;S0923-7534(22)04785-8.
21. Boursi, B., et al., Recurrent antibiotic exposure may promote cancer formation--Another step in understanding the role of the human microbiota? Eur J Cancer, 2015. 51(17): p. 2655-64.
22. Zhuang, H., et al., Dysbiosis of the Gut Microbiome in Lung Cancer. Front Cell Infect Microbiol, 2019. 9: p. 112.
23. Dutta, D. and S.H. Lim, Bidirectional interaction between intestinal microbiome and cancer: opportunities for therapeutic interventions. Biomark Res, 2020. 8: p. 31.
24. Qin, X., et al., Dysbiosis of the Gut Microbiome Is Associated With Histopathology of Lung Cancer. Front Microbiol, 2022. 13: p. 918823.
25. Liu, F., et al., Dysbiosis of the Gut Microbiome is associated with Tumor Biomarkers in Lung Cancer. Int J Biol Sci, 2019. 15(11): p. 2381-2392.
26. Araji, G., et al., The Emerging Role of the Gut Microbiome in the Cancer Response to Immune Checkpoint Inhibitors: A Narrative Review. J Immunother Precis Oncol, 2022. 5(1): p. 13-25.
27. Cheng, W.Y., C.Y. Wu, and J. Yu, The role of gut microbiota in cancer treatment: friend or foe? Gut, 2020. 69(10): p. 1867-1876.
28. Lindeman, N.I., et al., Updated Molecular Testing Guideline for the Selection of Lung Cancer Patients for Treatment With Targeted Tyrosine Kinase Inhibitors: Guideline From the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. J Thorac Oncol, 2018. 13(3): p. 323-358.
29. Passaro, A., et al., Recent Advances on the Role of EGFR Tyrosine Kinase Inhibitors in the Management of NSCLC With Uncommon, Non Exon 20 Insertions, EGFR Mutations. J Thorac Oncol, 2021. 16(5): p. 764-773.
30. Wu, Y.L., et al., Efficacy according to blind independent central review: Post-hoc analyses from the phase III, randomized, multicenter, IPASS study of first-line gefitinib versus carboplatin/paclitaxel in Asian patients with EGFR mutation-positive advanced NSCLC. Lung Cancer, 2017. 104: p. 119-125.
31. Wu, Y.L., et al., Afatinib as First-line Treatment of Older Patients With EGFR Mutation-Positive Non-Small-Cell Lung Cancer: Subgroup Analyses of the LUX-Lung 3, LUX-Lung 6, and LUX-Lung 7 Trials. Clin Lung Cancer, 2018. 19(4): p. e465-e479.
32. Rosell, R., et al., Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol, 2012. 13(3): p. 239-46.
33. Robichaux, J.P., et al., Structure-based classification predicts drug response in EGFR-mutant NSCLC. Nature, 2021. 597(7878): p. 732-737.
34. Li, D., et al., BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene, 2008. 27(34): p. 4702-11.
35. Yang, J.C., et al., Effect of dose adjustment on the safety and efficacy of afatinib for EGFR mutation-positive lung adenocarcinoma: post hoc analyses of the randomized LUX-Lung 3 and 6 trials. Ann Oncol, 2016. 27(11): p. 2103-2110.
36. Lim, C.K., et al., Treatment effectiveness and tolerability of afatinib at different doses in patients with EGFR-mutated lung adenocarcinoma: How low can we go? Eur J Cancer, 2018. 103: p. 32-40.
37. Akbay, E.A., et al., Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov, 2013. 3(12): p. 1355-63.
38. Soo, R.A., et al., Immune checkpoint inhibitors in epidermal growth factor receptor mutant non-small cell lung cancer: Current controversies and future directions. Lung Cancer, 2018. 115: p. 12-20.
39. Lin, C., et al., Programmed Death-Ligand 1 Expression Predicts Tyrosine Kinase Inhibitor Response and Better Prognosis in a Cohort of Patients With Epidermal Growth Factor Receptor Mutation-Positive Lung Adenocarcinoma. Clin Lung Cancer, 2015. 16(5): p. e25-35.
40. Tang, Y., et al., The association between PD-L1 and EGFR status and the prognostic value of PD-L1 in advanced non-small cell lung cancer patients treated with EGFR-TKIs. Oncotarget, 2015. 6(16): p. 14209-19.
41. Lilenbaum, R.C., et al., Prevalence of poor performance status in lung cancer patients: implications for research. J Thorac Oncol, 2008. 3(2): p. 125-9.
42. Hsu, J.C., et al., Lung cancer survival and mortality in Taiwan following the initial launch of targeted therapies: an interrupted time series study. BMJ Open, 2020. 10(5): p. e033427.
43. Klindworth, A., et al., Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res, 2013. 41(1): p. e1.
44. Bolyen, E., et al., Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol, 2019. 37(8): p. 852-857.
45. Lozupone, C.A., et al., Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol, 2007. 73(5): p. 1576-85.
46. Douglas, G.M., et al., PICRUSt2 for prediction of metagenome functions. Nat Biotechnol, 2020. 38(6): p. 685-688.
47. Segata, N., et al., Metagenomic biomarker discovery and explanation. Genome Biol, 2011. 12(6): p. R60.
48. Parks, D.H., et al., STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics, 2014. 30(21): p. 3123-4.
49. Maddi, A., et al., The microbiome and lung cancer. J Thorac Dis, 2019. 11(1): p. 280-291.
50. Lin, N.U., et al., Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol, 2015. 16(6): p. e270-8.
51. Eisenhauer, E.A., et al., New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer, 2009. 45(2): p. 228-47.
52. Roach, C., et al., Development of a Companion Diagnostic PD-L1 Immunohistochemistry Assay for Pembrolizumab Therapy in Non-Small-cell Lung Cancer. Appl Immunohistochem Mol Morphol, 2016. 24(6): p. 392-7.
53. Zhang, W.Q., et al., Alterations of fecal bacterial communities in patients with lung cancer. Am J Transl Res, 2018. 10(10): p. 3171-3185.
54. Dong, Q., et al., Host-Microbiome Interaction in Lung Cancer. Front Immunol, 2021. 12: p. 679829.
55. Zheng, Y., et al., Specific gut microbiome signature predicts the early-stage lung cancer. Gut Microbes, 2020. 11(4): p. 1030-1042.
56. Tinsley, N. and N. Cook, The gut microbiome and its interaction with health, disease, treatment response and toxicity in patients advanced cancer: focus on lung cancer and immunotherapy. Transl Lung Cancer Res, 2020. 9(6): p. 2305-2307.
57. Anfossi, S. and G.A. Calin, Gut microbiota: a new player in regulating immune- and chemo-therapy efficacy. Cancer Drug Resist, 2020. 3: p. 356-370.
58. From the American Association of Neurological Surgeons, A.S.o.N.C., et al., Multisociety Consensus Quality Improvement Revised Consensus Statement for Endovascular Therapy of Acute Ischemic Stroke. Int J Stroke, 2018. 13(6): p. 612-632.
59. Liu, H., et al., Gut microbiota from coronary artery disease patients contributes to vascular dysfunction in mice by regulating bile acid metabolism and immune activation. J Transl Med, 2020. 18(1): p. 382.
60. Zhou, L., et al., TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature, 2008. 453(7192): p. 236-40.
61. Yosef, N., et al., Dynamic regulatory network controlling TH17 cell differentiation. Nature, 2013. 496(7446): p. 461-8.
62. Schuler, M., et al., First-Line Afatinib versus Chemotherapy in Patients with Non-Small Cell Lung Cancer and Common Epidermal Growth Factor Receptor Gene Mutations and Brain Metastases. J Thorac Oncol, 2016. 11(3): p. 380-90.
63. Hoffknecht, P., et al., Efficacy of the irreversible ErbB family blocker afatinib in epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-pretreated non-small-cell lung cancer patients with brain metastases or leptomeningeal disease. J Thorac Oncol, 2015. 10(1): p. 156-63.
64. Li, S.H., et al., Response to afatinib in treatment-naive patients with advanced mutant epidermal growth factor receptor lung adenocarcinoma with brain metastases. Expert Rev Anticancer Ther, 2018. 18(1): p. 81-89.
65. Jiang, T., et al., EGFR TKIs plus WBRT Demonstrated No Survival Benefit Other Than That of TKIs Alone in Patients with NSCLC and EGFR Mutation and Brain Metastases. J Thorac Oncol, 2016. 11(10): p. 1718-28.
66. Wang, H., et al., Multiple treatment modalities for brain metastasis in patients with EGFR-mutant non-small-cell lung cancer. Onco Targets Ther, 2018. 11: p. 2149-2155.
67. Zheng, H., et al., Clinical outcomes of WBRT plus EGFR-TKIs versus WBRT or TKIs alone for the treatment of cerebral metastatic NSCLC patients: a meta-analysis. Oncotarget, 2017. 8(34): p. 57356-57364.
68. Li, J., et al., A systematic and genome-wide correlation meta-analysis of PD-L1 expression and targetable NSCLC driver genes. J Thorac Dis, 2017. 9(8): p. 2560-2571.
69. Bai, Y., et al., PD-L1 expression and its effect on clinical outcomes of EGFR-mutant NSCLC patients treated with EGFR-TKIs. Cancer Biol Med, 2018. 15(4): p. 434-442.
70. Zhang, Y., et al., Prognostic significance of programmed cell death 1 (PD-1) or PD-1 ligand 1 (PD-L1) Expression in epithelial-originated cancer: a meta-analysis. Medicine (Baltimore), 2015. 94(6): p. e515.
71. Velcheti, V., et al., Programmed death ligand-1 expression in non-small cell lung cancer. Lab Invest, 2014. 94(1): p. 107-16.
72. Geater, S.L., et al., Symptom and Quality of Life Improvement in LUX-Lung 6: An Open-Label Phase III Study of Afatinib Versus Cisplatin/Gemcitabine in Asian Patients With EGFR Mutation-Positive Advanced Non-small-cell Lung Cancer. J Thorac Oncol, 2015. 10(6): p. 883-9.
73. Yang, J.C., et al., Symptom control and quality of life in LUX-Lung 3: a phase III study of afatinib or cisplatin/pemetrexed in patients with advanced lung adenocarcinoma with EGFR mutations. J Clin Oncol, 2013. 31(27): p. 3342-50.
74. Chen, G., et al., Quality of life (QoL) analyses from OPTIMAL (CTONG-0802), a phase III, randomised, open-label study of first-line erlotinib versus chemotherapy in patients with advanced EGFR mutation-positive non-small-cell lung cancer (NSCLC). Ann Oncol, 2013. 24(6): p. 1615-22.
75. Thongprasert, S., et al., Health-related quality-of-life in a randomized phase III first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients from Asia with advanced NSCLC (IPASS). J Thorac Oncol, 2011. 6(11): p. 1872-80.
76. Beckett, P., et al., Clinical management of older people with non-small cell lung cancer in England. Thorax, 2012. 67(9): p. 836-9.
77. Ettinger, D.S., et al., NCCN Guidelines Insights: Non-Small Cell Lung Cancer, Version 2.2021. J Natl Compr Canc Netw, 2021. 19(3): p. 254-266.
78. Spigel, D.R., et al., Final survival and safety results from a multicenter, open-label, phase 3b trial of erlotinib in patients with advanced nonsmall cell lung cancer. Cancer, 2008. 112(12): p. 2749-55.
79. Thatcher, N., et al., Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet, 2005. 366(9496): p. 1527-37.
80. Kim, C. and S.V. Liu, First-line EGFR TKI therapy in non-small-cell lung cancer: looking back before leaping forward. Ann Oncol, 2019. 30(12): p. 1852-1855.
81. Sehgal, K., et al., Association of Performance Status With Survival in Patients With Advanced Non-Small Cell Lung Cancer Treated With Pembrolizumab Monotherapy. JAMA Netw Open, 2021. 4(2): p. e2037120.
82. Dall'Olio, F.G., et al., ECOG performance status >/=2 as a prognostic factor in patients with advanced non small cell lung cancer treated with immune checkpoint inhibitors-A systematic review and meta-analysis of real world data. Lung Cancer, 2020. 145: p. 95-104.
83. Oh, Y., et al., Number of metastatic sites is a strong predictor of survival in patients with nonsmall cell lung cancer with or without brain metastases. Cancer, 2009. 115(13): p. 2930-8.
84. Park, J.H., et al., Tumor burden is predictive of survival in patients with non-small-cell lung cancer and with activating epidermal growth factor receptor mutations who receive gefitinib. Clin Lung Cancer, 2013. 14(4): p. 383-9.
85. Proto, C., et al., Epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of central nervous system metastases from non-small cell lung cancer: the present and the future. Transl Lung Cancer Res, 2016. 5(6): p. 563-578.
86. Iuchi, T., et al., Frequency of brain metastases in non-small-cell lung cancer, and their association with epidermal growth factor receptor mutations. Int J Clin Oncol, 2015. 20(4): p. 674-9.
87. Chen, Y.H., et al., Clinical factors associated with treatment outcomes in EGFR mutant non-small cell lung cancer patients with brain metastases: a case-control observational study. BMC Cancer, 2019. 19(1): p. 1006.
88. Su, P.L., et al., Preventing and treating brain metastases with three first-line EGFR-tyrosine kinase inhibitors in patients with EGFR mutation-positive advanced non-small cell lung cancer. Ther Adv Med Oncol, 2018. 10: p. 1758835918797589.
89. Cortot, A.B. and P.A. Jänne, Molecular mechanisms of resistance in epidermal growth factor receptor-mutant lung adenocarcinomas. Eur Respir Rev, 2014. 23(133): p. 356-66.
90. Mok, T.S., et al., Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N Engl J Med, 2017. 376(7): p. 629-640.
91. Liu, N.N., et al., Microbiome dysbiosis in lung cancer: from composition to therapy. NPJ Precis Oncol, 2020. 4(1): p. 33.
92. Saifon, W., et al., Gastrointestinal microbiota profile and clinical correlations in advanced EGFR-WT and EGFR-mutant non-small cell lung cancer. BMC Cancer, 2022. 22(1): p. 963.
93. Wei, Y.F., et al., Impact of Gut Dysbiosis on the Risk of Non-Small-Cell Lung Cancer. Int J Environ Res Public Health, 2022. 19(23).
94. Wei, Y.F., et al., Intracranial Responses to Afatinib at Different Doses in Patients With EGFR-mutated Non-small-cell Lung Carcinoma and Brain Metastases. Clin Lung Cancer, 2019. 20(3): p. e274-e283.
95. Chang, C.Y., et al., PD-L1 Expression and Outcome in Patients with Metastatic Non-Small Cell Lung Cancer and EGFR Mutations Receiving EGFR-TKI as Frontline Treatment. Onco Targets Ther, 2021. 14: p. 2301-2309.
96. Chang, C.Y., et al., Efficacy and Prognosis of First-Line EGFR-Tyrosine Kinase Inhibitor Treatment in Older Adults Including Poor Performance Status Patients with EGFR-Mutated Non-Small-Cell Lung Cancer. Cancer Manag Res, 2021. 13: p. 7187-7201.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊