跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/03 22:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠銓
研究生(外文):Kuan-Chuan Chen
論文名稱:銅片成長銅氧化物與常壓電漿沉積二氧化鈦異質奈米結構於光電化學產氫之應用研究
論文名稱(外文):Hetero-nanostructure of Copper Sheet Grown Copper Oxides and Titanium Dioxide Deposited by Atmospheric Pressure Plasma System for Photoelectrochemical (PEC) Hydrogen Generation Application
指導教授:劉文仁劉文仁引用關係
指導教授(外文):Wen-Jen Liu
口試委員:施永輝陳元宗
口試委員(外文):Yung-Hui ShihYuan-Tsung Chen
口試日期:2023-01-05
學位類別:碩士
校院名稱:義守大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:160
中文關鍵詞:光電化學產氫銅氧化物PN異質結構奈米線二氧化鈦
外文關鍵詞:Photoelectrochemical hydrogen generationCopper OxideP-N heterostructureNanowireTitanium dioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究採用簡單且低成本的加熱及常壓電漿實驗方式在銅片上成長銅氧化物奈米線膜層,利用自製的常壓電漿鍍膜系統及加熱設備的混成製程(PT-300空氣電漿300 °C-10 min +熱氧化法300 °C-50 min),在低溫300 °C下所生長出來的銅氧化物奈米線膜層具備優良的比表面積及薄膜相對穩定的特性,並且在0V(vs. RHE)時有最佳的光電流密度約為-2.92 mA/cm2。為了進一步提升整體光電化學產氫之效率,本實驗另使用常壓電漿噴流系統搭配化學氣相沉積法,在高比表面積的銅氧化物奈米線膜層上,沉積二氧化鈦奈米顆粒形成PN異質結構,有效提升電子-電洞對分離的效率。實驗結果在TiO2-9s(PT-300 + 沉積 TiO2奈米顆粒9 s)時,測得在0 V(vs. RHE)時有最佳的光電流密度約為-6.37 mA/cm2,其太陽能產氫效率最大可達約1.1%。
In this study, a simple and low-cost experimental methods was used to fabricate copper oxide nanowire on copper foil. The experimental process will be preformed by using the thermal oxidation method and the mixing process (PT-300, Air plasma 300 °C-10 min + Thermal oxidation 300 °C-50 min) of the heating plate and atmospheric pressure plasma system. The copper oxide nanowires have excellent specific surface area and relatively stable films grown at a low temperature( 300 ° C) ,and the maximum photocurrent density value of the monolayer was -2.92 mA/cm2 measured at 0 V (vs. RHE). In order to further improve the overall photo-electro-chemical (PEC) hydrogen production efficiency, this experiment also used atmospheric pressure plasma system with chemical vapor deposition to deposit titanium dioxide nanoparticles on copper oxide nanowires with high specific surface area to form P-N hetero-structure, that obviously increase efficiency of electron-hole pairs separation. Experimental results show that the maximum photocurrent density value of the P-N hetero-structure film was -6.37 mA/cm2 at TiO2 - 9s (PT-300 + TiO2 nanoparticle deposition for 9s) at 0 V (vs. RHE), and the maximum solar hydrogen conversion efficiency is about 1.1%.
摘要 i
Abstract ii
第一章 緒論 1
1-1 前言 1
1-2 太陽能 2
1-3 氫能 3
第二章 理論基礎 7
2-1 材料特性 7
2-2 奈米材料 10
2-3 異質接面 10
2-4 奈米材料製備方法 11
2-5 光電化學分解水(Photoelectrochemical Water Splitting) 19
2-6 表面電漿子(Surface Plasmon) 24
3-1 銅氧化物奈米線光電極生長機制 27
3-2 製備銅氧化奈米線與異質介面應用於增強光電化學性能 35
3-3 製備二氧化鈦奈米顆粒與銅氧化物光電極用於增強光電化學性能 37
第四章 實驗製程 49
4-1 實驗材料 49
4-2 實驗流程 50
4-3 儀器設備與分析鑑定 54
4-4 分析與鑑定 59
第五章 實驗結果 68
5-1 濕式蝕刻之銅箔性質影響 70
5-2 銅氧化物奈米線之FE-SEM分析 72
5-3 銅氧化物奈米線之XRD分析 87
5-4 銅氧化物奈米線之XPS分析 91
5-5 銅氧化物奈米線之UV-VIS-NIR分析 97
5-6 銅氧化物奈米線之TEM分析 100
5-7 銅氧化物奈米線膜層之光電分析 103
5-8 二氧化鈦沉積於銅氧化物奈米線膜層之FE-SEM分析 109
5-9 二氧化鈦沉積於銅氧化物奈米線膜層之XRD分析 111
5-10 二氧化鈦沉積於銅氧化物奈米線膜層之XPS分析 112
5-11 二氧化鈦沉積於銅氧化物奈米線之UV-VIS-NIR分析 116
5-12 二氧化鈦沉積於銅氧化物奈米線之TEM分析 118
5-13 二氧化鈦沉積於銅氧化物奈米線之光電分析 126
第六章 實驗討論 133
6-1 銅氧化物奈米線 134
第七章 結論 140
參考文獻 141
[1]. 中央氣象局數位科普網(航空氣象-輻射冷卻),https://ctasataiwan.com/%E3%80%90%E8%88%AA%E7%A9%BA%E6%B0%A3%E8%B1%A1%E8%BC%BB%E5%B0%84%E5%86%B7%E5%8D%BB%E3%80%91/
[2].能源教育資源總中心(能源小常識),https://learnenergy.tw/index.php?inter=knowledge&caid=5&id=666
[3]. W. K. C. Yung, B. Sun, Z. Meng, J. Huang, Y. Jin, H. S. Choy, Z. Cai, G. Li, C. L. Ho, J. Yang and W. Y. Wong, Additive and photochemical manufacturing of copper, Scientific Reports, 6 (2016) 39584, 1-9.
[4]. 黃貫宇,氧含量對氧化亞銅熱縮效應的影響,中央大學物理學系,2012年。
[5]. J. L. Murray, Phase Diagrams of Binary Titanium Alloys, American Society for Metals International, (1987 version), 211-229.
[6]. J. E. S. Haggerty, L. T. Schelhas, D. A. Kitchaev, J. S. Mangum, L. M.Garten, W. Sun, K. H. Stone, J. D. Perkins, M. F. Toney, G. Ceder, D. S. Ginley, B. P. Gorman and J. Tate, High-fraction brookite films from amorphous precursors, Scientific Reports, 7 (2017) 15232, 1-11.
[7]. 馬遠榮,東華大學應用物理研究所暨物理學系 科學發展 2004年10月,382期
[8]. 陳肇業,接觸蝕刻截止層厚度應變對奈米等級矽電晶體之電特性與可靠性研究,明新科技大學電子工程系,2012年。
[9]. 賴永隆,以自製低溫常壓電漿系統製備奈米二氧化鈦光觸媒薄膜及氧化鋅薄膜光學特性之研究,義守大學材料科學與工程學系,2006年。
[10].A. Fujishima and K. Honda, TiO2 photoelectrochemistry and photocatalysis, Nature, 238 (1972) 37-38.
[11]. A. Landman, H. Dotan, G. E. Shter, M. Wullenkord, A. Houaijia, A. Maljusch, G. S. Grader and A. Rothschild, Photoelectrochemical water splitting in separate oxygen and hydrogen cells, Nature Material, 16 (2017) 646-651.
[12]. J. H. Kim, H. Kaneko, T. Minegishi, J. Kubota, K. Domen and J. S. Lee, Overall Photoelectrochemical water splitting using tandem cell under simulated sunlight, Chemistry Sustainability Energy Materials, 9 (2016) 61-66.
[13].C. Jiang, S. J. Moniz, A. Wang, T. Zhang and J. Tang, Photo-electrochemical devices for solar water splitting–materials and challenges, Chemical Society Reviews, 46 (2017) 4645-4660.
[14]. K. Sivula and R. Van De Krol, Semiconducting materials for photo-electrochemical energy conversion, Nature. Reviews. Materials, 1 (2016) 15010.
[15]. M. Liu, J. L. Lyons, D. Yan and M. S. Hybertsen, Semiconductor‐Based Photoelectrochemical Water Splitting at the Limit of Very Wide Depletion Region, Advanced Functional Materials, 26 (2016) 219-225.
[16]. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang and Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting, Nano Letter, 11 (2011) 3026-3033.
[17]. Y. L. Lee, C. F. Chi and S. Y. Liau, CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectro-chemical cell, Chemistry of Materials, 22 (2010) 922-927.
[18]. H. He, S. P. Berglund, P. Xiao, W. D. Chemelewski, Y. Zhang and C. B. Mullins, Nanostructured Bi2S3/WO3 heterojunction films exhibiting enhanced Photoelectrochemical performance, Journal of Materials Chemistry A, 1 (2013) 12826-12834.
[19]《科學發展》2019年3月,555期,66~71頁,https://scitechvista.nat.gov.tw/Article/C000003/detail?ID=f782b1bc-dc51-4538-abaf-1eae14d928e6
[20]. J. Luo, L. Steier, M. K. Son, M. Schreier, M. T. Mayer and M. Gratzel, Cu2O nanowire photocathodes for efficient and durable solar water splitting, Nano Letters, 16 (2016) 1848-1857.
[21]. L. Pan, J. H. Kim, M. T. Mayer, M. K. Son, A. Ummadisingu, J. S. Lee, A. Hagfeldt, J. Luo and M. Grätzel, Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices, Nature Catalysis, 1 (2018) 412-420.
[22]. Y. Jia, Z. Wang, Y. Ma, J. Liu, W. Shi, Y. Lin, X. Hu and K. Zhang, Boosting interfacial charge migration of TiO2/BiVO4 photoanode by W doping for photoelectrochemical water splitting, Electrochimica Acta, 300 (2019) 138-144.
[23]. Y. H. Zhang, Y. L. Li, B. B. Jiu, F. L. Gong, J. L. Chen, S. M. Fang and H. L. Zhang, Highly enhanced photocatalytic H2 evolution of Cu2O microcube by coupling with TiO2 nanoparticles, Nanotechnology, 30 (2019) 145401-145412.
[24].C. Kongvarhodom, N. Nammahachak, W. Tippomuang, S. Fongchaiya, C. Turnerand and S. Ratanaphan, Role of crystallographic textures on the growth of CuO nanowires via thermal oxidation, Corrosion Science, 193 (2021) 109898, 1-8.
[25]. J. Shi, L. Qiao, Y. Zhao, Z. Sun, W. Feng, Z. Zhang, J. Wang and X. Men , Synergistic effects on thermal growth of CuO nanowires, Journal of Alloys and Compounds, 815 (2020) 152355, 1-7.
[26]. H. Yana, X. Xiaoa, Z. Chena, Y. Chena, R. Zhoua, Z. Wang and M. Hongd, Realization of adhesion enhancement of CuO nanowires growth on copper substrate by laser texturing, Optics and Laser Technology, 119 (2019) 105612, 1-8.
[27]. Q. Wang, Y. Zhang, Y. Liu, K. Wang, W. Qiu, L. Chen, W. Li and J. Li, Photocorrosion behavior of Cu2O nanowires during photoelectrochemical CO2 reduction, Journal of Electroanalytical Chemistry, 912 (2022) 116252, 1-8.
[28]. A. Dey, G. Chandrabose, L. A. O. Damptey, E. S. Erakulan, R. Thap, S. Zhuk, G. Kumar Dalapati, S. Ramakrishna, N. St. J. Braithwaite, A. Shirzadi and S. Krishnamurthy, Cu2O/CuO heterojunction catalysts through atmospheric pressure plasma induced defect passivation, Applied Surface Science, 541 (2021) 148571, 1-13.
[29]. E. Hajialilou, H. Asgharzadeh and S. Khameneh Asl, TiO2/rGO/Cu2O ternary hybrid for high-performance photoelectrochemical applications, Applied Surface Science, 544 (2021) 148832, 1-12.
[30]. E. Baran Aydın, CuO-TiO2 nanostructures prepared by chemical and electrochemical methods as photoelectrode for hydrogen production, International Journal of Hydrogen Energy, 47 (2022) 6519-6534.
[31]. M. F. Saraca, K. Ozturkb and H. C. Yatmazc, A facile two-step fabrication of titanium dioxide coated copper oxide nanowires with enhanced photocatalytic performance, Materials Characterization, 159 (2020) 110042, 1-11.
[32]. Y. Zeng, J. Xue, M. He, C. Li, W. Zhu and S. Li, Investigation of interfacial charge transfer in CuxO@TiO2 heterojunction nanowire arrays towards highly efficient solar water splitting, Electrochimica Acta, 367 (2021) 137426, 1-8.
[33]. A. Kargar, S. S. Partokia, M. T. Niu, P. Allameh, M. Yang, S. May, J. S. Cheung, K. Sun, K. Xu and D. Wang, Solution-grown 3D Cu2O networks for efficient solar water splitting, Nanotechnology, 25 (2014) 205401, 1-10.
[34]. A. Paracchin, V. Laporte, K. Sivula, M. Gratzel and E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction, Nature Material, 10 (2011) 456-461.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊