|
[1]. 中央氣象局數位科普網(航空氣象-輻射冷卻),https://ctasataiwan.com/%E3%80%90%E8%88%AA%E7%A9%BA%E6%B0%A3%E8%B1%A1%E8%BC%BB%E5%B0%84%E5%86%B7%E5%8D%BB%E3%80%91/ [2].能源教育資源總中心(能源小常識),https://learnenergy.tw/index.php?inter=knowledge&caid=5&id=666 [3]. W. K. C. Yung, B. Sun, Z. Meng, J. Huang, Y. Jin, H. S. Choy, Z. Cai, G. Li, C. L. Ho, J. Yang and W. Y. Wong, Additive and photochemical manufacturing of copper, Scientific Reports, 6 (2016) 39584, 1-9. [4]. 黃貫宇,氧含量對氧化亞銅熱縮效應的影響,中央大學物理學系,2012年。 [5]. J. L. Murray, Phase Diagrams of Binary Titanium Alloys, American Society for Metals International, (1987 version), 211-229. [6]. J. E. S. Haggerty, L. T. Schelhas, D. A. Kitchaev, J. S. Mangum, L. M.Garten, W. Sun, K. H. Stone, J. D. Perkins, M. F. Toney, G. Ceder, D. S. Ginley, B. P. Gorman and J. Tate, High-fraction brookite films from amorphous precursors, Scientific Reports, 7 (2017) 15232, 1-11. [7]. 馬遠榮,東華大學應用物理研究所暨物理學系 科學發展 2004年10月,382期 [8]. 陳肇業,接觸蝕刻截止層厚度應變對奈米等級矽電晶體之電特性與可靠性研究,明新科技大學電子工程系,2012年。 [9]. 賴永隆,以自製低溫常壓電漿系統製備奈米二氧化鈦光觸媒薄膜及氧化鋅薄膜光學特性之研究,義守大學材料科學與工程學系,2006年。 [10].A. Fujishima and K. Honda, TiO2 photoelectrochemistry and photocatalysis, Nature, 238 (1972) 37-38. [11]. A. Landman, H. Dotan, G. E. Shter, M. Wullenkord, A. Houaijia, A. Maljusch, G. S. Grader and A. Rothschild, Photoelectrochemical water splitting in separate oxygen and hydrogen cells, Nature Material, 16 (2017) 646-651. [12]. J. H. Kim, H. Kaneko, T. Minegishi, J. Kubota, K. Domen and J. S. Lee, Overall Photoelectrochemical water splitting using tandem cell under simulated sunlight, Chemistry Sustainability Energy Materials, 9 (2016) 61-66. [13].C. Jiang, S. J. Moniz, A. Wang, T. Zhang and J. Tang, Photo-electrochemical devices for solar water splitting–materials and challenges, Chemical Society Reviews, 46 (2017) 4645-4660. [14]. K. Sivula and R. Van De Krol, Semiconducting materials for photo-electrochemical energy conversion, Nature. Reviews. Materials, 1 (2016) 15010. [15]. M. Liu, J. L. Lyons, D. Yan and M. S. Hybertsen, Semiconductor‐Based Photoelectrochemical Water Splitting at the Limit of Very Wide Depletion Region, Advanced Functional Materials, 26 (2016) 219-225. [16]. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C. Wang, J. Z. Zhang and Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting, Nano Letter, 11 (2011) 3026-3033. [17]. Y. L. Lee, C. F. Chi and S. Y. Liau, CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectro-chemical cell, Chemistry of Materials, 22 (2010) 922-927. [18]. H. He, S. P. Berglund, P. Xiao, W. D. Chemelewski, Y. Zhang and C. B. Mullins, Nanostructured Bi2S3/WO3 heterojunction films exhibiting enhanced Photoelectrochemical performance, Journal of Materials Chemistry A, 1 (2013) 12826-12834. [19]《科學發展》2019年3月,555期,66~71頁,https://scitechvista.nat.gov.tw/Article/C000003/detail?ID=f782b1bc-dc51-4538-abaf-1eae14d928e6 [20]. J. Luo, L. Steier, M. K. Son, M. Schreier, M. T. Mayer and M. Gratzel, Cu2O nanowire photocathodes for efficient and durable solar water splitting, Nano Letters, 16 (2016) 1848-1857. [21]. L. Pan, J. H. Kim, M. T. Mayer, M. K. Son, A. Ummadisingu, J. S. Lee, A. Hagfeldt, J. Luo and M. Grätzel, Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices, Nature Catalysis, 1 (2018) 412-420. [22]. Y. Jia, Z. Wang, Y. Ma, J. Liu, W. Shi, Y. Lin, X. Hu and K. Zhang, Boosting interfacial charge migration of TiO2/BiVO4 photoanode by W doping for photoelectrochemical water splitting, Electrochimica Acta, 300 (2019) 138-144. [23]. Y. H. Zhang, Y. L. Li, B. B. Jiu, F. L. Gong, J. L. Chen, S. M. Fang and H. L. Zhang, Highly enhanced photocatalytic H2 evolution of Cu2O microcube by coupling with TiO2 nanoparticles, Nanotechnology, 30 (2019) 145401-145412. [24].C. Kongvarhodom, N. Nammahachak, W. Tippomuang, S. Fongchaiya, C. Turnerand and S. Ratanaphan, Role of crystallographic textures on the growth of CuO nanowires via thermal oxidation, Corrosion Science, 193 (2021) 109898, 1-8. [25]. J. Shi, L. Qiao, Y. Zhao, Z. Sun, W. Feng, Z. Zhang, J. Wang and X. Men , Synergistic effects on thermal growth of CuO nanowires, Journal of Alloys and Compounds, 815 (2020) 152355, 1-7. [26]. H. Yana, X. Xiaoa, Z. Chena, Y. Chena, R. Zhoua, Z. Wang and M. Hongd, Realization of adhesion enhancement of CuO nanowires growth on copper substrate by laser texturing, Optics and Laser Technology, 119 (2019) 105612, 1-8. [27]. Q. Wang, Y. Zhang, Y. Liu, K. Wang, W. Qiu, L. Chen, W. Li and J. Li, Photocorrosion behavior of Cu2O nanowires during photoelectrochemical CO2 reduction, Journal of Electroanalytical Chemistry, 912 (2022) 116252, 1-8. [28]. A. Dey, G. Chandrabose, L. A. O. Damptey, E. S. Erakulan, R. Thap, S. Zhuk, G. Kumar Dalapati, S. Ramakrishna, N. St. J. Braithwaite, A. Shirzadi and S. Krishnamurthy, Cu2O/CuO heterojunction catalysts through atmospheric pressure plasma induced defect passivation, Applied Surface Science, 541 (2021) 148571, 1-13. [29]. E. Hajialilou, H. Asgharzadeh and S. Khameneh Asl, TiO2/rGO/Cu2O ternary hybrid for high-performance photoelectrochemical applications, Applied Surface Science, 544 (2021) 148832, 1-12. [30]. E. Baran Aydın, CuO-TiO2 nanostructures prepared by chemical and electrochemical methods as photoelectrode for hydrogen production, International Journal of Hydrogen Energy, 47 (2022) 6519-6534. [31]. M. F. Saraca, K. Ozturkb and H. C. Yatmazc, A facile two-step fabrication of titanium dioxide coated copper oxide nanowires with enhanced photocatalytic performance, Materials Characterization, 159 (2020) 110042, 1-11. [32]. Y. Zeng, J. Xue, M. He, C. Li, W. Zhu and S. Li, Investigation of interfacial charge transfer in CuxO@TiO2 heterojunction nanowire arrays towards highly efficient solar water splitting, Electrochimica Acta, 367 (2021) 137426, 1-8. [33]. A. Kargar, S. S. Partokia, M. T. Niu, P. Allameh, M. Yang, S. May, J. S. Cheung, K. Sun, K. Xu and D. Wang, Solution-grown 3D Cu2O networks for efficient solar water splitting, Nanotechnology, 25 (2014) 205401, 1-10. [34]. A. Paracchin, V. Laporte, K. Sivula, M. Gratzel and E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction, Nature Material, 10 (2011) 456-461.
|