跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 20:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魏永承
研究生(外文):Young-Cheng Wei
論文名稱:以傾斜性製程研製摻鋁氧化鋅薄膜應用於觸壓感測之研究
論文名稱(外文):Study of Al-doped ZnO thin films grown by inclined process to apply on touch sensing
指導教授:林彥勝
指導教授(外文):Yan-Sheng Lin
口試委員:馮世維蔣榮生
口試委員(外文):Shi-Wei FengRong-Sheng Jiang
口試日期:2023-01-30
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:92
中文關鍵詞:摻鋁氧化鋅射頻磁控濺鍍傾斜性製程薄膜觸壓感測
外文關鍵詞:Al-doped zinc oxideRF magnetron sputteringinclined processfilm touch sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要以射頻磁控濺鍍機(RF magnetron sputtering)來沉積摻鋁氧化鋅(Al-doped ZnO, AZO) 奈米薄膜。研究中為了降低傾斜性製程所造成的缺陷,先研製不同厚度之薄膜進行觸壓特性感測,找出最佳靈敏度之薄膜厚度。接著再研究最佳間歇時間,主要於薄膜沉積階段置入暫停時間,可使沉積原子有足夠的時間進行自我修復、排列,
以使原子堆疊更加緻密,降低沉積過程中的缺陷。最後再藉由調整不同傾斜角度,藉由陰影效應減少柱狀結構間產生之間隙而獲得最佳傾斜角度。研究中同時藉由霍爾效應量測系統量測AZO薄膜電性,再由場發射掃描式電子顯微鏡(FESEM) 及原子力顯微鏡(AFM)進行AZO薄膜表面形貌觀察與粗糙度狀態觀察,最後以X光繞射儀(XRD)進行薄膜結晶特性、薄膜晶粒大小(Crystallite size)分析。研究中亦以自行設計之觸壓感測電路,來檢測薄膜於不同傾斜角度製程下之感測靈敏性,主要以keithley 2400電源量測設備進行即時的電阻值變化監測。研究結果發現厚度300nm之AZO薄膜,於間歇時間7.5min及傾斜角40°下之製程結構,應用於觸壓感測時具有最佳的靈敏度,其靈敏度從平均值1.116提升至2.403,研究結果驗證藉由製程優化AZO薄膜後,具備未來應用於觸壓感測之潛力。
This thesis mainly uses RF magnetron sputtering to deposit Al-doped ZnO (AZO) nanometer films. In the research, in order to reduce the defects caused by the inclined process, films with different thicknesses has been deposited first for touch sensing, then the optimum thickness of the film with the best sensitivity is found. Then the intermittent time process had been done,which can make the deposited atoms to be more atomic stack denser and reduce the defects during the deposition process. Finally, the different inclined angles had been done to reduce the gaps between the columnar structures due to the shadow effect. In this study, the Hall effect measurement system was used to measure the electrical properties of the AZO thin film, and then the surface morphology of the AZO thin films were observed by field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). Finally, X-ray diffractometer (XRD) was used to analyze the crystallization characteristics of the film. The self-designed touch pressure sensing circuit was used to analyze the sensitivity of the thin films under different process, and mainly use the Keithley 2400 power measurement equipment to monitor the real-time resistance value change. The research results found that the 300nm thickness AZO thin film treated with 7.5minutes intermittent time and inclination angle of 40。has the best touch sensitivity,which has increased from the average value of 1.116 to 2.403.In this study,the optimiged AZO thin film had been proved to has the potential for future applications in touch sensing.
中文摘要 I
ABSTRACT II
誌謝 IV
總目錄 VI
圖目錄 IX
表目錄 XII
1.1 研究背景 1
1.2 研究動機與目的 2
第二章、理論基礎與文獻回顧 3
2.1 觸壓感測器原理與種類 3
2.1.1 觸壓感測器原理 3
2.1.2 觸壓感測器種類 5
1.電阻式觸控 5
2.電容式觸控 6
3.紅外線式觸控 7
2.2 半導體觸壓感測器 9
2.2.1 半導體觸壓感測器特性 9
2.2.2 摻鋁氧化鋅薄膜應用於觸壓感測器 14
2.3 薄膜製程理論 16
2.3.1 薄膜沉積原理 16
2.3.2 薄膜製程技術 19
2.4 傾斜製程特性 23
2.4.1 傾斜性製程之薄膜沉積原理 23
2.4.2 傾斜性製程之薄膜特性 25
第三章、研究步驟與方法 27
3.1 研究流程圖 27
3.2 封裝製程流程 30
3.3 感測薄膜製程與量測設備 32
3.3.1 射頻磁控濺鍍機 32
3.3.2 霍爾載子量測系統 34
3.3.3 場發射掃描式電子顯微鏡 37
3.3.4 X光繞射儀 39
3.3.5 原子力電子顯微鏡 41
3.4 觸壓感測特性 43
3.4.1 觸壓靈敏性定義 43
3.4.2 觸壓感測量測設計 44
第四章、結果與討論 46
4.1 不同厚度之AZO薄膜對觸壓特性之研究 46
4.1.1 薄膜觸壓靈敏性分析 46
4.1.2 薄膜材料特性分析 50
4.2 不同間歇時間對觸壓特性之研究 53
4.2.1 薄膜觸壓之靈敏性分析 53
4.2.2 薄膜材料特性分析 57
4.3 不同傾斜角度製程對觸壓特性之研究 61
4.3.1 薄膜觸壓之靈敏性分析 61
4.3.2 薄膜材料特性分析 65
第五章、結論 69
參考文獻 70
[1] A. M. Almassri et al., "Pressure Sensor: State of the Art, Design, and Application for Robotic Hand", Journal of Sensors, vol. 2015, p. 846487, 2015.
[2] V. Kedambaimoole et al., "Laser-Induced Direct Patterning of Free-standing Ti3C2–MXene Films for Skin Conformal Tattoo Sensors", ACS Sensors, vol. 5, no. 7, pp. 2086-2095, 2020.
[3] C. M. Boutry et al., "A stretchable and biodegradable strain and pressure sensor for orthopaedic application", Nature Electronics, vol. 1, no. 5, pp. 314-321, 2018.
[4] Y. H. Kwak, J. Kim, and K. Kim, "Sleep monitoring sensor using flexible metal strain gauge", Japanese Journal of Applied Physics, vol. 57, no. 5S, p. 05GD03, 2018.
[5] Y. Zhao, Y. Liu, Y. Li, and Q. Hao, "Development and Application of Resistance Strain Force Sensors", Sensors, vol. 20, no. 20, 2020.
[6] P. Gutruf et al., "Transparent functional oxide stretchable electronics: micro-tectonics enabled high strain electrodes", NPG Asia Materials, vol. 5, no. 9, pp. e62-e62, 2013.
[7] M. A. Bronovets, N. M. Volodin, and Y. N. Mishin, "New materials in semiconductor tensometry", Materials Letters, vol. 267, p. 127467, 2020.
[8] R. Dhahri et al., "CO sensing properties under UV radiation of Ga-doped ZnO nanopowders", Applied Surface Science, vol. 355, pp. 1321-1326, 2015.
[9] R. Singh, R. Bhardwaj, G. Siddharth, P. Kumar, and S. Mukherjee, "Analytical Study of Sputter-Grown ZnO-Based p-i-n Homojunction UV Photodetector", IEEE Sensors Journal, vol. 21, no. 6, pp. 7515-7521, 2021.
[10] C. Moditswe, C. M. Muiva, and A. Juma, "Highly conductive and transparent Ga-doped ZnO thin films deposited by chemical spray pyrolysis", Optik, vol. 127, no. 20, pp. 8317-8325, 2016.
[11] C. Lung, M. Toma, M. Pop, D. Marconi, and A. Pop, "Characterization of the structural and optical properties of ZnO thin films doped with Ga, Al and (Al+Ga)", Journal of Alloys and Compounds, vol. 725, pp. 1238-1243, 2017.
[12] A. Yildiz, H. Cansizoglu, M. Turkoz, R. Abdulrahman, Alaa Al-Hilo, M.F. Cansizoglu, T.M. Demirkan, T. Karabacak , Thin Solid Films, 589, pp.764–769, 2015.
[13] H. Cansizoglu, Dr. M. F. Cansizoglu, Dr. T. Karabacak.Optical Mater, 1, pp.158–166, 2013.
[14] C. Hengst et al., "Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells", (in eng), Materials (Basel), vol. 10, no. 3, p. 245, 2017.
[15] F. Xu et al., "Recent Developments for Flexible Pressure Sensors: A Review", Micromachines, vol. 9, no. 11, 2018.
[16] I. Clausen and T. Glott, "Development of Clinically Relevant Implantable Pressure Sensors: Perspectives and Challenges", Sensors, vol. 14, no. 9, 2014.
[17] F. Xu et al., "Recent Developments for Flexible Pressure Sensors: A Review", Micromachines, vol. 9, no. 11, 2018.
[18] N. Veena,"Design, Simulation and Analysis of MEMS based Piezoresistive Cantilever sensor", Vol.5, pp.10697-10703, 2018.
[19] W. Chen and X. Yan, "Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review", Journal of Materials Science & Technology, vol. 43, pp. 175-188, 2020.
[20] 葛振廷,“微形心血管壓力感測器之設計與製作”,清華大學電子工程研究所碩士論文,1-38頁,2005。
[21] Z. Chen, B. Cotterell, and W. Wang, "The fracture of brittle thin films on compliant substrates in flexible displays", Engineering Fracture Mechanics, vol. 69, no. 5, pp. 597-603, 2002.
[22] C. Hengst et al., "Mechanical Properties of ZTO, ITO, and a-Si:H Multilayer Films for Flexible Thin Film Solar Cells", (in eng), Materials (Basel), vol. 10, no. 3, p. 245, 2017.
[23] K. A. Sierros, D. A. Banerjee, N. J. Morris, D. R. Cairns, I. Kortidis, and G. Kiriakidis, "Mechanical properties of ZnO thin films deposited on polyester substrates used in flexible device applications", Thin Solid Films, vol. 519, no. 1, pp. 325-330, 2010.
[24] G. Torrisi, I. Crupi, S. Mirabella, and A. Terrasi, "Robustness and electrical reliability of AZO/Ag/AZO thin film after bending stress", Solar Energy Materials and Solar Cells, vol. 165, pp. 88-93, 2017.
[25] V. K. Samoei and A. H. Jayatissa, "Aluminum doped zinc oxide (AZO)-based pressure sensor", Sensors and Actuators A: Physical, vol. 303, p. 111816, 2020.
[26] U.ozgur, Ya.I.Alivov, C. Liu, Teke, M.A. Reshchikov, S. Dogan,V. Avrutin, S.-J. Cho, and H.Morkoc, "A comprehensive review of Zno materials and devices", Journal of Applied Physics, Vol.98,pp.041301-103,2005.
[27] Prashant V. Kamat, Nada M. Dimitrijevic, and A.J.Nozik, "Dynamic Burstein-Moss Shift in Semiconductor Colloids", The Journal of Physical Chemistry, Vol.93, pp.2837-2875,1989.
[28] 邱欣慶,“二氧化碳雷射輔助電漿激發式化學氣相沈積非晶形二氧化矽薄膜”,國立中央大學光電科學研究所碩士論文,4-20頁,2000。
[29] 吳奕儒,“可撓式面板基板製程期待突破”,光電科技工業協進會,光連雙月刊No.69,47-50頁,2007。
[30] R.L. Hoffman, “ZnO-channel thin-film transistors: Channel mobility”, J. Appl. Phys., 95, 10, 2004.
[31] E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, “Wide- bandgap high-mobility ZnO thin-film transistors produced at room temperature”, Appl. Phys. Lett., 85, 13, 2004.
[32] Z.L. Wang, “Microfibre–nanowire hybrid structure for energy scavenging”, 133 Nature, 451, 2008.
[33] B.L.Zhu, J.M.MA, K.Lv, Elsevier Science,Vol.140, pp.15-26, 2020.
[34] Hilal Cansizoglu, Mehmet F. Cansizoglu, Miria Finckenor, Tansel. Karabacak. Optical Mater, 1, pp.158–166, 2013.
[35] Joshua M. LaForge, Michael T. Taschuk, Michael J. Brett, Thin Solid. Films 519, pp.3530–3537, 2011.
[36] H. Cansizoglu, M.F. Cansizoglu, M. Finckenor, T. Karabacak, Adv. Opt. Mater. 1, 158, 2013.
[37] Hua Feng Pang, Guang An Zhangc, Yong Liang Tanga, Yong Qing Fub, Li Ping Wangc, Xiao Tao Zua, Frank Placidob, Applied Surface Science, 259, pp.747–753, 2012.
[38] A. Yildiz, H. Cansizoglu, M. Turkoz, R. Abdulrahman, Alaa Al-Hilo, M.F. Cansizoglu, T.M. Demirkan, T. Karabacak , Thin Solid Films, 589, pp.764–769, 2015.
[39] H. Cansizoglu, Dr. M. F. Cansizoglu, Dr. T. Karabacak.Optical Mater, 1, pp.158–166, 2013.
[40] Takadoum J. Nanomatériaux, traitement et fonctionnalisation des. surfaces. Hermes, 2008.
[41] 曾暐智,“提升掺鋁氧化鋅薄膜導電特性製程之研究”, 義守大學電子工程學系碩士論文,高雄市,2011。
[42] 陳正偉, “建構奈米金類網狀結構於先摻鋁氧化鋅薄膜以提升光電特性之研究”,義守大學電子工程研究所碩士班論文,2015.
[43] 莊梗林,“霍爾效應量測法對氮化鎵半導體作電性分析”,國立中山大學物理學系碩士論文,2003.
[44] 羅聖全,“掃描式電子顯微鏡(SEM)”,科學研習No.52,2-4頁,2013。
[45] J. Epp, "Materials Characterization Using Nondestructive Evaluation (NDE) Methods": Woodhead Publishing, pp. 84-86, 2016.
[46] A. I. Khudiar, M. K. Khalaf, and A. M. Ofui, "Improvement of the sensing characterizations of ZnO nanostructure by using thermal annealing prepared through R. F. magnetron sputtering technique", Optical Materials, vol. 114, p. 110885, 2021.
[47] V. D. Mote, Y. Purushotham, and B. N. Dole, "Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles", Journal of Theoretical and Applied Physics, vol. 6, no. 1, p. 6, 2012.
[48] M. K. Khan, Q. Y. Wang, and M. E. Fitzpatrick, "Materials Characterization Using Nondestructive Evaluation (NDE) Methods": Woodhead Publishing, pp. 4-7, 2016.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊