跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/18 13:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃子融
研究生(外文):HUANG, TZYY-RONG
論文名稱:探討早產新生兒呼吸窘迫症以低侵入性表面張力素治療合併非侵襲性呼吸器治療之預後
論文名稱(外文):The outcomes of infants with neonatal respiratory distress syndrome treated by minimally invasive surfactant therapy and non-invasive ventilation
指導教授:陳秀玲陳秀玲引用關係
指導教授(外文):CHEN, HSIU-LIN
口試委員:徐仲豪鍾美勇
口試委員(外文):HSU, JONG-HAUCHUNG, MEI-YUNG
口試日期:2023-06-28
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:65
中文關鍵詞:非侵襲性呼吸器鼻式連續正壓通氣鼻式間歇正壓通氣低侵入性表面張力素治療新生兒呼吸窘迫症
外文關鍵詞:NIVNCPAPNIPPVMISTRDS
DOI:orcid.org/0000-0002-8302-4475
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
研究背景與目的:
低侵入性表面張力素治療技術近年來越來越常使用於罹患新生兒呼吸窘迫症的早產兒,非侵襲性呼吸器也越來越常被選擇作為首要的呼吸支持方式;然而低侵入性表面張力素治療合併鼻式連續正壓通氣或是合併鼻式間歇正壓通氣的相關研究較少,本研究的目的是分析兩組之間的結果,希望能探討兩組之間的呼吸治療效益。

研究方法:
本研究為回溯性病歷研究,收集2016年1月至2021年6月在高雄醫學大學附設醫院新生兒加護病房接受低侵入性表面張力素治療合併非侵襲性呼吸器的新生兒呼吸窘迫症早產兒。根據非侵襲性呼吸器種類將新生兒分為兩組(A組:鼻式連續正壓通氣合併低侵入性表面張力素治療;B組:鼻式間歇正壓通氣合併低侵入性表面張力素治療)。 透過獨立樣本t檢定、配對樣本t檢定、卡方檢定和二元羅吉斯迴歸建立統計模型,分析樣本臨床特徵及其他相關結果。

研究結果:
共有57名罹患新生兒呼吸窘迫症早產新生兒接受低侵入性表面張力素治療的,其中32名新生兒使用鼻式連續正壓通氣,22名新生兒使用鼻式間歇正壓通氣作為首要的呼吸支持。統計結果發現鼻式間歇正壓通氣組別的早產新生兒胎齡較小、出生體重較輕、較多為女性並且接受低侵入性表面張力素治療的時間較早(p<0.05)。統計結果也發現鼻式間歇正壓通氣組別的早產新生兒中,新生兒視網膜病變罹患率較高、呼吸器使用天數較長、住院時間和死亡率顯著(p<0.05);但上述結果經過校正後並無統計學顯著差異(p>0.05)。由靜脈血液氣體分析和呼吸器參數的變化可以得知,不論是鼻式連續正壓通氣組別或是鼻式間歇正壓通氣組別,接受低侵入性表面張力素治療後氧合及通氣皆能夠得到改善(p<0.001)。

結論:
當早產新生兒罹患呼吸窘迫症候群以低侵入性表面張力素治療合併非侵襲性呼吸器治療,無論是使用鼻式間歇正壓通氣還是使用鼻式連續正壓通氣,短期預後和死亡率無統計上顯著差異(p>0.05)。然而以鼻式間歇正壓通氣作為主要呼吸支持的早產新生兒有較長的呼吸器使用天數和較長的住院天數。

Introduction:
Minimally invasive surfactant therapy (MIST) is more and more popular used in infants suffered from neonatal respiratory distress syndrome (RDS). Non-invasive ventilation (NIV) strategy is also currently chosen for the better respiratory outcomes. However, there is no reliable data or reports if treated by MIST with nasal intermittent positive pressure ventilation (NIPPV) or nasal continuous positive airway pressure (NCPAP). The purpose of this study is aimed to analyze the outcome between two groups.

Material and Methods:
The retrospective study was conducted in Kaohsiung Medical University Hospital neonatal intensive care unit (KMUH NICU), the data were collected from January 2016 to June 2021 and infants who had RDS treated by MIST were included. Population was further divided in two groups by NIV strategies (A: NCPAP with MIST; B: NIPPV with MIST). Characteristics, respiratory outcomes, and other results are analyzed by student’s-t test, paired sample t-test, chi-square statistics and binary logistic regression.

Results:
Among 57 RDS infants treated by MIST, 32 received NCPAP and 22 received NIPPV as primary respiratory support. We found that the NIPPV group had smaller gestational age, lower birth weight, more female and receive MIST sooner (p<0.05). We also found that infants in NIPPV group significantly had ROP ≥ stage 3, respiratory support days, hospital stays and mortality (p<0.05). However, after the above results were adjusted, there were no statistically significant differences. Both groups showed the improvement on oxygenation and ventilation after receiving MIST from analysis of venous blood gas and variation of ventilator parameters (p<0.001).

Conclusion:
Neonatal RDS treated with MIST combined with NIV, whether NIPPV or NCPAP is employed, the short-term outcome and mortality were no significant difference (p>0.05). Yet, respiratory support days and the total days of hospitalization were longer for those with NIPPV as primary respiratory support.

中文摘要 2
Abstract 4
致謝 6
第一章 緒論 11
第一節 研究背景與動機 11
第二節 研究目的 12
第二章 文獻探討 14
第一節 早產兒 14
第二節 新生兒呼吸窘迫症候群 14
第三節 微小侵入性表面張力素治療 16
第四節 鼻式連續正壓通氣 18
第五節 鼻式間歇正壓通氣 19
第六節 新生兒常見併發症 19
第一小節 支氣管發育不全 19
第二小節 氣漏症候群 22
第三小節 肺動脈高壓 22
第四小節 新生兒視網膜病變 24
第五小節 開放性動脈導管 24
第六小節 腦室內出血 25
第七小節 壞死性腸炎 25
第八小節 新生兒敗血症 26
第三章 研究方法 27
第一節 研究假設 27
第二節 研究倫理 27
第三節 研究對象 28
第四節 研究架構與流程 28
第一小節 非侵襲性呼吸器、呼吸器配件及表面張力素 29
第二小節 MIST適應症 30
第三小節 執行MIST 30
第五節 研究資料分析 31
第四章 資料分析與結果 33
第五章 討論 44
第六章 結論 54
參考文獻 55
附錄 – 英文簡寫對照表 61
附錄 – IRB通過證明 64

1Escobar, V. et al. Influence of time under mechanical ventilation on bronchopulmonary dysplasia severity in extremely preterm infants: a pilot study. BMC Pediatr 20, 241, doi:10.1186/s12887-020-02129-2 (2020).
2Kalikkot Thekkeveedu, R., El-Saie, A., Prakash, V., Katakam, L. & Shivanna, B. Ventilation-Induced Lung Injury (VILI) in Neonates: Evidence-Based Concepts and Lung-Protective Strategies. J Clin Med 11, doi:10.3390/jcm11030557 (2022).
3Cunha, G. S., Mezzacappa-Filho, F. & Ribeiro, J. D. Risk factors for bronchopulmonary dysplasia in very low birth weight newborns treated with mechanical ventilation in the first week of life. J Trop Pediatr 51, 334-340, doi:10.1093/tropej/fmi051 (2005).
4Jobe, A. H. & Bancalari, E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 163, 1723-1729, doi:10.1164/ajrccm.163.7.2011060 (2001).
5Jobe, A. H. Mechanisms of Lung Injury and Bronchopulmonary Dysplasia. Am J Perinatol 33, 1076-1078, doi:10.1055/s-0036-1586107 (2016).
6Eckert, G. U., Fortes Filho, J. B., Maia, M. & Procianoy, R. S. A predictive score for retinopathy of prematurity in very low birth weight preterm infants. Eye (Lond) 26, 400-406, doi:10.1038/eye.2011.334 (2012).
7Jensen, E. A. et al. Effects of Multiple Ventilation Courses and Duration of Mechanical Ventilation on Respiratory Outcomes in Extremely Low-Birth-Weight Infants. JAMA Pediatr 169, 1011-1017, doi:10.1001/jamapediatrics.2015.2401 (2015).
8Walsh, M. C. et al. Extremely low birthweight neonates with protracted ventilation: mortality and 18-month neurodevelopmental outcomes. J Pediatr 146, 798-804, doi:10.1016/j.jpeds.2005.01.047 (2005).
9Ramaswamy, V. V., More, K., Roehr, C. C., Bandiya, P. & Nangia, S. Efficacy of noninvasive respiratory support modes for primary respiratory support in preterm neonates with respiratory distress syndrome: Systematic review and network meta-analysis. Pediatr Pulmonol 55, 2940-2963, doi:10.1002/ppul.25011 (2020).
10Shi, Y., Muniraman, H., Biniwale, M. & Ramanathan, R. A Review on Non-invasive Respiratory Support for Management of Respiratory Distress in Extremely Preterm Infants. Front Pediatr 8, 270, doi:10.3389/fped.2020.00270 (2020).
11Organization, W. H. Preterm birth, 2022).
12Chandrasekharan, P. et al. Early Hypoxic Respiratory Failure in Extreme Prematurity: Mortality and Neurodevelopmental Outcomes. Pediatrics 146, doi:10.1542/peds.2019-3318 (2020).
13Ely, D. M. & Driscoll, A. K. Infant Mortality in the United States, 2019:Data From the Period Linked Birth/Infant Death File. Natl Vital Stat Rep 70, 1-18 (2021).
14Organization, W. H. Launch of the WHO recommendations for care of the preterm or low birth weight infant, 2022).
15Frank, L. & Sosenko, I. R. Development of lung antioxidant enzyme system in late gestation: possible implications for the prematurely born infant. J Pediatr 110, 9-14, doi:10.1016/s0022-3476(87)80279-2 (1987).
16Young, T. III. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London 95, 65-87, doi:doi:10.1098/rstl.1805.0005 (1805).
17Laplace, P. S., marquis de. Traité de mécanique céleste t. 4. (1798).
18Sweet, D. G. et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome - 2019 Update. Neonatology 115, 432-450, doi:10.1159/000499361 (2019).
19Stoll, B. J. et al. Neonatal outcomes of extremely preterm infants from the NICHD Neonatal Research Network. Pediatrics 126, 443-456, doi:10.1542/peds.2009-2959 (2010).
20Anadkat, J. S., Kuzniewicz, M. W., Chaudhari, B. P., Cole, F. S. & Hamvas, A. Increased risk for respiratory distress among white, male, late preterm and term infants. J Perinatol 32, 780-785, doi:10.1038/jp.2011.191 (2012).
21Jobe, A. H. & Ikegami, M. Biology of surfactant. Clin Perinatol 28, 655-669, vii-viii, doi:10.1016/s0095-5108(05)70111-1 (2001).
22Nkadi, P. O., Merritt, T. A. & Pillers, D. A. An overview of pulmonary surfactant in the neonate: genetics, metabolism, and the role of surfactant in health and disease. Mol Genet Metab 97, 95-101, doi:10.1016/j.ymgme.2009.01.015 (2009).
23Whitsett, J. A. & Weaver, T. E. Hydrophobic surfactant proteins in lung function and disease. N Engl J Med 347, 2141-2148, doi:10.1056/NEJMra022387 (2002).
24Natarajan, G. et al. Outcomes of extremely low birth weight infants with bronchopulmonary dysplasia: impact of the physiologic definition. Early Hum Dev 88, 509-515, doi:10.1016/j.earlhumdev.2011.12.013 (2012).
25Tarawneh, A., Kaczmarek, J., Bottino, M. N. & Sant'anna, G. M. Severe airway obstruction during surfactant administration using a standardized protocol: a prospective, observational study. J Perinatol 32, 270-275, doi:10.1038/jp.2011.89 (2012).
26Diblasi, R. M. Nasal continuous positive airway pressure (CPAP) for the respiratory care of the newborn infant. Respir Care 54, 1209-1235 (2009).
27Cummings, J. J., Polin, R. A., Committee on, F. & Newborn, A. A. o. P. Noninvasive Respiratory Support. Pediatrics 137, doi:10.1542/peds.2015-3758 (2016).
28Carlton, D. P., Cummings, J. J., Scheerer, R. G., Poulain, F. R. & Bland, R. D. Lung overexpansion increases pulmonary microvascular protein permeability in young lambs. J Appl Physiol (1985) 69, 577-583, doi:10.1152/jappl.1990.69.2.577 (1990).
29Wai, K. C. et al. Early Cumulative Supplemental Oxygen Predicts Bronchopulmonary Dysplasia in High Risk Extremely Low Gestational Age Newborns. J Pediatr 177, 97-102 e102, doi:10.1016/j.jpeds.2016.06.079 (2016).
30Mourani, P. M. & Abman, S. H. Pulmonary vascular disease in bronchopulmonary dysplasia: pulmonary hypertension and beyond. Curr Opin Pediatr 25, 329-337, doi:10.1097/MOP.0b013e328360a3f6 (2013).
31Jensen, E. A. et al. The Diagnosis of Bronchopulmonary Dysplasia in Very Preterm Infants. An Evidence-based Approach. Am J Respir Crit Care Med 200, 751-759, doi:10.1164/rccm.201812-2348OC (2019).
32Watkinson, M. & Tiron, I. Events before the diagnosis of a pneumothorax in ventilated neonates. Arch Dis Child Fetal Neonatal Ed 85, F201-203, doi:10.1136/fn.85.3.f201 (2001).
33Madansky, D. L., Lawson, E. E., Chernick, V. & Taeusch, H. W., Jr. Pneumothorax and other forms of pulmonary air leak in newborns. Am Rev Respir Dis 120, 729-737, doi:10.1164/arrd.1979.120.4.729 (1979).
34Yu, V. Y., Liew, S. W. & Robertson, N. R. Pneumothorax in the newborn. Changing pattern. Arch Dis Child 50, 449-453, doi:10.1136/adc.50.6.449 (1975).
35Hill, A., Perlman, J. M. & Volpe, J. J. Relationship of pneumothorax to occurrence of intraventricular hemorrhage in the premature newborn. Pediatrics 69, 144-149 (1982).
36Bhatia, R., Davis, P. G., Doyle, L. W., Wong, C. & Morley, C. J. Identification of pneumothorax in very preterm infants. J Pediatr 159, 115-120 e111, doi:10.1016/j.jpeds.2010.12.016 (2011).
37Nakanishi, H., Suenaga, H., Uchiyama, A., Kusuda, S. & Neonatal Research Network, J. Persistent pulmonary hypertension of the newborn in extremely preterm infants: a Japanese cohort study. Arch Dis Child Fetal Neonatal Ed 103, F554-F561, doi:10.1136/archdischild-2017-313778 (2018).
38Krishnan, U. et al. Evaluation and Management of Pulmonary Hypertension in Children with Bronchopulmonary Dysplasia. J Pediatr 188, 24-34 e21, doi:10.1016/j.jpeds.2017.05.029 (2017).
39Seiberth, V. & Linderkamp, O. Risk factors in retinopathy of prematurity. a multivariate statistical analysis. Ophthalmologica 214, 131-135, doi:10.1159/000027482 (2000).
40Lad, E. M., Hernandez-Boussard, T., Morton, J. M. & Moshfeghi, D. M. Incidence of retinopathy of prematurity in the United States: 1997 through 2005. Am J Ophthalmol 148, 451-458, doi:10.1016/j.ajo.2009.04.018 (2009).
41Network, S. S. G. o. t. E. K. S. N. N. R. et al. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 362, 1959-1969, doi:10.1056/NEJMoa0911781 (2010).
42Stahl, A. et al. Ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (RAINBOW): an open-label randomised controlled trial. Lancet 394, 1551-1559, doi:10.1016/S0140-6736(19)31344-3 (2019).
43Sankar, M. J., Sankar, J. & Chandra, P. Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity. Cochrane Database Syst Rev 1, CD009734, doi:10.1002/14651858.CD009734.pub3 (2018).
44Robinson, S. Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. J Neurosurg Pediatr 9, 242-258, doi:10.3171/2011.12.PEDS11136 (2012).
45Neu, J. Necrotizing enterocolitis: the search for a unifying pathogenic theory leading to prevention. Pediatr Clin North Am 43, 409-432, doi:10.1016/s0031-3955(05)70413-2 (1996).
46Jones, I. H. & Hall, N. J. Contemporary Outcomes for Infants with Necrotizing Enterocolitis-A Systematic Review. J Pediatr 220, 86-92 e83, doi:10.1016/j.jpeds.2019.11.011 (2020).
47Puopolo, K. M. et al. Management of Neonates Born at >/=35 0/7 Weeks' Gestation With Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics 142, doi:10.1542/peds.2018-2894 (2018).
48Ku, L. C., Boggess, K. A. & Cohen-Wolkowiez, M. Bacterial meningitis in infants. Clin Perinatol 42, 29-45, vii-viii, doi:10.1016/j.clp.2014.10.004 (2015).
49FETUS, C. O. et al. Respiratory Support in Preterm Infants at Birth. Pediatrics 133, 171-174, doi:10.1542/peds.2013-3442 (2014).
50Sweet, D. G. et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome: 2022 Update. Neonatology 120, 3-23, doi:10.1159/000528914 (2023).
51Herting, E., Hartel, C. & Gopel, W. Less invasive surfactant administration: best practices and unanswered questions. Curr Opin Pediatr 32, 228-234, doi:10.1097/MOP.0000000000000878 (2020).
52Pareek, P. et al. Less Invasive Surfactant Administration (LISA) vs. Intubation Surfactant Extubation (InSurE) in Preterm Infants with Respiratory Distress Syndrome: A Pilot Randomized Controlled Trial. J Trop Pediatr 67, doi:10.1093/tropej/fmab086 (2021).
53Gupta, B. K., Saha, A. K., Mukherjee, S. & Saha, B. Minimally invasive surfactant therapy versus InSurE in preterm neonates of 28 to 34 weeks with respiratory distress syndrome on non-invasive positive pressure ventilation-a randomized controlled trial. Eur J Pediatr 179, 1287-1293, doi:10.1007/s00431-020-03682-9 (2020).
54Mosayebi, Z. et al. A Randomized Trial Comparing Surfactant Administration Using InSurE Technique and the Minimally Invasive Surfactant Therapy in Preterm Infants (28 to 34 Weeks of Gestation) with Respiratory Distress Syndrome. J Compr Ped 8, e60724, doi:10.5812/compreped.60724 (2017).
55Moretti, C. & Gizzi, C. Synchronized Nasal Intermittent Positive Pressure Ventilation. Clin Perinatol 48, 745-759, doi:10.1016/j.clp.2021.07.005 (2021).
56Ricci, F. et al. Surfactant replacement therapy in combination with different non-invasive ventilation techniques in spontaneously-breathing, surfactant-depleted adult rabbits. PLoS One 13, e0200542, doi:10.1371/journal.pone.0200542 (2018).
57Ramaswamy, V. V. et al. Efficacy of noninvasive respiratory support modes as postextubation respiratory support in preterm neonates: A systematic review and network meta-analysis. Pediatr Pulmonol 55, 2924-2939, doi:10.1002/ppul.25007 (2020).
58Dargaville, P. A. et al. Continuous positive airway pressure failure in preterm infants: incidence, predictors and consequences. Neonatology 104, 8-14, doi:10.1159/000346460 (2013).
59Gulczynska, E., Szczapa, T., Hozejowski, R., Borszewska-Kornacka, M. K. & Rutkowska, M. Fraction of Inspired Oxygen as a Predictor of CPAP Failure in Preterm Infants with Respiratory Distress Syndrome: A Prospective Multicenter Study. Neonatology 116, 171-178, doi:10.1159/000499674 (2019).
60Oncel, M. Y. et al. Nasal continuous positive airway pressure versus nasal intermittent positive-pressure ventilation within the minimally invasive surfactant therapy approach in preterm infants: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed 101, F323-328, doi:10.1136/archdischild-2015-308204 (2016).
61Ramanathan, R., Sekar, K. C., Rasmussen, M., Bhatia, J. & Soll, R. F. Nasal intermittent positive pressure ventilation after surfactant treatment for respiratory distress syndrome in preterm infants <30 weeks' gestation: a randomized, controlled trial. J Perinatol 32, 336-343, doi:10.1038/jp.2012.1 (2012).
62Yost, C. C. & Soll, R. F. Early versus delayed selective surfactant treatment for neonatal respiratory distress syndrome. Cochrane Database Syst Rev, CD001456, doi:10.1002/14651858.CD001456 (2000).
63Kostekci, Y. E. et al. Nasal Continuous Positive Airway Pressure vs. Nasal Intermittent Positive Pressure Ventilation as Initial Treatment After Birth in Extremely Preterm Infants. Front Pediatr 10, 870125, doi:10.3389/fped.2022.870125 (2022).
64Liu, H., Feng, H., Zhang, Y. & Zhang, L. Efficacy and safety of nasal intermittent positive pressure ventilation and nasal continuous positive airway pressure ventilation in neonatal respiratory distress syndrome: a systematic review and meta-analysis. Transl Pediatr 11, 1242-1250, doi:10.21037/tp-22-288 (2022).
65Sai Sunil Kishore, M., Dutta, S. & Kumar, P. Early nasal intermittent positive pressure ventilation versus continuous positive airway pressure for respiratory distress syndrome. Acta Paediatr 98, 1412-1415, doi:10.1111/j.1651-2227.2009.01348.x (2009).
66Kugelman, A. et al. Nasal intermittent mandatory ventilation versus nasal continuous positive airway pressure for respiratory distress syndrome: a randomized, controlled, prospective study. J Pediatr 150, 521-526, 526 e521, doi:10.1016/j.jpeds.2007.01.032 (2007).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top