跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/22 19:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃國良
研究生(外文):HUANG, KUO-LIANG
論文名稱:吐氣末正壓與氣胸病人接受呼吸器治療預後的相關性
論文名稱(外文):Association between positive end-expiratory pressure and prognosis in patients with pneumothorax receiving mechanical ventilation
指導教授:蔡忠榮蔡忠榮引用關係
指導教授(外文):TSAI, JONG-RUNG
口試委員:劉世豐鄭孟軒
口試委員(外文):LIU, SHIH-FENGZHENG, MENG-XUAN
口試日期:2023-07-12
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫學研究所碩士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:42
中文關鍵詞:吐氣末正壓氣胸呼吸器
外文關鍵詞:PEEPPneumothoraxVentilation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
背景
氣胸的定義是空氣出現在肋膜腔。在肋膜腔內的空氣會造成肺的塌陷,臨床上會進一步造成危及生命的狀況。正壓呼吸器本身就會有造成已經病態肺部氣胸的風險(壓力性損傷)。在呼吸器使用期間使用吐氣末正壓可以使病人獲得增加氧合、改善通氣與循環的吻合、以及減少呼吸工。然而高壓的吐氣末正壓是引起氣胸的風險因子。傳統上,我們會使用設定吐氣末正壓為零的方式來治療需要使用呼吸器的氣胸病人。但是沒有吐氣末正壓容易造成肺塌陷或其他併發症。所以我們藉由研究吐氣末正壓的設定與需要接受呼吸器治療的氣胸病人的預後的相關性,來了解是否需要接受呼吸器治療的氣胸病人的呼吸器設設定是否需要考量吐氣末正壓的壓力。
目標
研究吐氣末正壓的設定值是否會影響需要使用呼吸器的氣胸病人的預後。
方法
回朔性的調查2016年1月1日至2022年12月31日的患者的病歷紀錄及呼吸器設定。我們收集了病人的年紀、性別、抽菸狀態、身高體重、APACHEII分數、胸管引流時間、待加護病房時間、住院時間、死亡率。
結果
總共收集了46位病人的資料。其中28位是低吐氣末正壓組 (PEEP≦5cmH2O),而18位是高吐氣末正壓組(PEEP>5cmH2O)。這兩組病人的基本特質資料皆無統計學上的差異。年齡中位數皆是60歲。整體而言, 76.2% 的病人是男性。大部分的病人呼吸衰竭及氣胸的原因是外傷。
低吐氣末正壓組的平均胸管使用時間是12.6±15.2天而高吐氣末正壓組則是11.1± 8.6天(P=0.707)。低吐氣末正壓組的住院死亡率是64.3%,而高吐氣末正壓組的住院死亡率是61.1% (P=0.828)。低吐氣末正壓組的平均住院天數是24.7± 22.2天,而高吐氣末正壓組的平均住院天數是33.1± 25.9天 (P=0.244)。低吐氣末正壓組的平均加護病房天數是11.7± 10.9天 , 而高吐氣末正壓組的平均加護病房天數是17.9± 17.5天 (P=0.145)。低吐氣末正壓組的平均呼吸器使用天數是13.2± 15.6天,而高吐氣末正壓組的平均呼吸器使用天數是23.8± 25.2天 (P=0.083)。以上兩組的預後皆無統計上的差異。低吐氣末正壓組的存活病人的平均胸管使用天數是15.2±17.1,而高吐氣末正壓組的存活病人的平均胸管使用天數是11.1±6.8天 (P=0.525)。而兩組的存活病人的胸管使用天數中位數皆是11天。而以上有關存活病人的分析也是兩組皆無統計學上差異。
結論
我們的研究結論發現無論是高或是低PEEP值,對於需要使用呼吸器的氣胸病人的預後並無差別。而後續PEEP值的設定,可以再根據病人的需要做調整。

Background
Pneumothorax is a medical condition characterized by the presence of air in the pleural cavity. Pneumothorax can lead to lung collapse and life-threatening. Mechanical ventilation is common in intensive care units for respiratory failure patients. Positive pressure ventilation is a risk factor of pneumothorax in patients predisposed to lung injury. During mechanical ventilation, positive end-expiratory pressure (PEEP) can be beneficial for patients because it increases oxygenation, improves ventilation–perfusion matching, and decreases breathing effort. However, high levels of PEEP have been considered a risk factor for pneumothorax. Traditionally, PEEP is set to lower or zero for pneumothorax patients with mechanical ventilation support; however, lower or zero PEEP could result lung collapse or other complications. Therefore, we had evaluated the association between the PEEP level and prognosis in patients with pneumothorax receiving mechanical ventilation.


Methods
We retrospectively reviewed the charts and ventilator settings for patients of intensive care unit (ICU) at southern Taiwan between January 1, 2016, and December 31, 2022. We collected data about age, sex, smoking status, body weight, body height, APACHE II (Acute Physiology and Chronic Health Evaluation) score, cause of respiratory failure, site of pneumothorax, length of intensive care unit stays, duration of mechanical ventilation, duration of chest tube insertion, and mortality. Differences between the groups in continuous variables were identified using an independent t test. Differences in binary variables and 95% confidence intervals (CIs) were identified using a χ2 test and differences in outcomes were examined using a t test and χ2 test. Differences in all cause in hospital mortality were analyzed using Kaplan–Meier curves and hazard ratios with 95% CIs in a Cox proportional hazard regression.

Results
Total 46 patients were included in this study. Among the participants, 28 patients were in the low PEEP (PEEP≦5cmH2O) group and 18 patients were in the high PEEP group (PEEP>5cmH2O). Between two groups, patients’ baseline characteristics, including age, sex, BMI, Smoking status, APACHE score, ICU state, all showed not significantly difference. The median age was 60±4.68 years old. 76.2% of participants were male. The most cause of respiratory failure were trauma (58.7%) and the most of pneumothorax was also trauma (58.7%).
The mean durations of chest tube insertion were 12.6±15.2 days in the low PEEP group and 11.1±8.6 days in the high PEEP group (P=0.707). The all cause in hospital mortality rates were 64.3% in the low PEEP group and 61.1% in the high PEEP group (P=0.828). The mean length of hospital stay were 24.7± 22.2 days in the low PEEP group and 33.1± 25.9 days in the high PEEP group (P=0.244). The mean length of ICU stay were 11.7± 10.9 days in the low PEEP group and 17.9± 17.5 days in the high PEEP group (P=0.145). The mean duration of mechanical ventilation were 13.2± 15.6 days in the low PEEP group and 23.8± 25.2 days in the high PEEP group (P=0.083). The mean duration of chest tube insertion of survival patients were 15.2±17.1 days in the low PEEP group and 11.1± 6.8 days in the high PEEP group (P=0.525). The medium durations of chest tube insertion of survival patients were 11 (IQR: 6-18) days in the low PEEP group and 11 (IQR: 6-14) days in the high PEEP group. This difference was not significant (P=0.525).

Conclusion
PEEP level does not influence outcomes among respiratory failure patients with pneumothorax who had underwent invasive positive mechanical ventilation. PEEP level should be set according to the individual needs of each patient rather than to a lower-than-normal level on the basis of the occurrence of pneumothorax.

Introduction 11
Pneumothorax 11
Ventilator-related lung injury 14
Positive end-expiratory pressure 16
Aim of the study 19
Hypothesis 19
Methods 20
Results 22
Discussion 25
Limitations 28
Conclusion 29
References 38

1.Shintani, Y., et al., Air leak pattern shown by digital chest drainage system predict prolonged air leakage after pulmonary resection for patients with lung cancer. J Thorac Dis, 2018. 10(6): p. 3714-3721.
2.Feenstra, T.M., C. Dickhoff, and J. Deunk, Systematic review and meta-analysis of tube thoracostomy following traumatic chest injury; suction versus water seal. Eur J Trauma Emerg Surg, 2018. 44(6): p. 819-827.
3.Sahn, S.A. and J.E. Heffner, Spontaneous pneumothorax. N Engl J Med, 2000. 342(12): p. 868-74.
4.Gobbel, W.G., et al., SPONTANEOUS PNEUMOTHORAX. The Journal of Thoracic and Cardiovascular Surgery, 1963. 46(3): p. 331-345.
5.Bense, L., G. Eklund, and L.G. Wiman, Smoking and the increased risk of contracting spontaneous pneumothorax. Chest, 1987. 92(6): p. 1009-12.
6.Orsini, B., et al., Index of prolonged air leak score validation in case of video-assisted thoracoscopic surgery anatomical lung resection: results of a nationwide study based on the French national thoracic database, EPITHOR. Eur J Cardiothorac Surg, 2015. 48(4): p. 608-11.
7.Lesur, O., et al., Computed tomography in the etiologic assessment of idiopathic spontaneous pneumothorax. Chest, 1990. 98(2): p. 341-7.
8.Cardy, C.M., et al., Familial spontaneous pneumothorax and FBN1 mutations. Am J Respir Crit Care Med, 2004. 169(11): p. 1260-2.
9.Graham, R.B., et al., Nonsense mutations in folliculin presenting as isolated familial spontaneous pneumothorax in adults. Am J Respir Crit Care Med, 2005. 172(1): p. 39-44.
10.Hallifax, R.J., et al., Trends in the Incidence and Recurrence of Inpatient-Treated Spontaneous Pneumothorax, 1968-2016. Jama, 2018. 320(14): p. 1471-1480.
11.Gayatridevi, Y., et al., Clinical Profile of Spontaneous Pneumothorax in Adults: A Retrospective Study. Indian J Chest Dis Allied Sci, 2015. 57(4): p. 219-23.
12.Light, R.W., et al., Intrapleural tetracycline for the prevention of recurrent spontaneous pneumothorax. Results of a Department of Veterans Affairs cooperative study. Jama, 1990. 264(17): p. 2224-30.
13.Chen, C.H., et al., Secondary spontaneous pneumothorax: which associated conditions benefit from pigtail catheter treatment? Am J Emerg Med, 2012. 30(1): p. 45-50.
14."Prospective validation of the RAPID clinical risk prediction score in adult patients with pleural infection: the PILOT study." John P. Corcoran, Ioannis Psallidas, Stephen Gerry, Francesco Piccolo, Coenraad F. Koegelenberg, Tarek Saba, Cyrus Daneshvar, Ian Fairbairn, Richard Heinink, Alex West, Andrew E. Stanton, Jayne Holme, Jack A. Kastelik, Henry Steer, Nicola J. Downer, Mohammed Haris, Emma H. Baker, Caroline F. Everett, Justin Pepperell, Thomas Bewick, Lonny Yarmus, Fabien Maldonado, Burhan Khan, Alan Hart-Thomas, Georgina Hands, Geoffrey Warwick, Duneesha De Fonseka, Maged Hassan, Mohammed Munavvar, Anur Guhan, Mitra Shahidi, Zara Pogson, Lee Dowson, Natalia D. Popowicz, Judith Saba, Neil R. Ward, Rob J. Hallifax, Melissa Dobson, Rachel Shaw, Emma L. Hedley, Assunta Sabia, Barbara Robinson, Gary S. Collins, Helen E. Davies, Ly-Mee Yu, Robert F. Miller, Nick A. Maskell and Najib M. Rahman. Eur Respir J 2020; 56: 2000130. Eur Respir J, 2020. 56(6).
15.Celik, B., et al., Iatrogenic pneumothorax: etiology, incidence and risk factors. Thorac Cardiovasc Surg, 2009. 57(5): p. 286-90.
16.Gupta, A., H. Zaidi, and K. Habib, Pneumothorax after Colonoscopy - A Review of Literature. Clin Endosc, 2017. 50(5): p. 446-450.
17.John, J. and A. Seifi, Incidence of iatrogenic pneumothorax in the United States in teaching vs. non-teaching hospitals from 2000 to 2012. J Crit Care, 2016. 34: p. 66-8.
18.Cheng, Y.J., S.H. Chou, and E.L. Kao, Familial spontaneous pneumothorax-report of seven cases in two families. Gaoxiong Yi Xue Ke Xue Za Zhi, 1992. 8(7): p. 390-4.
19.Shariyate, M.J., A.R. Kachooei, and M.H. Ebrahimzadeh, Massive Emphysema and Pneumothorax Following Shoulder Arthroscopy under General Anaesthesia: A Case Report. Arch Bone Jt Surg, 2017. 5(6): p. 459-463.
20.Morse, J.L. and B. Safdar, Acute tension pneumothorax and tension pneumoperitoneum in a patient with anorexia nervosa. J Emerg Med, 2010. 38(3): p. e13-6.
21.Anantasit, N., et al., Spontaneous Pneumomediastinum in Non-Asthmatic Children with Exercise-Induced Bronchoconstriction. Am J Case Rep, 2015. 16: p. 648-51.
22.Soares, D.S., A. Ferdman, and R. Alli, Subcutaneous emphysema and pneumomediastinum following cocaine inhalation: a case report. J Med Case Rep, 2015. 9: p. 195.
23.Imamura, F., et al., Pneumothorax triggered by the combination of gefitinib and amrubicin and treated with endobronchial silicone spigots. Respir Med Case Rep, 2015. 15: p. 42-4.
24.Torosyan, Y., et al., An in silico framework for integrating epidemiologic and genetic evidence with health care applications: ventilation-related pneumothorax as a case illustration. J Am Med Inform Assoc, 2016. 23(4): p. 711-20.
25.Parker, J.C., L.A. Hernandez, and K.J. Peevy, Mechanisms of ventilator-induced lung injury. Crit Care Med, 1993. 21(1): p. 131-43.
26.Boussarsar, M., et al., Relationship between ventilatory settings and barotrauma in the acute respiratory distress syndrome. Intensive Care Med, 2002. 28(4): p. 406-13.
27.Smit, J.M., et al., Bedside ultrasound to detect central venous catheter misplacement and associated iatrogenic complications: a systematic review and meta-analysis. Crit Care, 2018. 22(1): p. 65.
28.Tuxen, D.V. and S. Lane, The effects of ventilatory pattern on hyperinflation, airway pressures, and circulation in mechanical ventilation of patients with severe air-flow obstruction. Am Rev Respir Dis, 1987. 136(4): p. 872-9.
29.Meade, M.O., et al., Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. Jama, 2008. 299(6): p. 637-45.
30.Kacmarek, R.M., et al., Open Lung Approach for the Acute Respiratory Distress Syndrome: A Pilot, Randomized Controlled Trial. Crit Care Med, 2016. 44(1): p. 32-42.
31.Hussain, A., et al., Management of pneumothorax in mechanically ventilated COVID-19 patients: early experience. Interact Cardiovasc Thorac Surg, 2020. 31(4): p. 540-543.
32.Kao, J.H., et al., Impact and predictors of prolonged chest tube duration in mechanically ventilated patients with acquired pneumothorax. Respir Care, 2013. 58(12): p. 2093-100.
33.Sandbu, R., et al., Optimal positive end-expiratory pressure (PEEP) settings in differential lung ventilation during simultaneous unilateral pneumothorax and laparoscopy: an experimental study in pigs. Surg Endosc, 2001. 15(12): p. 1478-83.
34.Joris, J.L., J.D. Chiche, and M.L. Lamy, Pneumothorax during laparoscopic fundoplication: diagnosis and treatment with positive end-expiratory pressure. Anesth Analg, 1995. 81(5): p. 993-1000.
35.Akram, J., et al., Epidemiological and outcome analysis of COVID-19-associated pneumothorax: multicentre retrospective critical care experience from Qatar. BMJ Open, 2022. 12(2): p. e053398.
36.Lin, Y.C., et al., Pigtail catheter for the management of pneumothorax in mechanically ventilated patients. Am J Emerg Med, 2010. 28(4): p. 466-71.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top