|
References 1.Woolf, A.D. and B. Pfleger, Burden of major musculoskeletal conditions. Bull World Health Organ, 2003. 81(9): p. 646-56. 2.Davis, M.A., et al., Body fat distribution and osteoarthritis. Am J Epidemiol, 1990. 132(4): p. 701-7. 3.Petersson, I.F. and L.T. Jacobsson, Osteoarthritis of the peripheral joints. Best Pract Res Clin Rheumatol, 2002. 16(5): p. 741-60. 4.Croft, P., et al., Osteoarthritis of the hip: an occupational disease in farmers. BMJ, 1992. 304(6837): p. 1269-72. 5.Kellgren, J.H. and J.S. Lawrence, Osteo-arthrosis and disk degeneration in an urban population. Ann Rheum Dis, 1958. 17(4): p. 388-97. 6.Murray, C.J. and A.D. Lopez, Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet, 1997. 349(9063): p. 1436-42. 7.Gilbert, J.E., Current treatment options for the restoration of articular cartilage. Am J Knee Surg, 1998. 11(1): p. 42-6. 8.Hunziker, E.B., Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthritis Cartilage, 2002. 10(6): p. 432-63. 9.Venn, M. and A. Maroudas, Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis, 1977. 36(2): p. 121-9. 10.Brocklehurst, R., et al., The composition of normal and osteoarthritic articular cartilage from human knee joints. With special reference to unicompartmental replacement and osteotomy of the knee. J Bone Joint Surg Am, 1984. 66(1): p. 95-106. 11.Sandell, L.J. and T. Aigner, Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res, 2001. 3(2): p. 107-13. 12.Khan, I.M., R. Williams, and C.W. Archer, One flew over the progenitor's nest: migratory cells find a home in osteoarthritic cartilage. Cell Stem Cell, 2009. 4(4): p. 282-4. 13.Del Carlo, M., Jr. and R.F. Loeser, Cell death in osteoarthritis. Curr Rheumatol Rep, 2008. 10(1): p. 37-42. 14.van den Berg, W.B., Osteoarthritis year 2010 in review: pathomechanisms. Osteoarthritis Cartilage, 2011. 19(4): p. 338-41. 15.Dreier, R., Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders. Arthritis Res Ther, 2010. 12(5): p. 216. 16.Xu, L., et al., Induction of high temperature requirement A1, a serine protease, by TGF-beta1 in articular chondrocytes of mouse models of OA. Histol Histopathol, 2014. 29(5): p. 609-18. 17.Scanzello, C.R. and S.R. Goldring, The role of synovitis in osteoarthritis pathogenesis. Bone, 2012. 51(2): p. 249-57. 18.Hayami, T., et al., Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone, 2006. 38(2): p. 234-43. 19.Dixon, A.S., et al., Clinical trial of intra-articular injection of sodium hyaluronate in patients with osteoarthritis of the knee. Curr Med Res Opin, 1988. 11(4): p. 205-13. 20.Benito, M.J., et al., Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis, 2005. 64(9): p. 1263-7. 21.Martel-Pelletier, J., et al., Osteoarthritis. Nat Rev Dis Primers, 2016. 2: p. 16072. 22.Loeser, R.F., et al., Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum, 2012. 64(6): p. 1697-707. 23.Kapoor, M., et al., Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol, 2011. 7(1): p. 33-42. 24.Zhang, W., et al., Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res, 2016. 4: p. 15040. 25.Cookson, B.T. and M.A. Brennan, Pro-inflammatory programmed cell death. Trends Microbiol, 2001. 9(3): p. 113-4. 26.Feng, S., D. Fox, and S.M. Man, Mechanisms of Gasdermin Family Members in Inflammasome Signaling and Cell Death. J Mol Biol, 2018. 430(18 Pt B): p. 3068-3080. 27.Zhao, L.R., et al., NLRP1 and NLRP3 inflammasomes mediate LPS/ATP‑induced pyroptosis in knee osteoarthritis. Mol Med Rep, 2018. 17(4): p. 5463-5469. 28.Evavold, C.L., et al., The Pore-Forming Protein Gasdermin D Regulates Interleukin-1 Secretion from Living Macrophages. Immunity, 2018. 48(1): p. 35-44 e6. 29.von Moltke, J., et al., Recognition of bacteria by inflammasomes. Annu Rev Immunol, 2013. 31: p. 73-106. 30.Kawai, T. and S. Akira, TLR signaling. Semin Immunol, 2007. 19(1): p. 24-32. 31.Kufer, T.A. and P.J. Sansonetti, Sensing of bacteria: NOD a lonely job. Curr Opin Microbiol, 2007. 10(1): p. 62-9. 32.Han, J., C.Q. Zhong, and D.W. Zhang, Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol, 2011. 12(12): p. 1143-9. 33.Chen, A.L., et al., Expression of bone morphogenetic proteins, receptors, and tissue inhibitors in human fetal, adult, and osteoarthritic articular cartilage. J Orthop Res, 2004. 22(6): p. 1188-92. 34.Wang, H., et al., Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell, 2014. 54(1): p. 133-146. 35.Stolberg-Stolberg, J., et al., Cartilage Trauma Induces Necroptotic Chondrocyte Death and Expulsion of Cellular Contents. Int J Mol Sci, 2020. 21(12). 36.Degterev, A., D. Ofengeim, and J. Yuan, Targeting RIPK1 for the treatment of human diseases. Proc Natl Acad Sci U S A, 2019. 116(20): p. 9714-9722. 37.Yang, J., et al., Targeting Cell Death: Pyroptosis, Ferroptosis, Apoptosis and Necroptosis in Osteoarthritis. Front Cell Dev Biol, 2021. 9: p. 789948. 38.Maldonado, M. and J. Nam, The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int, 2013. 2013: p. 284873. 39.Diaz-Gallego, L., et al., Apoptosis and nitric oxide in an experimental model of osteoarthritis in rabbit after hyaluronic acid treatment. J Orthop Res, 2005. 23(6): p. 1370-6. 40.Bates, E.J., C.C. Johnson, and D.A. Lowther, Inhibition of proteoglycan synthesis by hydrogen peroxide in cultured bovine articular cartilage. Biochim Biophys Acta, 1985. 838(2): p. 221-8. 41.Zhuang, C., et al., Polysaccharide from Angelica sinensis protects chondrocytes from H2O2-induced apoptosis through its antioxidant effects in vitro. Int J Biol Macromol, 2016. 87: p. 322-8. 42.Yeh, J.L., et al., KMUP-1 attenuates isoprenaline-induced cardiac hypertrophy in rats through NO/cGMP/PKG and ERK1/2/calcineurin A pathways. Br J Pharmacol, 2010. 159(5): p. 1151-60. 43.Wu, B.N., et al., Inhibition of proinflammatory tumor necrosis factor-alpha-induced inducible nitric-oxide synthase by xanthine-based 7-[2-[4-(2-chlorobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine (KMUP-1) and 7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1, 3-dimethylxanthine (KMUP-3) in rat trachea: The involvement of soluble guanylate cyclase and protein kinase G. Mol Pharmacol, 2006. 70(3): p. 977-85. 44.Hsu, Y.Y., et al., KMUP-1 attenuates serum deprivation-induced neurotoxicity in SH-SY5Y cells: roles of PKG, PI3K/Akt and Bcl-2/Bax pathways. Toxicology, 2010. 268(1-2): p. 46-54. 45.Liou, S.F., et al., KMUP-1 suppresses RANKL-induced osteoclastogenesis and prevents ovariectomy-induced bone loss: roles of MAPKs, Akt, NF-kappaB and calcium/calcineurin/NFATc1 pathways. PLoS One, 2013. 8(7): p. e69468. 46.Huang, S.E., et al., In Vitro Evaluation of the Anti-Inflammatory Effect of KMUP-1 and In Vivo Analysis of Its Therapeutic Potential in Osteoarthritis. Biomedicines, 2021. 9(6). 47.Coryell, P.R., B.O. Diekman, and R.F. Loeser, Mechanisms and therapeutic implications of cellular senescence in osteoarthritis. Nat Rev Rheumatol, 2021. 17(1): p. 47-57. 48.Xu, M., et al., Epigenetic regulation of chondrocyte hypertrophy and apoptosis through Sirt1/P53/P21 pathway in surgery-induced osteoarthritis. Biochem Biophys Res Commun, 2020. 528(1): p. 179-185. 49.Glasson, S.S., T.J. Blanchet, and E.A. Morris, The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthritis Cartilage, 2007. 15(9): p. 1061-9. 50.Maleitzke, T., et al., Standardized protocol and outcome measurements for the collagen antibody-induced arthritis mouse model. STAR Protoc, 2022. 3(4): p. 101718. 51.Yan, Z., et al., Activating Nrf2 signalling alleviates osteoarthritis development by inhibiting inflammasome activation. J Cell Mol Med, 2020. 24(22): p. 13046-13057. 52.Goldring, M.B. and K.B. Marcu, Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther, 2009. 11(3): p. 224. 53.Ulivi, V., et al., p38/NF-kB-dependent expression of COX-2 during differentiation and inflammatory response of chondrocytes. J Cell Biochem, 2008. 104(4): p. 1393-406. 54.Rigoglou, S. and A.G. Papavassiliou, The NF-kappaB signalling pathway in osteoarthritis. Int J Biochem Cell Biol, 2013. 45(11): p. 2580-4. 55.Nandakumar, K.S. and R. Holmdahl, Efficient promotion of collagen antibody induced arthritis (CAIA) using four monoclonal antibodies specific for the major epitopes recognized in both collagen induced arthritis and rheumatoid arthritis. J Immunol Methods, 2005. 304(1-2): p. 126-36. 56.Wang, C., et al., Puerarin attenuates inflammation and oxidation in mice with collagen antibody-induced arthritis via TLR4/NF-kappaB signaling. Mol Med Rep, 2016. 14(2): p. 1365-70. 57.Moore, A.R., et al., Collagen II antibody-induced arthritis in Tg1278TNFko mice: optimization of a novel model to assess treatments targeting human TNFalpha in rheumatoid arthritis. J Transl Med, 2014. 12: p. 285.
|