跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/28 09:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李玉如
研究生(外文):LI, YU-JU
論文名稱:結合單一限制酶於無標記雙重檢測ApoE基因中之兩種單核苷酸變異用以評估阿茲海默症罹患風險
論文名稱(外文):Single restriction enzyme for label-free dual detection of two nucleotide variants in ApoE gene for risk assessment of Alzheimer’s disease
指導教授:王俊棋
指導教授(外文):WANG, CHUN-CHI
口試委員:陳彥伶柯黃盛
口試委員(外文):CHEN, YEN-LINGKOU, HWANG-SHANG
口試日期:2023-06-16
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:藥學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:95
中文關鍵詞:阿兹海默症載脂蛋白E基因無標記HinP1I限制酶酵素
外文關鍵詞:Alzheimer's diseaseApolipoprotein E genelabel-freeHinP1I restriction enzyme
相關次數:
  • 被引用被引用:0
  • 點閱點閱:8
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
阿茲海默症 (Alzheimer's disease, AD) 是一種中樞神經退化疾病,被世界衛生組織認為是全球公共衛生重點。載脂蛋白E (Apolipoprotein E, ApoE)基因突變位於19號染色體上,在晚發性阿茲海默症 (Late-Onset Alzheimer's Disease, LOAD) 中扮演著相當重要的角色。研究指出有40%的LOAD患者ApoE基因屬於ɛ4型,也就是說ɛ4等位基因是罹患LOAD的主要遺傳風險因素。ApoE-ɛ4 (Arg112 CGC,Arg158 CGC) 序列是由兩個單核苷酸多型性 (Single-nucleotide polymorphisms, SNPs) 決定,即rs429358和rs7412。現行基因檢測方法為桑格定序法,然而其價格昂貴(如ABI 3730約550,000美金)又耗時。因此本實驗建立-單一限制酶無標記螢光感測平台,檢測阿茲海默症患者ApoE基因之核苷酸變異。
該技術採用5’端生物素 (Biotin) 修飾之前置引子擴增目標基因後,利用單一HinP1I限制性內切酶消化反應,雙重檢測ApoE之兩種不同SNP,並藉由鏈黴親和素磁珠 (Streptavidin magnetic beads, SMB) 磁力分離目標基因並收集上清液,於上清液加入核酸染劑後,測定其螢光訊號,藉由訊號的強弱判斷其基因型。研究結果顯示所得之最適化條件為個別於rs429358和rs7412添加0.6X和0.5X稀釋的Cyber™ Green,鏈黴親和素磁珠添加量20 μg,並與目標基因接合時間設定為15和20分鐘,HinP1I限制性內切酶濃度5 U。實驗結果利用R值判斷突變狀況,R值設定為F-F0/F0,F0為空白組螢光訊號,F為野生型 (WT) 或突變型 (MT) 螢光訊號;D值則表示野生型及突變型R值之間的差值,D值設定rs429358為R ( WT-MT ) 或 rs7412為R ( MT-WT )。結果顯示rs429358和rs7412之野生型及突變型序列的R值範圍分別落在2.28±0.11、7.59±0.07和8.90±0.13、3.53±0.08,對於突變型序列之偵測極限分別為10.15%和7.96%。將此方法實際應用於臨床檢品,結果與定序結果一致,成功區分ε3/ε3、ε2/ε3和ε3/ε4基因型,因此本法適用於臨床中的快速分析。


Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system that has been identified by the World Health Organization (WHO) as a global public health priority. A mutation in the apolipoprotein E (ApoE) gene, located on chromosome 19, plays an important role in late-onset Alzheimer's disease (LOAD). Studies have shown that 40% of LOAD patients have the ɛ4 type of ApoE gene, making the ɛ4 allele a major genetic risk factor for developing LOAD. The ApoE-ɛ4 (Arg112 CGC, Arg158 CGC) sequence is determined by two single nucleotide polymorphisms (SNPs), rs429358 and rs7412. The current gene detection method is Sanger sequencing, which is expensive (e.g., ABI 3730 about 550,000 USD) and time-consuming. Therefore, we developed a single restriction enzyme label-free fluorescence sensing platform to detect nucleotide variations in the ApoE gene of Alzheimer's disease patients.
The technique uses a 5'-biotin-modified forward primer to amplify the target gene and a single restriction endonuclease, HinP1I, for dual detection of two different ApoE SNPs, collecting the supernatant after magnetic separation using streptavidin magnetic beads (SMB). Finally, Cyber™ Green nucleic acid stain is added to the supernatant and the fluorescence intensity is measured to determine the type of gene sequence. The results showed that the ratio value (R value) of wild type and mutant type sequences of rs429358 and rs7412 were in the range of 2.28±0.11, 7.59±0.07 and 8.90±0.13, 3.53±0.08, respectively. The detection limits for mutant sequences were 10.15% and 7.96%, respectively. Practical application of this method in clinical testing showed that the results were consistent with sequencing results and successfully discriminated between ε3/ε3, ε2/ε3, and ε3/ε4 genotypes, making this method suitable for rapid clinical analysis.

中文摘要 i
Abstract iii
Graphical abstract v
目錄 vi
圖目錄 x
表目錄 xiv
第壹章 緒論 1
第一節 阿茲海默症 1
一、 阿茲海默症的病理原因 1
二、 阿茲海默症相關遺傳基因 2
第二節 載脂蛋白E (Apolipoprotein E, ApoE) 3
一、 ApoE蛋白質 3
二、 ApoE基因 5
第三節 檢測ApoE基因文獻回顧 7
第四節 現行基因檢測方法 9
一、 基因放大技術 10
1. 聚合酶連鎖反應 (Polymerase chain reaction, PCR) 10
2. 巢式聚合酶鏈式反應 (Nested Polymerase Chain Reaction) 12
二、 基因分離技術 13
1. 膠體電泳 (Gel electrophoresis) 13
2. 毛細管膠體電泳法 (Capillary gel electrophoresis, CGE) 14
3. 定序法 (Sequencing) 16
4. 多重連接探針擴增技術(Multiplex ligation-dependent probe amplification, MLPA) 17
5. 限制性片段長度多態性(Restriction fragment length polymorphism, RFLP) 17
第五節 實驗目的與機制 19
第貳章 實驗器材及方法 21
第一節 儀器設備 21
第二節 試藥及材料 22
一、 聚合酶連鎖反應 22
二、 PCR核酸純化 23
三、 限制性內切酶反應 23
四、 毛細管電泳儀分析 23
五、 螢光生物感測器 24
第三節 試藥溶液之配製與反應條件 25
一、 儲備溶液之配製 25
二、 聚合酶連鎖反應之擴增反應 26
1. 聚合酶連鎖反應之配製方法 26
2. 聚合酶連鎖反應條件 28
2.1 ApoE基因多型性位置及DNA模板 28
2.2 ApoE基因之引子設計 29
2.3 PCR條件 31
三、 PCR核酸純化 32
四、 限制性內切酶消化條件 33
五、 螢光生物感測器 34
第四節 實驗操作步驟 35
一、 Template之操作步驟 35
二、 真實樣品之操作步驟 35
第五節 毛細管電泳 36
一、 毛細管電泳分析 36
二、 毛細管清洗方式 36
三、 DNA分離條件 37
第參章 結果與討論 38
第一節 鏈黴親和素磁珠與生物素 (Streptavidin magnetic beads & Biotin) 38
第二節 CGE確認PCR產物 40
一、 利用CGE確認Template之產物 40
二、 利用CGE確認真實樣品之產物 42
第三節 反應條件最適化探討 43
一、 核酸染劑添加濃度 43
二、 鏈黴親和素磁珠添加量 46
三、 鏈黴親和素磁珠接合DNA反應時間 48
四、 限制性內切酶添加濃度 50
五、 限制性內切酶消化時間 51
第四節 野生型(WT)/突變型(MT)比例與回收率之試驗 53
第五節 真實樣品之應用 58
一、 檢品來源 58
二、 DNA 萃取之純度及濃度測定 58
三、 真實樣品之螢光感測器應用 59
四、 不同比例之真實樣品應用 61
第肆章 結論 62
參考文獻 63
附錄 72


[1] S. Khan, K.H. Barve, M.S. Kumar, Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer's Disease, Current neuropharmacology 18(11) (2020) 1106-1125.
[2] Z. Breijyeh, R. Karaman, Comprehensive Review on Alzheimer's Disease: Causes and Treatment, Molecules (Basel, Switzerland) 25(24) (2020).
[3] A.J.A.Z.P. Alzheimer, Uber eigenartige Erkrankung der Hirnrinde, 64 (1907) 146-148.
[4] J. Graff-Radford, K.X.X. Yong, L.G. Apostolova, F.H. Bouwman, M. Carrillo, B.C. Dickerson, G.D. Rabinovici, J.M. Schott, D.T. Jones, M.E. Murray, New insights into atypical Alzheimer's disease in the era of biomarkers, The Lancet. Neurology 20(3) (2021) 222-234.
[5] J. Folch, D. Petrov, M. Ettcheto, S. Abad, E. Sánchez-López, M.L. García, J. Olloquequi, C. Beas-Zarate, C. Auladell, A. Camins, Current Research Therapeutic Strategies for Alzheimer's Disease Treatment, Neural plasticity 2016 (2016) 8501693.
[6] J.J.E. Chua, HEBP1 - An early trigger for neuronal cell death and circuit dysfunction in Alzheimer’s disease, Seminars in Cell & Developmental Biology 139 (2023) 102-110.
[7] V.J. De-Paula, M. Radanovic, B.S. Diniz, O.V. Forlenza, Alzheimer's disease, Sub-cellular biochemistry 65 (2012) 329-52.
[8] J. Hardy, D.J. Selkoe, The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics, Science (New York, N.Y.) 297(5580) (2002) 353-6.
[9] P.B. Jones, K.W. Adams, A. Rozkalne, T.L. Spires-Jones, T.T. Hshieh, T. Hashimoto, C.A. von Armin, M. Mielke, B.J. Bacskai, B.T. Hyman, Apolipoprotein E: isoform specific differences in tertiary structure and interaction with amyloid-β in human Alzheimer brain, PloS one 6(1) (2011) e14586.
[10] A. Serrano-Pozo, S. Das, B.T. Hyman, APOE and Alzheimer's disease: advances in genetics, pathophysiology, and therapeutic approaches, The Lancet. Neurology 20(1) (2021) 68-80.
[11] Y. Huang, R.W. Mahley, Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases, Neurobiology of disease 72 Pt A (2014) 3-12.
[12] S.H. Barage, K.D. Sonawane, Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease, Neuropeptides 52 (2015) 1-18.
[13] V.I. Zannis, J.L. Breslow, G. Utermann, R.W. Mahley, K.H. Weisgraber, R.J. Havel, J.L. Goldstein, M.S. Brown, G. Schonfeld, W.J.J.o.l.r. Hazzard, Proposed nomenclature of apoE isoproteins, apoE genotypes, and phenotypes, 23(6) (1982) 911-914.
[14] C.C. Liu, C.C. Liu, T. Kanekiyo, H. Xu, G. Bu, Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy, Nature reviews. Neurology 9(2) (2013) 106-18.
[15] S.A. Flowers, G.W. Rebeck, APOE in the normal brain, Neurobiology of disease 136 (2020) 104724.
[16] M.A. Husain, B. Laurent, M. Plourde, APOE and Alzheimer's Disease: From Lipid Transport to Physiopathology and Therapeutics, Frontiers in neuroscience 15 (2021) 630502.
[17] A.M. McIntosh, C. Bennett, D. Dickson, S.F. Anestis, D.P. Watts, T.H. Webster, M.B. Fontenot, B.J. Bradley, The apolipoprotein E (APOE) gene appears functionally monomorphic in chimpanzees (Pan troglodytes), PloS one 7(10) (2012) e47760.
[18] D.T. Eisenberg, C.W. Kuzawa, M.G. Hayes, Worldwide allele frequencies of the human apolipoprotein E gene: climate, local adaptations, and evolutionary history, American journal of physical anthropology 143(1) (2010) 100-11.
[19] M.E. Belloy, V. Napolioni, M.D. Greicius, A Quarter Century of APOE and Alzheimer's Disease: Progress to Date and the Path Forward, Neuron 101(5) (2019) 820-838.
[20] L. Zhong, Y.-Z. Xie, T.-T. Cao, Z. Wang, T. Wang, X. Li, R.-C. Shen, H. Xu, G. Bu, X.-F. Chen, A rapid and cost-effective method for genotyping apolipoprotein E gene polymorphism, Molecular Neurodegeneration 11(1) (2016) 2.
[21] X.H. Zhan, G.C. Zha, J.W. Jiao, L.Y. Yang, X.F. Zhan, J.T. Chen, D.D. Xie, U.M. Eyi, R.A. Matesa, M.M. Obono, C.S. Ehapo, E.J. Wei, Y.Z. Zheng, H. Yang, M. Lin, Rapid identification of apolipoprotein E genotypes by high-resolution melting analysis in Chinese Han and African Fang populations, Experimental and therapeutic medicine 9(2) (2015) 469-475.
[22] R.W. MAHLEY, B.P. NATHAN, R.E. PITAS, Apolipoprotein E. Structure, Function, and Possible Roles in Alzheimer's Diseasea, 777(1) (1996) 139-145.
[23] J.E. Hixson, D.T. Vernier, Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI, Journal of Lipid Research 31(3) (1990) 545-548.
[24] A. Zivelin, N. Rosenberg, H. Peretz, Y. Amit, N. Kornbrot, U. Seligsohn, Improved method for genotyping apolipoprotein E polymorphisms by a PCR-based assay simultaneously utilizing two distinct restriction enzymes, Clinical chemistry 43(9) (1997) 1657-9.
[25] G. De Bellis, G. Salani, S. Panigone, F. Betti, L. Invernizzi, M. Luzzana, Apolipoprotein E genotyping by capillary electrophoretic analysis of restriction fragments, Clinical chemistry 43(8) (1997) 1321-1324.
[26] E.S.C. Koay, M. Zhu, T. Wehr, M.L. Choong, M.C. Khaw, S.K. Sethi, T.C. Aw, Detection of apolipoprotein E genotypes by capillary electrophoresis1Establishments where the work was done: Department of Laboratory Medicine, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074 and Bio-Rad Laboratories, 2000 Alfred Nobel Drive, Hercules, CA 94547, USA.1, Talanta 45(4) (1998) 673-681.
[27] G.W. Somsen, H.T.M.E. Welten, F.P. Mulder, C.W. Swart, I.P. Kema, G.J. de Jong, Capillary electrophoresis with laser-induced fluorescence detection for fast and reliable apolipoprotein E genotyping, Journal of Chromatography B 775(1) (2002) 17-26.
[28] J.R. Srinivasan, M.T. Kachman, A.A. Killeen, N. Akel, D. Siemieniak, D.M. Lubman, Genotyping of apolipoprotein E by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Rapid communications in mass spectrometry : RCM 12(16) (1998) 1045-50.
[29] M.D. Poulson, C.T. Wittwer, Closed-tube genotyping of apolipoprotein E by isolated-probe PCR with multiple unlabeled probes and high-resolution DNA melting analysis, BioTechniques 43(1) (2007) 87-91.
[30] W. Koch, A. Ehrenhaft, K. Griesser, A. Pfeufer, J. Müller, A. Schömig, A. Kastrati, TaqMan systems for genotyping of disease-related polymorphisms present in the gene encoding apolipoprotein E, Clinical chemistry and laboratory medicine 40(11) (2002) 1123-31.
[31] B.H. Rihn, S. Berahmoune, M. Jouma, S. Chamaa, L. Marcocci, A. Le Faou, APOE genotyping: comparison of three methods, Clinical and Experimental Medicine 9(1) (2009) 61-65.
[32] O. Calero, R. Hortigüela, M.J. Bullido, M. Calero, Apolipoprotein E genotyping method by Real Time PCR, a fast and cost-effective alternative to the TaqMan® and FRET assays, Journal of Neuroscience Methods 183(2) (2009) 238-240.
[33] K.B. Mullis, The unusual origin of the polymerase chain reaction, Scientific American 262(4) (1990) 56-61, 64-5.
[34] N. Chester, D.R. Marshak, Dimethyl Sulfoxide-Mediated Primer Tm Reduction: A Method for Analyzing the Role of Renaturation Temperature in the Polymerase Chain Reaction, Analytical Biochemistry 209(2) (1993) 284-290.
[35] W. Rychlik, W.J. Spencer, R.E. Rhoads, Optimization of the annealing temperature for DNA amplification in vitro, Nucleic acids research 18(21) (1990) 6409-12.
[36] L. Garibyan, N. Avashia, Polymerase chain reaction, The Journal of investigative dermatology 133(3) (2013) 1-4.
[37] M.R. Green, J. Sambrook, Nested Polymerase Chain Reaction (PCR), Cold Spring Harbor protocols 2019(2) (2019).
[38] A. Tunlid, Tiselius, Arne, eLS2011.
[39] A.L. Shapiro, E. Viñuela, J.V. Maizel, Jr., Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels, Biochemical and biophysical research communications 28(5) (1967) 815-20.
[40] J.W. Jorgenson, K.D. Lukacs, Zone electrophoresis in open-tubular glass capillaries, Analytical Chemistry 53(8) (1981) 1298-1302.
[41] C.G. Edmonds, J.A. Loo, C.J. Barinaga, H.R. Udseth, R.D. Smith, Capillary electrophoresis-electrospray ionization-mass spectrometry, Journal of Chromatography A 474(1) (1989) 21-37.
[42] S. Basak, N.Z. Ehtesham, B. Sesikeran, S. Ghosh, Detection and identification of transgenic elements by fluorescent-PCR-based capillary gel electrophoresis in genetically modified cotton and soybean, Journal of AOAC International 97(1) (2014) 159-65.
[43] A. Holck, B.O. Pedersen, E. Heir, Detection of five novel GMO maize events by qualitative, multiplex PCR and fluorescence capillary gel electrophoresis, European Food Research and Technology 231(3) (2010) 475-483.
[44] V. García-Cañas, M. Mondello, A. Cifuentes, Combining ligation reaction and capillary gel electrophoresis to obtain reliable long DNA probes, Journal of separation science 34(9) (2011) 1011-9.
[45] A.M. Stalcup, K.H.J.A.c. Gahm, Application of sulfated cyclodextrins to chiral separations by capillary zone electrophoresis, 68(8) (1996) 1360-1368.
[46] H.-T. Chang, E.S.J.J.o.C.B.B.S. Yeung, Applications, Poly (ethyleneoxide) for high resolution and high-speed separation of DNA by capillary electrophoresis, 669(1) (1995) 113-123.
[47] R. Bhimwal, R.R. Rustandi, A. Payne, M. Dawod, Recent advances in capillary gel electrophoresis for the analysis of proteins, Journal of Chromatography A 1682 (2022) 463453.
[48] F. Sanger, S. Nicklen, A.R. Coulson, DNA sequencing with chain-terminating inhibitors, Proceedings of the National Academy of Sciences of the United States of America 74(12) (1977) 5463-7.
[49] Z.G. Chidgeavadze, R.S. Beabealashvilli, A.M. Atrazhev, M.K. Kukhanova, A.V. Azhayev, A.A. Krayevsky, 2',3'-Dideoxy-3' aminonucleoside 5'-triphosphates are the terminators of DNA synthesis catalyzed by DNA polymerases, Nucleic acids research 12(3) (1984) 1671-86.
[50] D. Botstein, R.L. White, M. Skolnick, R.W. Davis, Construction of a genetic linkage map in man using restriction fragment length polymorphisms, American journal of human genetics 32(3) (1980) 314-31.
[51] A. Atoui, A. El Khoury, PCR-RFLP for Aspergillus Species, in: A. Moretti, A. Susca (Eds.), Mycotoxigenic Fungi: Methods and Protocols, Springer New York, New York, NY, 2017, pp. 313-320.
[52] M. Maeda, N. Murayama, H. Ishii, N. Uryu, M. Ota, K. Tsuji, H. Inoko, A simple and rapid method for HLA-DQA1 genotyping by digestion of PCR-amplified DNA with allele specific restriction endonucleases, Tissue antigens 34(5) (1989) 290-8.
[53] W.A. Hendrickson, A. Pähler, J.L. Smith, Y. Satow, E.A. Merritt, R.P. Phizackerley, Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation, Proceedings of the National Academy of Sciences of the United States of America 86(7) (1989) 2190-4.
[54] J.-L. Guesdon, S. Avrameas, Magnetic solid phase enzyme-immunoassay, Immunochemistry 14(6) (1977) 443-447.
[55] T. Hultman, S. Ståhl, E. Hornes, M. Uhlén, Direct solid phase sequencing of genomic and plasmid DNA using magnetic beads as solid support, Nucleic acids research 17(13) (1989) 4937-46.
[56] N. Cheraghchi, P. Khaki, S. Moradi Bidhendi, A. Sabokbar, Identification of Isolated Salmonella enterica Serotype gallinarum Biotype Pullorum and Gallinarum by PCR-RFLP, Jundishapur journal of microbiology 7(9) (2014) e19135.
[57] D.P. Le, M.K. Smith, E.A.B. Aitken, Genetic variation in Pythium myriotylum based on SNP typing and development of a PCR-RFLP detection of isolates recovered from Pythium soft rot ginger, Letters in applied microbiology 65(4) (2017) 319-326.
[58] J. Vlach, B. Javůrková, L. Karamonová, M. Blažková, L. Fukal, Novel PCR-RFLP system based on rpoB gene for differentiation of Cronobacter species, Food microbiology 62 (2017) 1-8.
[59] A. Strydom, M. Cameron, R. Corli Witthuhn, PCR-RFLP analysis of the rpoB gene to distinguish the five species of Cronobacter, Food microbiology 28(8) (2011) 1472-7.
[60] F. Zhao, J. Wang, R. Liu, J. Yang, K. Cui, Y. Wu, J. Guo, Y. Mu, X. Wang, Quantification and application of the placental epigenetic signature of the RASSF1A gene in maternal plasma, Prenatal diagnosis 30(8) (2010) 778-82.
[61] R.A. Holt, S.J. Jones, The new paradigm of flow cell sequencing, Genome research 18(6) (2008) 839-46.
[62] 李思元, 莊.J.J.B.L. Sci, DNA 定序技術之演進與發展, 22(2) (2010) 49.


電子全文 電子全文(網際網路公開日期:20280701)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top