跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 20:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林家毅
研究生(外文):LIN,JIA-YIH
論文名稱:碳酸酐酶在功能化聚丙烯腈基奈米纖維膜上固 定化用於二氧化碳捕獲和礦化程序
論文名稱(外文):Immobilization of Carbonic Anhydrase on Functionalized Polyacrylonitrile Based Nanofiber Membrane for Carbon Dioxide Capture and Mineralization Processes
指導教授:張煜光張煜光引用關係
指導教授(外文):CHANG,YU-KAUNG
口試委員:劉炳嵐施正元張煜光
口試委員(外文):LIOU,BING-LANSHIH,JHENG-YUANCHANG,YU-KAUNG
口試日期:2022-12-27
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程系生化工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:74
中文關鍵詞:碳酸酐酶奈米纖維膜酶固定化二氧化碳轉化礦化反應
外文關鍵詞:carbonic anhydrasenanofiber membraneenzyme immobilizationcarbon dioxide conversionmineralization reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著工商業的快速發展,大氣中的二氧化碳急劇增加,全球變暖現像日益嚴重。 發展二氧化碳捕集技術對於降低二氧化碳排放濃度至關重要。 其中,在二氧化碳的生物酶處理方法中,參與二氧化碳轉化的酶稱為碳酸酐酶(即CA)。 近年來,CA酶受到世界各國的廣泛關注。 碳酸酐酶是已知酶中反應速度最快的酶之一。 它對環境無害,並且具有相當大的二氧化碳捕獲潛力。 這項工作試圖將 CA 酶固定在功能化奈米纖維膜上,並評估其在二氧化碳捕獲和礦化應用中的潛力。 本研究採用靜電紡絲技術製備聚丙烯腈奈米纖維膜,將膜上的-CN基團進一步轉化為羰基(即P-COOH),然後與殼聚醣偶聯生成帶有胺基(即P-COOH-CS)的膜。 CA酶通過物理附著和化學鍵合將碳酸酐酶固定在兩個膜上。 在這項工作中,開發高負載酶固定化技術來穩定CA酶活性可以提高生物催化過程的經濟價值。 在這項工作中,採用 Wilbur-Anderson 法測量固定化 CA 酶的活性。 轉化後的碳酸氫鹽進一步與氯化鈣進行礦化反應。
With the rapid development of industry and commerce, carbon dioxide in the atmosphere has increased sharply, and global warming has become increasingly serious. The development of carbon dioxide capture technology to reduce the concentration of carbon dioxide emissions is crucial. Among them, in the biological enzyme treatment method of carbon dioxide, the enzyme involved in the conversion of carbon dioxide is called carbonic anhydrase (namely CA). In recent years, CA enzymes have received extensive attention around the world. Carbonic anhydrase is one of the enzymes with the fastest reaction rate among the known enzymes. It is harmless to the environment and has considerable potential for carbon dioxide capture. This work attempted to immobilize CA enzymes on functionalized nanofiber membranes and evaluated their potential for carbon dioxide capture and mineralization applications. In this study, polyacrylonitrile nanofiber membranes were prepared by electrospinning technology, and the -CN group on the membrane was further converted into a carbonyl group (namely P-COOH), and then coupled with chitosan to generate a membrane with amine groups (namely P-COOH-CS). The CA enzyme immobilized carbonic anhydrase on the two membranes though physical attachment and chemical bonding. In this work, the development of high-load enzyme immobilization technology to stabilize CA enzyme activity can improve the economic value of biocatalytic processes. In this work, The Wilbur-Anderson method was used to measure the activity of the immobilized CA enzyme. The converted bicarbonate was further carried out with calcium chloride to proceed the mineralization reaction.
目錄
口試委員審定書 i
中文摘要 ii
英文摘要 iii
目錄 v
圖目錄 viii
表目錄 ix
第一章 緒論 1
1.1研究背景 1
1.2 實驗架構 3
第二章 文獻回顧 4
2.1 奈米纖維薄膜介紹 4
2.1.1 奈米纖維薄膜應用與發展 4
2.1.2 奈米纖維膜技術 5
2.1.3 靜電紡絲纖維技術原理 7
2.2 二氧化碳捕捉技術與儲存 8
2.2.1 生物處理(bioremediation) 9
2.3 海洋藍碳(Blue Carbon) 11
2.3.1 溶解度泵(Solubility Pump) 12
2.3.2 生物泵(Biological Pump) 12
2.4 碳酸酐酶(Carbonic Anhydrase) 14
2.4.1 碳酸酐酶比活性 15
2.4.2 碳酸酐酶熱穩定性分析 16
2.4.3 碳酸酐酶固定化 16
2.4.4 碳酸酐酶固定方式 17
2.4.5碳酸酐酶濃度與固定方式的分析 19
2.4.6 碳酸酐酶固定化吸附時間分析 20
2.5碳酸酐酶固定後之礦化 22
第三章 實驗方法與材料 24
3.1 實驗藥品與設備 24
3.1.1 實驗藥品 24
3.1.2 實驗設備 25
3.1.3 菌株 27
3.2 溶液配製 27
3.2.1 LB、TB培養基 27
3.2.2 碳酸酐酶活性測定用溶液(Walbur-Anderson法) 28
3.2.3 碳酸酐酶活性測定用溶液(p-NPA比色法) 29
3.3 奈米靜電紡絲機 30
3.3.1介紹 30
3.3.2 PAN奈米纖維薄膜之配製 31
3.3.3 PAN奈米纖維薄膜紡絲參數 33
3.4 奈米纖維薄膜 34
3.4.1 P-COOH薄膜製備 34
3.4.2 P-COOH-Chitosan薄膜製備 35
3.4.3 P-COOH-CA薄膜製備 36
3.4.4 P-COOH-Chitosan-CA薄膜製備 36
3.5 奈米纖維膜物性分析 37
3.5.1 傅立葉轉換紅外光譜儀(FTIR) 37
3.5.2 掃描式電子顯微鏡(SEM) 37
3.5.3 熱重量分析(TGA) 38
3.5.4 X光繞射儀(XRD) 39
3.5.5 拉伸試驗 39
3.6 碳酸酐酶醱酵 41
3.7 碳酸酐酶前處理 42
3.7.1 洗淨細胞 42
3.7.2 超音波破碎獲取胞內蛋白 42
3.8 碳酸酐酶中總量蛋白濃度測定 43
3.9奈米纖維薄膜官能基含量之測定 45
3.9.1 TBO染料 45
3.9.2 TBO (Toluidine Blue O)製作 45
3.9.3 TBO染料定量羧基之含量 46
3.9.4 AO7染料 47
3.9.5 AO7檢量線製作 48
3.9.6 AO7染料定量胺基之含量 49
3.10 碳酸酐酶酵素分析 50
3.10.1 碳酸酐酶活性分析(Walbur-Anderson法) 50
3.10.2 碳酸酐酶活性分析(4-Nitrophenyl acetate比色法) 50
3.10.3 碳酸酐酶固定化活性分析(Walbur-Anderson法) 52
3.11碳酸酐酶礦化試驗 53
第四章 結果與討論 54
4.1 奈米纖維薄膜物性分析 54
4.1.1 羧根含量測定 54
4.1.2 胺基含量測定 54
4.1.3 掃描式電子顯微鏡(SEM)測定膜片表面狀態 55
4.1.4 傅立葉轉換紅外光譜儀(FTIR)測定膜片官能基 56
4.1.5 熱重分析(TGA)測定膜片裂解溫度 60
4.2 碳酸酐酶礦化試驗 61
4.2.1 礦化沉澱量 61
4.2.2 XRD分析 62
4.3.3 SEM分析 65
第五章 結論及未來展望 68
參考文獻

圖目錄
圖1-1 實驗流程 3
圖2-1 薄膜紡絲原理 8
圖2-2 碳酸酐酶Biomass (NPA)活性比較 15
圖2-3 碳酸酐酶熱(NPA)穩定性分析 16
圖2-4 物理吸附與共價鍵結在不同濃度下比較 19
圖2-5 化學與物理吸附在不同吸附時間下的活性 20
圖2-6在不同吸附時間下共價鍵結交聯的表達活性 21
圖3-1 奈米纖維薄膜之結構圖 34
圖3-2 Biuret測定法之蛋白質含量標準曲線 44
圖3-3 p-Nitrophenyl acetate 51
圖 4-1 不同倍率PAN SEM 55
圖 4-2 不同倍率PAN-COOH SEM 55
圖 4-3 不同倍率PAN-COOH-CS SEM 56
圖 4-4 不同倍率PAN-COOH-CA SEM 56
圖 4-5 不同倍率PAN-COOH-CS-CA SEM 56
圖4-6 P-COOH光譜圖比較 58
圖4-7 P-COOH-CS光譜圖比較 59
圖4-8 PAN、P-COOH、P-COOH-CS TGA熱穩定性比較 60
圖4-9 加入CaCl2過程 61
圖4-10 CaCl2、CaCO3、Ca(OH)2 XRD 比較 63
圖4-11 CaCl2、P-COOH-CA、P-COOH-CS-CA之XRD比較 64
圖4-12 沉澱物碳酸鈣SEM分析圖 66
圖4-13沉澱物CaCO3 SEM分析圖(P-Oxime-CA) 67
圖4-14沉澱物CaCO3SEM分析圖(P-Oxime-BrA-CA) 67

表目錄
表3-1 實驗藥品 24
表3-2 實驗設備 25
表3-3 PAN靜電紡絲機參數 33
表 4-1 P-COOH薄膜中羧基含量 54
表 4-2 P-COOH-CS薄膜中胺根含量 55
表 4-3各官能基之吸收波峰 57
表4-4 沉澱量比較 62
Ahmed, F. E., Lalia, B. S., Hashaikeh, R., Desalination, A review on electrospinning for membrane fabrication: challenges and applications, 2015, 356, 15-30.
Alvizo O., Nguyen L. J., Savile C. K., Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas, Proc. Natl. Acad. USA. 111 (2014) 16436-16441.
Atsumi, S., Higashide, W., Liao, J. C., Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde, Nat. Biotechnol. 27 (2009) 1177–1180.
Bano A.M., Rodger P.M. and Quigley D., New insight into the stability of CaCO3 surfaces and nanoparticles via molecular simulation, Langmuir 30 (2014) 7513–7521 (2014).
Capasso C., Luca V. D., Carginale V., Cannio R., Rossi M., Biochemical properties of a novel and highly thermostable bacterial α-carbonic anhydrase from Sulfurihydrogenibium yellowstonense YO3AOP1, J. Enz. Inhibit. Med. Chem. 27 (2012) 892-897.
Chen, C. Y., Lu, I. C., Nagarajan, D., Chang, C. H., Ng, I. S., Lee, D. J., Chang, J. S., A highly efficient two-stage cultivation strategy for lutein production using heterotrophic culture of Chlorella sorokiniana MB-1-M12, Bioresour. Technol. 253 (2018) 141–147.
Chu D.H., Vinoba M., Bhagiyalakshmi M., Baek I.H., Nam S.C., Yoon Y.I., CO2 mineralization into different polymorphs of CaCO3 using an aqueous-CO2 system. RSC Adv 3 (2013) 21722–21729.
Diaz, E. G., R. Catana, R., Ferreira, B. S., Luque, S., Fernandes, P., Cabral, J. M. S., Towards the development of a membrane reactor for enzymatic inulin hydrolysis, J. Membr. Sci. 273 (2006) 152–158.
Effendi, S. S., Ng, I. S., The prospective and potential of carbonic anhydrase for carbon dioxide sequestration: a critical review, Process Biochem. (2019).
Fan L. H., Liu N., Yu M. R., Yang S. T., Chen H. L., Cell surface display of carbonic anhydrase on Escherichia coli using ice nucleation protein for CO2 sequestration, Biotechnol Bioeng. 108 (2011) 2853-2864.
Jo, B.H., Seo, J.H., Yang, Y.J., Bioinspired silica nanocomposite with autoencapsulated carbonic anhydrase as a robust biocatalyst for CO2 sequestration, ACS Catal. 4 (2014) 4332–4340.
Jo B. H., Park T. Y., Park H. J., Yeon Y. J., Yoo Y. J., Cha H. J., Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration, Sci. Rep. 6 (2016) 29322.
Kim, J. Grate, J. W., Wang, P., Nanostructures for enzyme stabilization, Chem. Eng. Sci. 61 (2006) 1017–1026.
Lopez-Periago, A.M., Fraile, J., Lopez-Aranguren, P., Vega, L.F., Domingo, C., CO2 capture efficiency and carbonation/calcination kinetics of micro and nanosized particles of supercritical precipitated calcium carbonate, Chem. Eng. J. 226 (2013) 357–366.
Ma, Z. W., Kotaki, M., Ramakrishna, S., Electrospun cellulose nanofiber as affinity membrane, J. Membr. Sci. 265 (2005) 115–123.
Merlo, R., Del Prete, S., Valenti, A., Mattossovich, R., Carginale, V., Supuran, C. T., Capasso, C., Perugino, G., An AGT-based protein-tag systemfor the labelling and surface immobilization of enzymes on E. coli outer membran, J. Enzyme. Inhib. Med. Chem. 34 (2019) 490–499.
Mirjafari, P., Asghari, K., Mahinpey, N., Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes, Ind. Eng. Chem. Res. 46 (2007) 921–926.
Ng, I. S., S.I. Tan, S. I., P.H. Kao, P. H., Chang, Y. K., Chang, J. S., Recent developments on genetic engineering of microalgae for biofuels and bio‐based chemicals, Biotechnol. J. 12 (2017) 1600644.
Oliver, J. W., Machado, I. M., Yoneda, H., Atsumi, S., Cyanobacterial conversion of carbon dioxide to 2, 3-butanediol, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 1249–1254.
Policicchio, A. A., Zhao, Y., Zhong, Q., Agostino, R. G., Bandosz, T. J., Cu-BTC/aminated graphite oxide composites as high-efficiency CO2 capture media, ACS Appl. Mater. Interfaces 6 (2014) 101–108.
Supuran, C. T., Structure and function of carbonic anhydrases, Biochem. J. 473 (2016) 2023–2032.
Tan, S. I., Han, Y. L., Yu, Y. J., Chiu, C. Y., Chang, Y. K., Ouyang, S., Fan, K. C., Lo, K. H., Ng, I. S., Efficient carbon dioxide sequestration by using recombinant carbonic anhydrase, Process Biochem. 73 (2018) 38–46.
Vinoba M, Bhagiyalakshmi M, Grace A.N., Chu D.H., Nam S.C., Yoon Y.I., CO2 absorption and sequestration as various polymorphs of CaCO3 using sterically hindered amine, Langmuir 29 (2013) 15655–15663.
Alderton, D. (2021). X-Ray Diffraction (XRD). In D. Alderton & S. A. Elias (Eds.), Encyclopedia of Geology (Second Edition) (pp. 520-531). Oxford: Academic Press.
Chen, L., Xu, J., & Chen, J. (2015). Applications of scanning electron microscopy in earth sciences. Science China Earth Sciences, 58(10), 1768-1778.
Cárdenas, G., Cabrera, G., Taboada, E., & Miranda, S. P. (2004). Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. Journal of Applied Polymer Science, 93(4), 1876-1885.
Rasouli, H., Nguyen, K., & Iliuta, M. C. (2022). Recent advancements in carbonic anhydrase immobilization and its implementation in CO2 capture technologies: A review. Separation and Purification Technology, 296, 121299. doi:https://doi.org/10.1016/j.seppur.2022.121299
Ren, S., Chen, R., Wu, Z., Su, S., Hou, J., & Yuan, Y. (2021). Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion. Colloids and Surfaces B: Biointerfaces, 204, 111779. doi:https://doi.org/10.1016/j.colsurfb.2021.111779
Soleimani, M., Ghorbani, M., & Salahi, S. (2016). Antibacterial activity of polypyrrole-chitosan nanocomposite: mechanism of action. International Journal of Nanoscience and Nanotechnology, 12(3), 191-197.
Alderton, D. (2021). X-Ray Diffraction (XRD). In D. Alderton & S. A. Elias (Eds.), Encyclopedia of Geology (Second Edition) (pp. 520-531). Oxford: Academic Press.
Chen, L., Xu, J., & Chen, J. (2015). Applications of scanning electron microscopy in earth sciences. Science China Earth Sciences, 58(10), 1768-1778.
Cárdenas, G., Cabrera, G., Taboada, E., & Miranda, S. P. (2004). Chitin characterization by SEM, FTIR, XRD, and 13C cross polarization/mass angle spinning NMR. Journal of Applied Polymer Science, 93(4), 1876-1885.
Rasouli, H., Nguyen, K., & Iliuta, M. C. (2022). Recent advancements in carbonic anhydrase immobilization and its implementation in CO2 capture technologies: A review. Separation and Purification Technology, 296, 121299. doi:https://doi.org/10.1016/j.seppur.2022.121299
Ren, S., Chen, R., Wu, Z., Su, S., Hou, J., & Yuan, Y. (2021). Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion. Colloids and Surfaces B: Biointerfaces, 204, 111779. doi:https://doi.org/10.1016/j.colsurfb.2021.111779
Soleimani, M., Ghorbani, M., & Salahi, S. (2016). Antibacterial activity of polypyrrole-chitosan nanocomposite: mechanism of action. International Journal of Nanoscience and Nanotechnology, 12(3), 191-197.
李佩容. (2021). 固定化碳酸酐酶催化二氧化碳水合反應及礦化之研究. (碩士). 明志科技大學, 新北市. Retrieved from https://hdl.handle.net/11296/ur9d5u
楊慎媛. (2020). 碳酸酐酶固定化及其特性之研究. (碩士). 明志科技大學, 新北市. Retrieved from https://hdl.handle.net/11296/k46ux2

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top