中華民國大地工程學會,(2017)。「山坡地監測準則」
吳俊鋐, 黃均臺, & 吳亭燁. (2018). 南投縣仁愛鄉崩塌特性分析及崩塌風險模式建構. Journal of Chinese Soil and Water Conservation, 49(3), 154-166.
邱宜珊. (2020). 利用 PSInSAR 觀察原住民部落之地表形變-以尖石鄉秀巒村為例,國立政治大學地政學系碩士論文.張中白、王皓正、陳锟山(2003),「地震地質調查及活動斷層資料庫建置計畫—地殼變形研究計畫」,經濟部中央地質調查所報告第92-10號。
張喭汝. (2015). 利用持久散射體差分干涉法研究臺北盆地地下水升降引起的地表變形,國立臺灣大學地質科學系碩士論文.陳柔妃、林慶偉 (2018).大型山崩判釋新利器─結合InSAR與光達數值地形。中華技術,119(1),40-51。
黃大任. (2013). 以時域相關點雷達干涉量測研究彰化,雲林與嘉義地區之地層下陷.國立交通大學土木工程學系碩士論文.黃雅萱. (2016). 應用數值航空影像於投89線道崩塌區之位移場分析。朝陽科技大學營建工程系碩士論文.楊苡絜. (2018). 以Sentinel-1A SAR及SBAS方法監測雲林地層下陷,國立交通大學土木工程學系碩士論文.廖瑞堂、陳昭維、紀宗吉、林錫宏,(2013)。「集水區崩塌地環境指標分析與崩塌潛感推估」。中華水土保持學報,44(2),121-130。
劉婉姿. (2020). 檢驗SBAS-InSAR於2016年美濃地震震後變形分析,國立臺灣大學地理環境資源學系碩士論文。Abancó, C., Bennett, G. L., Matthews, A. J., Matera, M. A. M., & Tan, F. J. (2021). The role of geomorphology, rainfall and soil moisture in the occurrence of landslides triggered by 2018 Typhoon Mangkhut in the Philippines. Natural Hazards and Earth System Sciences, 21(5), 1531-1550.
Alcántara-Ayala, I., Esteban-Chávez, O., & Parrot, J. F. (2006). Landsliding related to land-cover change: A diachronic analysis of hillslope instability distribution in the Sierra Norte, Puebla, Mexico. Catena, 65(2), 152-165.
Amelung, F., Jónsson, S., Zebker, H., & Segall, P. (2000). Widespread uplift and ‘trapdoor’faulting on Galapagos volcanoes observed with radar interferometry. Nature, 407(6807), 993-996.
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on geoscience and remote sensing, 40(11), 2375-2383.
Causes, L. (2001). Landslide types and processes.
Chen, F., Lin, H., Zhou, W., Hong, T., & Wang, G. (2013). Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China. Remote sensing of environment, 138, 10-18.
Crippa, C., Valbuzzi, E., Frattini, P., Crosta, G. B., Spreafico, M. C., & Agliardi, F. (2021). Semi-automated regional classification of the style of activity of slow rock-slope deformations using PS InSAR and SqueeSAR velocity data. Landslides, 18(7), 2445-2463.
Deffontaines, B., Chang, K. J., Lee, C. T., Magalhaes, S., & Serries, G. (2019). Neotectonics of the Southern DEM and random forest. International Journal of Geosciences, 7(05), 726.
Dilley, M. (2005). Natural disaster hotspots: a global risk analysis (Vol. 5). World Bank Publications.
Dong, S., Samsonov, S., Yin, H., Ye, S., & Cao, Y. (2014). Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environmental earth sciences, 72, 677-691.
Farr, T. G., & Kobrick, M. (2000). Shuttle Radar Topography Mission produces a wealth of data. Eos, Transactions American Geophysical Union, 81(48), 583-585.
Ferretti, A., Novali, F., Bürgmann, R., Hilley, G., & Prati, C., (2004). InSAR permanent scatterer analysis reveals ups and downs in San Francisco Bay area. Eos, Transactions American Geophysical Union, 85(34), 317-324.
Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on geoscience and remote sensing, 38(5), 2202-2212.
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on geoscience and remote sensing, 39(1), 8-20.
Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161-2181.
Ghulam, A., Grzovic, M., Maimaitijiang, M., & Sawut, M. (2015). InSAR monitoring of land subsidence for sustainable urban planning. Remote Sensing for Sustainability.
He, Y., Chen, Y., Wang, W., Yan, H., Zhang, L., & Liu, T. (2021). TS-InSAR analysis for monitoring ground deformation in Lanzhou New District, the loess Plateau of China, from 2017 to 2019. Advances in Space Research, 67(4), 1267-1283.
Hoffmann, J., Roth, A., & Voigt, S. (2003, December). Detecting coal fires in China using differential interferometric synthetic aperture radar (InSAR). In Proceedings of the FRINGE 2003 Workshop (ESA SP-550) (pp. 1-5).
Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, 112(B7).
Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical research letters, 31(23).
Hsu, W. C., Chang, H. C., Chang, K. T., Lin, E. K., Liu, J. K., & Liou, Y. A. (2015). Observing land subsidence and revealing the factors that influence it using a multi-sensor approach in Yunlin County, Taiwan. Remote sensing, 7(6), 8202-8223.
Hung W.C., C.W. Hwang, and Chung, C.P., n.d., (2010), Using Leveling, GPS, Subsidence Monitoring Well and D-InSAR to Monitor the Subsidence in Yunlin Region, Technical Paper in the Land Subsidence Database, WRA, Taiwan.
Kampes, B. M. (2005). Displacement parameter estimation using permanent scatterer interferometry.
Konishi, T., & Suga, Y. (2018). Landslide detection using COSMO-SkyMed images: A case study of a landslide event on Kii Peninsula, Japan. European journal of remote sensing, 51(1), 205-221.
Lee, C. F., Singhroy, V., Lin, S. Y., Huang, W. K., & Li, J. (2021). Landslide Activity Assessment of a Subtropical
Lin, Q., & Wang, Y. (2018). Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016. Landslides, 15(12), 2357-2372.
Massonnet, D., Briole, P., & Arnaud, A. (1995). Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature, 375(6532), 567-570.
Nolasco-Javier, D., & Kumar, L. (2018). Deriving the rainfall threshold for shallow landslide early warning during tropical cyclones: a case study in northern Philippines. Natural hazards, 90(2), 921-941.
Novellino, A., Cigna, F., Sowter, A., Ramondini, M., & Calcaterra, D. (2017). Exploitation of the Intermittent SBAS (ISBAS) algorithm with COSMO-SkyMed data for landslide inventory mapping in north-western Sicily, Italy. Geomorphology, 280, 153-166.
Ozturk, U., Bozzolan, E., Holcombe, E. A., Shukla, R., Pianosi, F., & Wagener, T. (2022). How climate change and unplanned urban sprawl bring more landslides.
Pathier, E., Fruneau, B., Deffontaines, B., Angelier, J., Chang, C. P., Yu, S. B., & Lee, C. T. (2003). Coseismic displacements of the footwall of the Chelungpu fault caused by the 1999, Taiwan, Chi-Chi earthquake from InSAR and GPS data. Earth and Planetary Science Letters, 212(1-2), 73-88.
Promper, C., Puissant, A., Malet, J. P., & Glade, T. (2014). Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios. Applied Geography, 53, 11-19.
Schuster, R. L., & Highland, L. M. (2003, December). Impact of landslides and innovative landslide-mitigation measures on the natural environment. In International conference on slope engineering, Hong Kong, China (Vol. 8, No. 10).
Shih, D. S., Shih, S. S., Hsu, S. M., Lin, S. Y., Lin, Y., Hung, C. T., & Wang, K. (2022). A Framework for the Sustainable Risk Assessment of In-river Hydraulic Structures: A Case Study of Taiwan’s Daan River. Journal of Hydrology, 129028.
Tizzani, P., Berardino, P., Casu, F., Euillades, P., Manzo, M., Ricciardi, G. P., ... & Lanari, R. (2007). Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sensing of Environment, 108(3), 277-289.
Van Zyl, J. J. (2001). The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography. Acta astronautica, 48(5-12), 559-565.
Wu, C. (2023). Using the Spatiotemporal Hot Spot Analysis and Multi-Annual Landslide Inventories to Analyze the Evolution and Characteristic of Rainfall-Induced Landslide at the Subwatershed Scale in Taiwan. Water, 15(7), 1355.
Wu, C. H., Chen, S. C., & Chou, H. T. (2011). Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in the Kaoping Watershed, Taiwan. Engineering Geology, 123(1-2), 13-21.
Xiong, J., Xiao, R., & He, X. (2021). Land surface deformation in Nanchang, China 2018–2020 revealed by multi-temporal InSAR. Natural Hazards Research, 1(4), 187-195.
Yamagishi, H., & Iwahashi, J. (2007). Comparison between the two triggered landslides in Mid-Niigata, Japan by July 13 heavy rainfall and October 23 intensive earthquakes in 2004. Landslides, 4(4), 389-397.
Yang, Y. J., Hwang, C., Hung, W. C., Fuhrmann, T., Chen, Y. A., & Wei, S. H. (2019). “Surface deformation from Sentinel-1A InSAR: relation to seasonal groundwater extraction and rainfall in Central Taiwan. Remote Sensing, 11(23), 2817.
Zebker, H. A., & Villasenor, J. (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on geoscience and remote sensing, 30(5), 950-959.
Zhao, C., & Lu, Z. (2018). Remote sensing of landslides—A review. Remote Sensing, 10(2), 279.
Zhao, C., Lu, Z., Zhang, Q., & de La Fuente, J. (2012). Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote sensing of environment, 124, 348-359.
Zhao, R., Li, Z. W., Feng, G. C., Wang, Q. J., & Hu, J. (2016). Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling. Remote Sensing of Environment, 184, 276-287.