跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/06 15:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施竣仁
研究生(外文):Jun-Ren Shi
論文名稱:比較PS-InSAR與SBAS-InSAR技術應用於監測山區地表變位–以仁愛鄉為例
論文名稱(外文):Comparison of PS-InSAR and SBAS-InSAR Techniques in Monitoring Surface Deformation in Mountainous Areas: A Case Study in Ren'ai Township
指導教授:蔡慧萍蔡慧萍引用關係
指導教授(外文):Hui-Ping Tsai
口試委員:蕭宇伸江莉琦
口試委員(外文):Yu-Shen HsiaoLi-Chi Chiang
口試日期:2023-07-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:64
中文關鍵詞:多時序合成孔徑干涉雷達永久散射體雷達干涉短基線子集差分干涉地表變位
外文關鍵詞:MT-InSARPS-InSARSBAS-InSARSurface Displacement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:13
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於臺灣傳統邊坡崩塌監測系統有空間上的局限,無法提供大範圍的監測。近年來為了實現大範圍的監測,遙感探測技術之合成孔徑雷達干涉技術(Interferometric Synthetic Aperture Radar, InSAR)、永久散射體雷達干涉技術(Persistent Scatterer InSAR, PS-InSAR)與短基線子集差分干涉法(Small Baseline Subset-InSAR, SBAS−InSAR)都是日漸成熟的新型監測技術,可提供高空間分辨率和大範圍的快速、例行性觀測,為地表變位監測的新興利器。本研究以臺灣南投縣仁愛鄉為例,比較多時序PS-InSAR與SBAS−InSAR監測其地表變位的適用性,期提出適用於監測山區地表變位之方法。
本研究採用Sentinel-1A之2017年1月3日至2017年12月29日的上升軌道雷達影像共30張,進行PS-InSAR與SBAS-InSAR兩種技術對仁愛鄉地表變位監測分析,並探討兩種技術所得到的變位量與全球導航衛星系統(Global Navigation Satellite Systems, GNSS)資料所產製的變位量之相關性。初步結果顯示,PS-InSAR與SBAS-InSAR兩種技術比對GNSS量測成果差異之最高相關係數分別為0.554、0.792,而均方根誤差(Root Mean Square Error, RMSE)整體平均分別為20.48mm、12.60mm,得知SBAS-InSAR技術反映出較為吻合GNSS量測成果的地表變位情形,較適宜監測仁愛鄉地表變位,未來可進一步應用SBAS-InSAR技術提升山區地表變位預警之防災效益。
Due to spatial limitations in Taiwan's traditional landslide monitoring system, it cannot provide extensive monitoring coverage. In recent years, to achieve large-scale monitoring, remote sensing techniques such as Interferometric Synthetic Aperture Radar (InSAR), Persistent Scatterer InSAR (PS-InSAR), and Small Baseline Subset-InSAR (SBAS-InSAR) have matured as new monitoring technologies. They offer high spatial resolution and wide-ranging rapid and routine observations, serving as emerging tools for surface deformation monitoring.
This study takes Ren'ai Township in Nantou County, Taiwan, as an example to compare the applicability of multi-temporal PS-InSAR and SBAS-InSAR for monitoring surface deformation, aiming to propose methods suitable for monitoring surface deformation in mountainous areas. Using 30 ascending radar images from Sentinel-1A spanning from January 3, 2017, to December 29, 2017, the study performs PS-InSAR and SBAS-InSAR analyses for surface deformation monitoring in Ren'ai Township. It explores the correlation between the displacement values obtained from the two techniques and those derived from Global Navigation Satellite Systems (GNSS) data. Preliminary results reveal that the highest correlation coefficients between PS-InSAR and SBAS-InSAR against GNSS measurements are 0.554 and 0.792, respectively. The overall root mean square errors (RMSE) are 20.48 mm for PS-InSAR and 12.60 mm for SBAS-InSAR. It is evident that SBAS-InSAR better reflects the surface deformation in accordance with GNSS measurements, making it more suitable for monitoring surface deformation in Ren'ai Township. In the future, SBAS-InSAR can be further applied to enhance disaster prevention benefits by improving mountainous surface deformation early warning systems.
摘要 i
Abstract ii
目錄 iii
表目次 vi
圖目次 vii
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 傳統監測方法 4
2.1.1 監測方式 4
2.1.2 常見的坡地監測儀器 4
2.1.3 遙感技術監測坡地 5
2.2 合成孔徑雷達干涉技術 6
2.2.1 合成孔徑雷達差分干涉技術 6
2.2.2 永久散射體雷達干涉技術(PS-InSAR) 7
2.2.3 短基線子集差分干涉法(SBAS−InSAR) 9
2.3 合成孔徑雷達干涉技術用於監測地表 10
第三章 研究區域及資料來源 11
3.1 研究區域 11
3.2 研究資料 13
3.2.1 Sentinel-1衛星 13
3.2.2 DEM數據 16
3.2.3 GNSS連續接收站 16
3.2.4 崩塌目錄 18
第四章 研究流程與方法 19
4.1 研究流程 19
4.2 PS-InSAR 20
4.2.1 PS選點 20
4.2.2 相位解纏 22
4.2.3 空間相關之誤差估算 23
4.2.4 SARscape處理 23
4.3 SBAS-InSAR 25
4.3.1 SBAS-InSAR原理 25
4.3.2 SARscape處理 25
4.4 GNSS觀測量轉換 27
4.5 相關性分析 28
4.6 均方根誤差 28
第五章 研究結果 29
5.1 GNSS位移量轉換 29
5.2 地表位移平均速率 30
5.2.1 PS-InSAR處理結果 30
5.2.2 SBAS-InSAR處理結果 31
5.3 時間序列比較 31
5.3.1 PS-InSAR時間序列成果 31
5.3.2 SBAS-InSAR時間序列成果 33
5.3.3 GNSS站時間序列比較 34
5.3.4 相關性分析 37
5.3.5 均方根誤差 37
5.3.6 GNSS連續接收站位置 38
5.4 討論 39
5.4.1 InSAR與崩塌目錄的疊加 39
5.4.2 0601豪雨春陽村的崩塌事件 40
5.4.3 0601豪雨榮興村的崩塌事件 44
第六章 結論與建議 48
6.1 結論 48
6.2 建議 49
參考文獻 50
附錄 54
中華民國大地工程學會,(2017)。「山坡地監測準則」
吳俊鋐, 黃均臺, & 吳亭燁. (2018). 南投縣仁愛鄉崩塌特性分析及崩塌風險模式建構. Journal of Chinese Soil and Water Conservation, 49(3), 154-166.
邱宜珊. (2020). 利用 PSInSAR 觀察原住民部落之地表形變-以尖石鄉秀巒村為例,國立政治大學地政學系碩士論文.
張中白、王皓正、陳锟山(2003),「地震地質調查及活動斷層資料庫建置計畫—地殼變形研究計畫」,經濟部中央地質調查所報告第92-10號。
張喭汝. (2015). 利用持久散射體差分干涉法研究臺北盆地地下水升降引起的地表變形,國立臺灣大學地質科學系碩士論文.
陳柔妃、林慶偉 (2018).大型山崩判釋新利器─結合InSAR與光達數值地形。中華技術,119(1),40-51。
黃大任. (2013). 以時域相關點雷達干涉量測研究彰化,雲林與嘉義地區之地層下陷.國立交通大學土木工程學系碩士論文.
黃雅萱. (2016). 應用數值航空影像於投89線道崩塌區之位移場分析。朝陽科技大學營建工程系碩士論文.
楊苡絜. (2018). 以Sentinel-1A SAR及SBAS方法監測雲林地層下陷,國立交通大學土木工程學系碩士論文.
廖瑞堂、陳昭維、紀宗吉、林錫宏,(2013)。「集水區崩塌地環境指標分析與崩塌潛感推估」。中華水土保持學報,44(2),121-130。
劉婉姿. (2020). 檢驗SBAS-InSAR於2016年美濃地震震後變形分析,國立臺灣大學地理環境資源學系碩士論文。
Abancó, C., Bennett, G. L., Matthews, A. J., Matera, M. A. M., & Tan, F. J. (2021). The role of geomorphology, rainfall and soil moisture in the occurrence of landslides triggered by 2018 Typhoon Mangkhut in the Philippines. Natural Hazards and Earth System Sciences, 21(5), 1531-1550.
Alcántara-Ayala, I., Esteban-Chávez, O., & Parrot, J. F. (2006). Landsliding related to land-cover change: A diachronic analysis of hillslope instability distribution in the Sierra Norte, Puebla, Mexico. Catena, 65(2), 152-165.
Amelung, F., Jónsson, S., Zebker, H., & Segall, P. (2000). Widespread uplift and ‘trapdoor’faulting on Galapagos volcanoes observed with radar interferometry. Nature, 407(6807), 993-996.
Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on geoscience and remote sensing, 40(11), 2375-2383.
Causes, L. (2001). Landslide types and processes.
Chen, F., Lin, H., Zhou, W., Hong, T., & Wang, G. (2013). Surface deformation detected by ALOS PALSAR small baseline SAR interferometry over permafrost environment of Beiluhe section, Tibet Plateau, China. Remote sensing of environment, 138, 10-18.
Crippa, C., Valbuzzi, E., Frattini, P., Crosta, G. B., Spreafico, M. C., & Agliardi, F. (2021). Semi-automated regional classification of the style of activity of slow rock-slope deformations using PS InSAR and SqueeSAR velocity data. Landslides, 18(7), 2445-2463.
Deffontaines, B., Chang, K. J., Lee, C. T., Magalhaes, S., & Serries, G. (2019). Neotectonics of the Southern DEM and random forest. International Journal of Geosciences, 7(05), 726.
Dilley, M. (2005). Natural disaster hotspots: a global risk analysis (Vol. 5). World Bank Publications.
Dong, S., Samsonov, S., Yin, H., Ye, S., & Cao, Y. (2014). Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environmental earth sciences, 72, 677-691.
Farr, T. G., & Kobrick, M. (2000). Shuttle Radar Topography Mission produces a wealth of data. Eos, Transactions American Geophysical Union, 81(48), 583-585.
Ferretti, A., Novali, F., Bürgmann, R., Hilley, G., & Prati, C., (2004). InSAR permanent scatterer analysis reveals ups and downs in San Francisco Bay area. Eos, Transactions American Geophysical Union, 85(34), 317-324.
Ferretti, A., Prati, C., & Rocca, F. (2000). Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Transactions on geoscience and remote sensing, 38(5), 2202-2212.
Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on geoscience and remote sensing, 39(1), 8-20.
Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161-2181.
Ghulam, A., Grzovic, M., Maimaitijiang, M., & Sawut, M. (2015). InSAR monitoring of land subsidence for sustainable urban planning. Remote Sensing for Sustainability.
He, Y., Chen, Y., Wang, W., Yan, H., Zhang, L., & Liu, T. (2021). TS-InSAR analysis for monitoring ground deformation in Lanzhou New District, the loess Plateau of China, from 2017 to 2019. Advances in Space Research, 67(4), 1267-1283.
Hoffmann, J., Roth, A., & Voigt, S. (2003, December). Detecting coal fires in China using differential interferometric synthetic aperture radar (InSAR). In Proceedings of the FRINGE 2003 Workshop (ESA SP-550) (pp. 1-5).
Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, 112(B7).
Hooper, A., Zebker, H., Segall, P., & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical research letters, 31(23).
Hsu, W. C., Chang, H. C., Chang, K. T., Lin, E. K., Liu, J. K., & Liou, Y. A. (2015). Observing land subsidence and revealing the factors that influence it using a multi-sensor approach in Yunlin County, Taiwan. Remote sensing, 7(6), 8202-8223.
Hung W.C., C.W. Hwang, and Chung, C.P., n.d., (2010), Using Leveling, GPS, Subsidence Monitoring Well and D-InSAR to Monitor the Subsidence in Yunlin Region, Technical Paper in the Land Subsidence Database, WRA, Taiwan.
Kampes, B. M. (2005). Displacement parameter estimation using permanent scatterer interferometry.
Konishi, T., & Suga, Y. (2018). Landslide detection using COSMO-SkyMed images: A case study of a landslide event on Kii Peninsula, Japan. European journal of remote sensing, 51(1), 205-221.
Lee, C. F., Singhroy, V., Lin, S. Y., Huang, W. K., & Li, J. (2021). Landslide Activity Assessment of a Subtropical
Lin, Q., & Wang, Y. (2018). Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016. Landslides, 15(12), 2357-2372.
Massonnet, D., Briole, P., & Arnaud, A. (1995). Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature, 375(6532), 567-570.
Nolasco-Javier, D., & Kumar, L. (2018). Deriving the rainfall threshold for shallow landslide early warning during tropical cyclones: a case study in northern Philippines. Natural hazards, 90(2), 921-941.
Novellino, A., Cigna, F., Sowter, A., Ramondini, M., & Calcaterra, D. (2017). Exploitation of the Intermittent SBAS (ISBAS) algorithm with COSMO-SkyMed data for landslide inventory mapping in north-western Sicily, Italy. Geomorphology, 280, 153-166.
Ozturk, U., Bozzolan, E., Holcombe, E. A., Shukla, R., Pianosi, F., & Wagener, T. (2022). How climate change and unplanned urban sprawl bring more landslides.
Pathier, E., Fruneau, B., Deffontaines, B., Angelier, J., Chang, C. P., Yu, S. B., & Lee, C. T. (2003). Coseismic displacements of the footwall of the Chelungpu fault caused by the 1999, Taiwan, Chi-Chi earthquake from InSAR and GPS data. Earth and Planetary Science Letters, 212(1-2), 73-88.
Promper, C., Puissant, A., Malet, J. P., & Glade, T. (2014). Analysis of land cover changes in the past and the future as contribution to landslide risk scenarios. Applied Geography, 53, 11-19.
Schuster, R. L., & Highland, L. M. (2003, December). Impact of landslides and innovative landslide-mitigation measures on the natural environment. In International conference on slope engineering, Hong Kong, China (Vol. 8, No. 10).
Shih, D. S., Shih, S. S., Hsu, S. M., Lin, S. Y., Lin, Y., Hung, C. T., & Wang, K. (2022). A Framework for the Sustainable Risk Assessment of In-river Hydraulic Structures: A Case Study of Taiwan’s Daan River. Journal of Hydrology, 129028.
Tizzani, P., Berardino, P., Casu, F., Euillades, P., Manzo, M., Ricciardi, G. P., ... & Lanari, R. (2007). Surface deformation of Long Valley caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sensing of Environment, 108(3), 277-289.
Van Zyl, J. J. (2001). The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography. Acta astronautica, 48(5-12), 559-565.
Wu, C. (2023). Using the Spatiotemporal Hot Spot Analysis and Multi-Annual Landslide Inventories to Analyze the Evolution and Characteristic of Rainfall-Induced Landslide at the Subwatershed Scale in Taiwan. Water, 15(7), 1355.
Wu, C. H., Chen, S. C., & Chou, H. T. (2011). Geomorphologic characteristics of catastrophic landslides during typhoon Morakot in the Kaoping Watershed, Taiwan. Engineering Geology, 123(1-2), 13-21.
Xiong, J., Xiao, R., & He, X. (2021). Land surface deformation in Nanchang, China 2018–2020 revealed by multi-temporal InSAR. Natural Hazards Research, 1(4), 187-195.
Yamagishi, H., & Iwahashi, J. (2007). Comparison between the two triggered landslides in Mid-Niigata, Japan by July 13 heavy rainfall and October 23 intensive earthquakes in 2004. Landslides, 4(4), 389-397.
Yang, Y. J., Hwang, C., Hung, W. C., Fuhrmann, T., Chen, Y. A., & Wei, S. H. (2019). “Surface deformation from Sentinel-1A InSAR: relation to seasonal groundwater extraction and rainfall in Central Taiwan. Remote Sensing, 11(23), 2817.
Zebker, H. A., & Villasenor, J. (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on geoscience and remote sensing, 30(5), 950-959.
Zhao, C., & Lu, Z. (2018). Remote sensing of landslides—A review. Remote Sensing, 10(2), 279.
Zhao, C., Lu, Z., Zhang, Q., & de La Fuente, J. (2012). Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA. Remote sensing of environment, 124, 348-359.
Zhao, R., Li, Z. W., Feng, G. C., Wang, Q. J., & Hu, J. (2016). Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling. Remote Sensing of Environment, 184, 276-287.
電子全文 電子全文(網際網路公開日期:20280823)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊