跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/20 23:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇曉柔
研究生(外文):Xiao-Rou Su
論文名稱:丙二醇甲醚醋酸酯反應蒸餾製程之設計與優化
論文名稱(外文):Design and Optimization of Propylene Glycol Monomethyl Ether Acetate Reactive Distillation Process
指導教授:郭文生
指導教授(外文):Vincentius Surya Kurnia Adi
口試委員:劉永銓林志耀
口試日期:2023-03-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:200
中文關鍵詞:丙二醇甲醚醋酸酯(PMA)反應蒸餾(RD)基因演算法(GA)穩態彈性指標(FIs)
外文關鍵詞:Propylene Glycol Monomethyl Ether Acetate (PMA)Reactive Distillation (RD)Genetic Algorithm (GA)Steady-State Flexibility Index (FIs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
丙二醇甲醚醋酸酯(Propylene Glycol Monomethyl Ether Acetate, PMA)是一種用途廣泛的溶劑,由於它具有高溶解力、低腐蝕性和低毒性、熱穩定性等優點,是工業中重要的溶劑之一。PMA可透過丙二醇甲醚(Propylene Glycol Methyl Ether, PM)與乙酸甲酯(Methyl Acetate, MEAC)進行酯交換反應(Transesterification)生成,使用甲醇鈉(Sodium methoxide)作為鹼性催化劑。由於酯交換反應為一可逆反應,反應受平衡速率的限制,因此使用反應蒸餾(Reactive Distillation, RD)來提高轉化率。且由於副產物甲醇(Methanol, MEOH)會與MEAC形成共沸混合物,因此使用變壓蒸餾(Pressure Swing Distillation, PSD)將它們進行分離。而在優化方面,傳統RD系統皆使用順序迭代法(Sequential Iterative Optimization, SIO),將設計變數逐一進行優化,這對內部結構複雜的RD系統來說是不理想的。因此本研究使用基因演算法(Genetic Algorithm, GA)同時對RD系統中的多個設計參數進行優化,並透過Aspen Plus®與MATLAB®連接,將整體製程透過自動化的方式進行架設,以最小年度總成本(Total Annual Cost, TAC)為單一目標函數,透過GA的淘汰機制,找出最佳的穩態設計參數。此外,在設計中加入了穩態彈性指標(Steady-State Flexibility Index, FIs),來模擬實際操作上不確定參數對製程的影響,將最大FIs與最小TAC結合形成雙目標函數,找出花費最少且高安全性的設計參數。
Propylene Glycol Monomethyl Ether Acetate (PMA) is a widely used solvent, one of the most important solvents in the industry due to its high solubility, low corrosiveness and toxicity, thermal stability, etc. The PMA can be produced via the transesterification reaction of Propylene Glycol Methyl Ether (PM) with Methyl Acetate (MEAC). Basic sodium methoxide was used as catalyst. This is a reversible reaction, and the reaction is limited by the equilibrium rate, so the Reactive Distillation (RD) is a good choice for improving the reaction conversion. The by-product Methanol (MEOH) forms an azeotrope with MEAC, so they are separated using Pressure Swing Distillation (PSD). In terms of optimization, the conventional RD system is built upon the concept of Sequential Iterative Optimization (SIO), where the design variables are optimized gradually one by one. Such an approach is not ideal for RD with its complicated internals. Therefore, this study used Genetic Algorithm (GA) to simultaneously optimize the RD system with multiple design variables. The overall workflow is automatically implemented through the interface of Aspen Plus® and MATLAB®. The minimum Total Annual Cost (TAC) is the objective function, and the best steady-state design is retained by the elimination mechanism in the genetic algorithm. In addition, Steady-State Flexibility Index (FIs) is involved into the design procedure. It is used to simulate the influence of uncertain parameters on the process in actual operation. The multi-objective functions combined with minimum TAC and maximum FIs is used to find the least expensive and safest design parameters.
摘要 i
Abstract ii
目錄 iii
表目錄 viii
圖目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.2.1 PMA的製程方法 3
1.2.2 反應蒸餾塔的應用 5
1.2.3 變壓蒸餾的應用 6
1.2.4 基因演算法在反應蒸餾製程上的應用 8
1.2.5 彈性分析的發展及應用 11
1.3 研究目的 12
1.4 研究架構與流程 14
第二章 丙二醇甲醚醋酸酯的製程設計與模型介紹 15
2.1 熱力學模型 15
2.1.1 熱力學模型介紹 15
2.1.2 熱力學模型評估 17
2.2 PMA製程之動力學 25
2.2.1 酯交換反應的介紹 25
2.2.2 PMA製程之動力學模型參數 26
2.3 反應蒸餾的介紹與製程設計 29
2.3.1 製程目標 32
2.3.2 反應物PM與MEAC之進料流率 33
2.3.3 反應蒸餾塔進料位置設計 33
2.3.4 反應蒸餾塔板數設計 34
2.3.5 反應蒸餾塔液體滯留量的計算 35
2.4 共沸混合物的分離方法與製程設計 37
2.4.1 共沸混合物的分離方法的介紹 37
2.4.2 變壓蒸餾的製程設計 39
2.4.2.1 變壓蒸餾塔之操作壓力設計 40
2.4.2.2 變壓蒸餾塔板數設計 42
2.5 Aspen Plus流程圖的建立 43
2.6 Aspen-MATLAB介面連接 46
第三章 演化式演算法及彈性分析 48
3.1 演化式演算法介紹 48
3.1.1 基因演算法 49
3.1.1.1 基因演算法的特性 50
3.1.1.2 基因演算法流程 51
3.1.2 模擬退火法(Simulated Annealing, SA) 62
3.2 彈性分析 65
3.2.1 穩定彈性指標定義 65
3.2.2 穩定彈性指標計算 69
3.2.2.1 頂點法(Vertex method) 69
3.2.2.2 活性約束法 74
3.3 目標函數介紹 76
3.3.1 單一目標函數 79
3.3.2 雙目標函數 80
3.4 最適化方法與流程 81
3.4.1 單一目標函數之最適化流程圖 82
3.4.2 雙目標函數之最適化流程圖 84
第四章 案例探討與結果分析 86
4.1 工業級PMA製程優化 86
4.1.1 單一目標函數優化結果與分析 94
4.1.2 三維彈性_雙目標函數分析 107
4.1.2.1 雙目標函數優化結果與探討 114
4.2 電子級PMA製程優化 138
4.2.1 單一目標函數優化結果與分析 144
4.2.2 三維彈性_雙目標函數分析 157
4.2.2.1 雙目標函數優化結果與探討 163
第五章 結論 187
5.1 結論 187
5.2 未來展望 188
參考文獻 190
研討會發表 195
附錄 196
Agreda, V. H., & Partin, L. R. (1984). Reactive distillation process for the production of methyl acetate. United States Patent No. 4,435,595. Google Patents. Retrieved from https://patents.google.com/patent/US4435595A/en
Alvarez, V. H., Mattedi, S., Iglesias, M., Gonzalez-Olmos, R., & Resa, J. M. (2011). Phase equilibria of binary mixtures containing methyl acetate, water, methanol or ethanol at 101.3 kPa. Physics and Chemistry of Liquids, 49(1), 52-71. Retrieved from https://doi.org/10.1080/00319100903012403
Babu, K. S., Kumar, M. P., & Kaistha, N. (2009). Controllable optimized designs of an ideal reactive distillation system using genetic algorithm. Chemical Engineering Science, 64(23), 4929-4942. Retrieved from https://doi.org/10.1016/j.ces.2009.07.030
Bruns, B., Di Pretoro, A., Gruenewald, M., & Riese, J. (2021). Flexibility analysis for demand-side management in large-scale chemical processes: An ethylene oxide production case study. Chemical Engineering Science, 243, 116779. Retrieved from https://doi.org/10.1016/j.ces.2021.116779
Chang, C. -T., & Adi, V. S. K. (2017). Deterministic Flexibility Analysis: Theory, Design, and Applications. Boca Raton, FL: CRC Press. Retrieved from https://doi.org/10.1201/9781315152134
Chaves, I. D. G., López, J. R. G., Zapata, J. L. G., Robayo, A. L., & Niño, G. R. (2016). Process Analysis and Aimulation in Chemical Engineering. Cham, CH: Springer. Retrieved from https://doi.org/10.1007/978-3-319-14812-0
Csomos, D. (2021). Pump selection involves a series of tradeoffs. Pumps and Systems. Retrieved from https://www.pumpsandsystems.com/defining-optimal-centrifugal-pump-selection-operation
Di Pretoro, A., Montastruc, L., Manenti, F., & Joulia, X. (2019). Flexibility analysis of a distillation column: Indexes comparison and economic assessment. Computers & Chemical Engineering, 124, 93-108. Retrieved from https://doi.org/10.1016/j.compchemeng.2019.02.004
Domingues, L., Pinheiro, C. I., & Oliveira, N. M. (2014). Optimal design of reactive distillation systems: Application to the production of ethyl tert-butyl ether (ETBE). Computers & Chemical Engineering, 64, 81-94. Retrieved from https://doi.org/10.1016/j.compchemeng.2014.01.014
Du, P., Wang, X., Tian, Z., Chen, J., & Ding, X. (2022). Simulation, optimization and control of the process of synthesis of ethyl propionate by reactive distillation. Chemical Engineering and Processing-Process Intensification, 172, 108779. Retrieved from https://doi.org/10.1016/j.cep.2022.108779
Eiben, A. E., & Smith, J. E. (2015). What is an evolutionary algorithm? In Introduction to Evolutionary Computing (pp. 25-48). Berlin, DE: Springer. Retrieved from https://doi.org/10.1007/978-3-662-44874-8_3
Fan, Y., Ye, Q., Cen, H., Chen, J., & Liu, T. (2019). Novel process design combined with reactive distillation and pressure-swing distillation for propylene glycol monomethyl ether acetate synthesis. Industrial & Engineering Chemistry Research, 58(41), 19211-19225. Retrieved from https://doi.org/10.1021/acs.iecr.9b04122
Fogel, D. B. (1997). The advantages of evolutionary computation. Biocomputing and Emergent Computation - Proceedings of Bcec97, Skövde, SE. Retrieved from https://doi.org/10.1142/3593
Gadekar-Shinde, S., Reddy, B., Khan, M., Chavan, S., Saini, D., & Mahajani, S. (2017). Reactive distillation for the production of methoxy propyl acetate: experiments and simulation. Industrial & Engineering Chemistry Research, 56(4), 832-843. Retrieved from https://doi.org/10.1021/acs.iecr.6b03489
Grossmann, I. E., & Floudas, C. A. (1987). Active constraint strategy for flexibility analysis in chemical processes. Computers & Chemical Engineering, 11(6), 675-693. Retrieved from https://doi.org/10.1016/0098-1354(87)87011-4
Grossmann, I. E., & Sargent, R. (1978). Optimum design of chemical plants with uncertain parameters. AIChE Journal, 24(6), 1021-1028. Retrieved from https://doi.org/10.1002/aic.690240612
Halemane, K. P., & Grossmann, I. E. (1983). Optimal process design under uncertainty. AIChE Journal, 29(3), 425-433. Retrieved from https://doi.org/10.1002/aic.690290312
Harmsen, G. J. (2007). Reactive distillation: The front-runner of industrial process intensification: A full review of commercial applications, research, scale-up, design and operation. Chemical Engineering and Processing: Process Intensification, 46(9), 774-780. Retrieved from https://doi.org/10.1016/j.cep.2007.06.005
Hoch, P. M., & Eliceche, A. M. (1996). Flexibility analysis leads to a sizing strategy in distillation columns. Computers & Chemical Engineering, 20, S139-S144. Retrieved from https://doi.org/10.1016/0098-1354(96)00034-8
Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-73. Retrieved from https://www.jstor.org/stable/24939139
Khazraee, S. M., Jahanmiri, A. H., & Ghorayshi, S. A. (2011). Model reduction and optimization of reactive batch distillation based on the adaptive neuro-fuzzy inference system and differential evolution. Neural Computing and Applications, 20(2), 239-248. Retrieved from https://doi.org/10.1007/s00521-010-0364-x
Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671-680. Retrieved from https://doi.org/10.1126/science.220.4598.671
Lee, H. -Y., Chen, Y. -Y., Eiamsuttitam, P., & Alcántara-Avila, J. R. (2022). Comparison of optimization methods for the design and control of reactive distillation with Inter condensers. Computers & Chemical Engineering, 164, 107871. Retrieved from https://doi.org/10.1016/j.compchemeng.2022.107871
Lin, C. -Y. (2021). 具有固有操作彈性的碳酸二乙酯反應蒸餾系統之進化設計策略. (碩士). 國立中興大學, 台中市. Retrieved from https://hdl.handle.net/11296/v9h4cu
Luo, H.-P., & Xiao, W.-D. (2001). A reactive distillation process for a cascade and azeotropic reaction system: Carbonylation of ethanol with dimethyl carbonate. Chemical Engineering Science, 56(2), 403-410. Retrieved from https://doi.org/10.1016/S0009-2509(00)00242-6
Luyben, W. L. (2012). Pressure-swing distillation for minimum- and maximum-boiling homogeneous azeotropes. Industrial & Engineering Chemistry Research, 51(33), 10881-10886. Retrieved from https://doi.org/10.1021/ie3002414
Malone, M. F., & Doherty, M. F. (2000). Reactive distillation. Industrial & Engineering Chemistry Research, 39(11), 3953-3957. Retrieved from https://doi.org/10.1021/ie000633m
Mirjalili, S. (2019). Evolutionary Algorithms and Neural Networks. Cham, CH: Springer. Retrieved from https://doi.org/10.1007/978-3-319-93025-1
Otera, J. (1993). Transesterification. Chemical Reviews, 93(4), 1449-1470. Retrieved from https://pubs.acs.org/doi/abs/10.1021/cr00020a004
Riemenschneider, W., & Bolt, H. M. (2005). Esters, Organic. In Ullmann's Encyclopedia of Industrial Chemistry (pp. 1-19). Frankfurt, DE: Wiley InterScience. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/14356007.a09_565.pub2
Seider, W. D., Lewin, D. R., Seader, J. D., Widagdo, S., Gani, R., & Ng, K. M. (2017). Product and Process Design Principles: Synthesis, Analysis, and Evaluation. New York, NY: John Wiley & Sons Incorporated. Retrieved from https://books.google.com.tw/books?id=73eijwEACAAJ
Sivanandam, S. N., & Deepa, S. N. (2008). Genetic algorithms. In Introduction to Genetic Algorithms (pp. 15-37). Berlin, DE: Springer. Retrieved from https://doi.org/10.1007/978-3-540-73190-0
Swaney, R. E., & Grossmann, I. E. (1985a). An index for operational flexibility in chemical process design. Part I: Formulation and theory. AIChE Journal, 31(4), 621-630. Retrieved from https://doi.org/10.1002/aic.690310412
Swaney, R. E., & Grossmann, I. E. (1985b). An index for operational flexibility in chemical process design. Part II: Computational algorithms. AIChE Journal, 31(4), 631-641. Retrieved from https://doi.org/10.1002/aic.690310413
Taylor, R., & Krishna, R. (2000). Modelling reactive distillation. Chemical Engineering Science, 55(22), 5183-5229. Retrieved from https://doi.org/10.1016/S0009-2509(00)00120-2
Treybal, R. E. (1980). Mass-Transfer Operations. Singapore, SG: McGraw-Hill. Retrieved from https://books.google.com.tw/books?id=s4RKAQAACAAJ
Tsai, Y. -L. (2008). 混合溶劑雙成分系統汽液平衡之研究. (碩士). 明新科技大學, 新竹縣. Retrieved from https://hdl.handle.net/11296/8e33eb
Tseng, W. -C. (2011). 以模擬退火法求解流線型製造單元排程. (碩士). 國立交通大學, 新竹市. Retrieved from https://hdl.handle.net/11296/bx6xz3
Tung, S. T., & Yu, C. C. (2007). Effects of relative volatility ranking to the design of reactive distillation. AIChE Journal, 53(5), 1278-1297. Retrieved from https://doi.org/10.1002/aic.11168
Urselmann, M., Barkmann, S., Sand, G., & Engell, S. (2011). Optimization-based design of reactive distillation columns using a memetic algorithm. Computers & Chemical Engineering, 35(5), 787-805. Retrieved from https://doi.org/10.1016/j.compchemeng.2011.01.038
Wang, X., Wang, Q., Ye, C., Dong, X., & Qiu, T. (2017). Feasibility study of reactive distillation for the production of propylene glycol monomethyl ether acetate through transesterification. Industrial & Engineering Chemistry Research, 56(25), 7149-7159. Retrieved from https://doi.org/10.1021/acs.iecr.7b01462
Ye, C., Dong, X., Zhu, W., Cai, D., & Qiu, T. (2014). Isobaric vapor–liquid equilibria of the binary mixtures propylene glycol methyl ether+ propylene glycol methyl ether acetate, methyl acetate+ propylene glycol methyl ether and methanol+ propylene glycol methyl ether acetate at 101.3 kPa. Fluid Phase Equilibria, 367, 45-50. Retrieved from https://doi.org/10.1016/j.fluid.2014.01.022
Yeh, S.-L. (2007). 解模糊關係方程式之改良演算法及非線性最佳化問題應用. (碩士). 國立臺灣師範大學, 台北市. Retrieved from https://hdl.handle.net/11296/2zs452
Zhang, Z., Zhang, Q., Li, G., Liu, M., & Gao, J. (2016). Design and control of methyl acetate-methanol separation via heat-integrated pressure-swing distillation. Chinese Journal of Chemical Engineering, 24(11), 1584-1599. Retrieved from https://doi.org/10.1016/j.cjche.2016.06.013
Zhu, Z., Geng, X., He, W., Chen, C., Wang, Y., & Gao, J. (2018). Computer-aided screening of ionic liquids as entrainers for separating methyl acetate and methanol via extractive distillation. Industrial & Engineering Chemistry Research, 57(29), 9656-9664. Retrieved from https://doi.org/10.1021/acs.iecr.8b01355
三福化工股份有限公司. (2023). 丙二醇單甲醚醋酸酯. Retrieved from https://www.sfchem.com.tw/zh-hant/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top