跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/16 03:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李聿瀚
研究生(外文):Yu-Han Lee
論文名稱:以原子轉移自由基加成反應合成具a位誘導基之不同交聯劑及於具動態交聯之無觸媒熱可塑交聯甲基壓克力樹脂製備
論文名稱(外文):Synthesis of Various Crosslinkers with α-Electron Withdrawing Groups via Atom Transfer Radical Addition and for the Preparations of Dynamically Crosslinked Catalyst-Free PMMA Vitrimers
指導教授:黃智峯
指導教授(外文):Chih-Feng Huang
口試委員:林慶炫游聲盛郭紹偉
口試委員(外文):Ching-Hsuan LinSheng-Sheng YuShiao-Wei Kuo
口試日期:2023-07-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:99
中文關鍵詞:無觸媒熱可塑交聯樹脂原子轉移自由基加成具動態交聯
外文關鍵詞:Catalyst-FreeVitrimersDynamically Crosslinkedα-ElectronAtom Transfer Radical Addition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:39
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此論文研究主要是證明α位具有誘導效應之交聯劑對反應具有降低活化能效果,並以四種α位具有誘導效應之交聯劑分別與聚甲基丙烯酸甲酯為基底之無規共聚物與嵌段共聚進行共聚,藉由α位誘導效應達到無須添加催化劑之酯交換型Vitrimers,接著探討其光學性質、熱性質、機械性、修復性質影響及其應用。
第一部分使用模組化反應成功的證明在α位具誘導效應之Methacrylic Acid (MA)對於酯交換反應活化能可有效降低,計算出其活化能為422 kJ/mol。接著以原子自由基聚合(FRP)合成出具有可進行交聯點之P(MMA-r-GMA)不同組成之共聚物(MMA:Methyl methacrylate,GMA:Glycidyl methacrylate),將於α位具有誘導基之MA作為交聯劑使其具有動態交聯網絡,並探討含環氧基交聯點之GMA多寡對於共聚物交聯後Vitrimer (簡稱CPv-MA)的光學性質、熱性質、機械性質以及修復效果的影響。交聯後光學性質影響不大最大吸收度皆80 %以上,熱性質Td5%從原先的PMMA = 243 °C上升到10 mol% CPv-MA交聯點的310 °C;機械性質,從原先的PMMA為7 MPa上升到20 mol% CPv-MA的60 MPa;而修復效果也是20 mol% CPv-MA的修復效果最佳160 °C下30 psi修復效果到達百分之百。
第二部分由第一部分延伸,我們設計於α位具誘導效應之交聯劑,並以原子轉移自由基加成(ATRA)反應合成二、四、六元官能之交聯劑,分別是DBA、PBA、HBA,並將MA與這三種交聯劑合成之Vitrimer (10 mol% CPv-MA、10 mol% CPv-DBA、10 mol% CPv-PBA、10 mol% CPv-HBA)比較相關物性。熱分析結果,其Td5%皆有245°C以上。而在皆含10 mol% GMA相同交聯點CPv之拉伸測試結果說明:(1) CPv-PBA具有最強應力到達45 MPa;(2) CPv-DBA、CPv-HBA、CPv-MA應力也都有到達30 MPa,特別的是CPv-HBA不只具有增強應力的效果,由於結構含較多碳鏈同時也有塑化效果。在修復效率上CPv-HBA > CPv-PBA > CPv-DBA,一小時後修復效率皆高於八成,此部分證實合成出具動態交聯之無觸媒熱可塑交聯甲基壓克力樹脂。
在第三部分,我們先以ATRP合成P(MMA-r-GMA)-b-PDMS-b-P(MMA-r-GMA)三嵌段共聚物(tBCP),目的在將軟鏈段混入前面以四元酸(PBA)所製備之P(MMA-r-GMA) Vitrimer (CPv-PBA)中形成反應誘導相分離,除了具原本動態交聯鍵結,也改善CPv的脆性與黏著性。分別將不同比例tBCP與CP混合完成交聯後,測試熱性質,Td5%皆維持在280 °C左右,5tBPC/5CPv,機械性質則提升到了49 MPa,由結果由DMA所測出的Tg以及拉升測試可觀察到混合在低比例下具有塑化效應,在高比例下能提升韌性,此部分證實將PDMS導入Vitrimer中的確能改善其機械性質。
This research paper primarily aims to demonstrate the induction effect of α-substituents in crosslinking agents, showing their ability to reduce the activation energy of reactions. Four α-substituted crosslinking agents were copolymerized with poly(methyl methacrylate) (PMMA) as a base for both random and block copolymers. By utilizing the induction effect of α-substituents, the study achieved catalyst-free Transesterification reaction vitrimers. The paper investigates the effects of these vitrimers on optical properties, thermal properties, mechanical properties, repairability, and their applications.
In the first part, the successful modular reaction demonstrates the effective reduction of activation energy for ester-exchange reactions using α-substituted methacrylic acid (MA), with a calculated activation energy of 422 kJ/mol. Poly(MMA-r-GMA) copolymers with different compositions were synthesized via Free radical polymerization (FRP), using MA with α-substituents as a crosslinking agent to create a dynamically crosslinked network. The influence of the glycidyl methacrylate (GMA) content, which introduces epoxy-based crosslinking points, on the optical properties, thermal properties, mechanical properties, and repairability of the resulting vitrimer (referred to as CPv-MA) was investigated. The optical properties were minimally affected, with maximum absorbance above 80%. The thermal decomposition temperature (Td5%) increased from 243 °C for PMMA to 310 °C for a copolymer with 10 mol% CPv-MA crosslinking points. The mechanical properties improved from 7 MPa for PMMA to 60 MPa for a copolymer with 20 mol% CPv-MA. The repairability was also optimized for the copolymer with 20 mol% CPv-MA, achieving 100% recovery at 160 °C and 30 psi.
The second part builds upon the first part by designing α-substituted crosslinking agents and synthesizing di-, tetra-, and hexa-functional crosslinking agents using atom transfer radical addition (ATRA) reactions. The crosslinking agents used were DBA, PBA, and HBA. Vitrimer materials were synthesized by copolymerizing MA with these three crosslinking agents, resulting in 10 mol% CPv-MA, 10 mol% CPv-DBA, 10 mol% CPv-PBA, and 10 mol% CPv-HBA. Thermal analysis showed Td5% values above 245 °C for all materials. Tensile testing of copolymers with the same 10 mol% GMA crosslinking points demonstrated that CPv-PBA exhibited the highest stress reaching 45 MPa. CPv-DBA, CPv-HBA, and CPv-MA all achieved stresses of 30 MPa, with CPv-HBA exhibiting both stress-enhancing and plasticizing effects due to its structure containing longer carbon chains. In terms of repair efficiency, CPv-HBA > CPv-PBA > CPv-DBA, with repair efficiencies above 80% after one hour. This part confirms the synthesis of catalyst-free, thermoplastic, dynamically crosslinked methyl methacrylate resin with induced α-substituents.
In the third part, we initially synthesized a triblock copolymer, P(MMA-r-GMA)-b-PDMS-b-P(MMA-r-GMA) as tBCP, via ATRP. The purpose was to incorporate a soft chain segment into the previously prepared P(MMA-r-GMA) vitrimer (CPV-PBA) using a PBA and induce reaction-induced phase separation (RIMPS). This not only maintained the original dynamic crosslinking but also improved the brittleness and adhesion of CPV. Different ratios of tBCP and CP were mixed and crosslinked, and the thermal properties were tested. The Td5% remained around 280 °C for all compositions, including 5tBCP/5CPV. The mechanical properties were enhanced to 49 MPa. The results obtained from DMA, including Tg and tensile tests, showed that the incorporation of tBCP had a plasticizing effect at low ratios and improved toughness at high ratios. This part confirms that the introduction of PDMS into the vitrimer indeed improves its mechanical properties.
摘要 i
Abstract iii
目錄 vi
圖片目錄 xi
表目錄 xvi
第一章 緒論 1
第二章 文獻回顧及研究動機 2
2.1自由基化學(Radical Chemistry) 2
2.1.1傳統自由基聚合(Free Radical Polymerization,FRP) 2
2.1.2可控自由基聚合(Control Radical Polymerization,CRP) 4
2.1.3原子自由基加成(Atom Transfer Radical Addition,ATRA) 6
2.1.4原子轉移自由基聚合(Atom Transfer Radical Polymerization,ATRP) 7
2.1.5輔助激活與還原原子轉移自由基聚合(Supplemental activators and reducing agents ATRP,SARA ATRP) 10
2.2熱可可塑性交聯樹脂(Vitrimer) 11
2.2.1動態共價鍵結(Dynamic Covalent Bonds,DCBs) 11
2.2.2轉移溫度(Transition Temperature) 13
2.2.3酯交換反應(Transesterification Reaction,TER) 14
2.2.4乙烯胺酯-轉氨基反應(Transamination of vinylogous urethane reaction,TVUR) 17
2.2.5以DMA計算短鏈段網絡之交聯密度 19
2.2.6 內部催化劑、空間效應、鄰近基效應在交換鍵結 19
2.2.7模組化反應求酯交換活化能 21
2.2.8研究動機 22
第三章 實驗 24
3.1藥品 24
3.2儀器 26
3.3實驗步驟-無規共聚物的合成 29
3.3.1 以傳統自由基聚合和成P(MMA-r-GMA) 29
3.4 實驗步驟-交聯劑的合成 29
3.4.1酯化反應合成具α位誘導基交聯劑之二元酸前軀體 29
3.4.2 酯化反應合成具α位誘導基交聯劑之四元酸前軀體 30
3.4.3 酯化反應合成具α位誘導基交聯劑之六元酸前軀體 31
3.4.4以原子自由基加成反應合成具α位誘導基交聯劑之二元酸中間體 32
3.4.5以原子自由基加成反應合成具α位誘導基交聯劑之四元酸中間體 33
3.4.6以原子自由基加成反應合成具α位誘導基交聯劑六之酸中間體 33
3.4.7 藉由去保護得到具α位誘導基之二元酸交聯劑 34
3.4.8 藉由去保護得到具α位誘導基之四元酸交聯劑 35
3.4.9 藉由去保護得到具α位誘導基之六元酸交聯劑 35
3.5實驗步驟-Vitrimer 36
3.5.1以具α位誘導基交聯劑-丙二酸(MA)合成Vitrimer 36
3.5.2以具α位誘導基之二酸交聯劑合成Vitrimer 37
3.5.3 以具α位誘導基之四酸交聯劑合成Vitrimer 37
3.5.4 以具α位誘導基之六酸交聯劑合成Vitrimer 38
3.6實驗步驟-三嵌段共聚物 39
3.6.1 酯化反應和成Br-PDMS-Br 39
3.6.2 以原子自由基具合合成三嵌段共具物 39
3.6.3 三嵌段共聚物製備成vitrimers 40
第四章 結果與討論 41
4.1 模組化實驗 41
4.1.1 模組化反應 41
4.1.2 利用模組化反應求MA的酯交換反應活化能 42
4.2 不同交聯點含量對Vitrimer的影響 48
4.2.1 鑑定不同交聯點個數之P(MMA-r-GMA) 48
4.2.2 以MA為交聯劑之熱塑性交聯樹脂 50
4.2.3利用紫外-可見光光譜儀分析樣品之光學性質 52
4.2.4 利用DMA分析樣品之儲存模數 54
4.2.5利用TGA分析樣品之熱性質 56
4.2.6 利用拉力測試分析樣品之機械性質 58
4.2.7利用光學顯微鏡(Optical microscope, OM)觀察樣品的修復狀態 60
4.3於α位具溴誘導基交聯劑之Vitrimer合成及測試 62
4.3.1鑑定不同交聯劑 62
4.3.2 以α位具有誘導基之交聯劑之熱塑性交聯樹脂 66
4.3.3利用紫外-可見光光譜儀分析樣品之光學性質 69
4.3.4利用DMA分析樣品之儲存模數 71
4.3.5利用TGA分析樣品之熱穩性質 73
4.3.6利用拉力測試分析樣品之機械性質 75
4.3.7利用POM觀察樣品的修復狀態 77
4.3.8樣品動態可逆反應之應用 80
4.4 三嵌段共聚物之Vitrimer合成及測試 83
4.4.1鑑定三嵌段共聚物 83
4.4.2以三嵌段共聚物製備Vitrimer 85
4.4.3利用DMA分析樣品之儲存模數 86
4.4.4利用TGA分析樣品之熱性質 89
4.4.5利用拉力測試分析樣品之機械性質 91
4.4.6利用SAX測試分析樣品之機械性質 93
第五章 結論 95
第六章 參考資料 97
(1) Moad, G. S., D. H.The chemistry of radical polymerization, Elsevier, 2006, The chemistry of radical polymerization.
(2) Moad, G.; Solomon, D. H. The chemistry of radical polymerization; Elsevier, 2006.
(3) Matyjaszewski, K.; Spanswick, J.Controlled/living radical polymerization, Materials Today, 2005, 8, 26-33.
(4) Wang, J.-S.; Matyjaszewski, K.Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes, Journal of the American Chemical Society, 1995, 117, 5614-5615.
(5) Wang, J.-S.; Matyjaszewski, K.Controlled/"Living" Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process, Macromolecules, 1995, 28, 7901-7910.
(6) Hawker, C. J.; Barclay, G. G.; Orellana, A.; Dao, J.; Devonport, W.Initiating Systems for Nitroxide-Mediated “Living” Free Radical Polymerizations:  Synthesis and Evaluation, Macromolecules, 1996, 29, 5245-5254.
(7) Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; et al.Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer:  The RAFT Process, Macromolecules, 1998, 31, 5559-5562.
(8) McCormick, C. L.; Lowe, A. B.Aqueous RAFT Polymerization:  Recent Developments in Synthesis of Functional Water-Soluble (Co)polymers with Controlled Structures, Accounts of Chemical Research, 2004, 37, 312-325.
(9) Pintauer, T.; Matyjaszewski, K.Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes, Chemical Society Reviews, 2008, 37, 1087-1097.
(10) Matyjaszewski, K.Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives, Macromolecules, 2012, 45, 4015-4039.
(11) Tang, W.; Matyjaszewski, K.Effects of Initiator Structure on Activation Rate Constants in ATRP, Macromolecules, 2007, 40, 1858-1863.
(12) Tang, W.; Matyjaszewski, K.Effect of Ligand Structure on Activation Rate Constants in ATRP, Macromolecules, 2006, 39, 4953-4959.
(13) Zhang, Y.; Wang, Y.; Matyjaszewski, K.ATRP of Methyl Acrylate with Metallic Zinc, Magnesium, and Iron as Reducing Agents and Supplemental Activators, Macromolecules, 2011, 44, 683-685.
(14) Konkolewicz, D.; Wang, Y.; Zhong, M.; Krys, P.; Isse, A. A.; Gennaro, A.; Matyjaszewski, K.Reversible-Deactivation Radical Polymerization in the Presence of Metallic Copper. A Critical Assessment of the SARA ATRP and SET-LRP Mechanisms, Macromolecules, 2013, 46, 8749-8772.
(15) Dominik Konkolewicz.SARA ATRP or SET-LRP. End of controversy, Polymer
2014, 5.
(16) Chakma, P.; Konkolewicz, D.Dynamic Covalent Bonds in Polymeric Materials, Angewandte Chemie International Edition, 2019, 58, 9682-9695.
(17) Denissen, W.; Winne, J. M.; Du Prez, F. E.Vitrimers: permanent organic networks with glass-like fluidity, Chemical Science, 2016, 7, 30-38.
(18) Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L.Silica-Like Malleable Materials from Permanent Organic Networks, Science, 2011, 334, 965-968.
(19) Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L.Metal-Catalyzed Transesterification for Healing and Assembling of Thermosets, Journal of the American Chemical Society, 2012, 134, 7664-7667.
(20) Hill, L. W.Calculation of crosslink density in short chain networks, Progress in Organic Coatings, 1997, 31, 235-243.
(21) Liu, Y.; Tang, Z.; Chen, J.; Xiong, J.; Wang, D.; Wang, S.; Wu, S.; Guo, B.Tuning the mechanical and dynamic properties of imine bond crosslinked elastomeric vitrimers by manipulating the crosslinking degree, Polymer Chemistry, 2020, 11, 1348-1355.
(22) Han, J.; Liu, T.; Hao, C.; Zhang, S.; Guo, B.; Zhang, J.A Catalyst-Free Epoxy Vitrimer System Based on Multifunctional Hyperbranched Polymer, Macromolecules, 2018, 51, 6789-6799.
(23) El-Zaatari, B. M.; Ishibashi, J. S. A.; Kalow, J. A.Cross-linker control of vitrimer flow, Polymer Chemistry, 2020, 11, 5339-5345.
(24) Li, P.; Lan, B.; Zhang, X.; Lei, S.; Yang, Q.; Gong, P.; Park, C. B.; Li, G.Facile in situ construction of a covalent adaptable network polyester vitrimer with advanced performance in repairability, foamability and recyclability, Green Chemistry, 2022, 24, 5490-5501.
(25) Cuminet, F.; Caillol, S.; Dantras, É.; Leclerc, É.; Ladmiral, V.Neighboring Group Participation and Internal Catalysis Effects on Exchangeable Covalent Bonds: Application to the Thriving Field of Vitrimer Chemistry, Macromolecules, 2021, 54, 3927-3961.
(26) Wang, J.; Chen, S.; Lin, T.; Ke, J.; Chen, T.; Wu, X.; Lin, C.A catalyst-free and recycle-reinforcing elastomer vitrimer with exchangeable links, RSC Advances, 2020, 10, 39271-39276.
(27) Fife, T. H.; Benjamin, B. M.General base catalyzed intramolecular transesterification, Journal of the American Chemical Society, 1973, 95, 2059-2061.
(28) Delahaye, M.; Winne, J. M.; Du Prez, F. E.Internal Catalysis in Covalent Adaptable Networks: Phthalate Monoester Transesterification As a Versatile Dynamic Cross-Linking Chemistry, Journal of the American Chemical Society, 2019, 141, 15277-15287.
(29) Nakanishi, W.; Nakanishi, H.; Yanagawa, Y.; Ikeda, Y.; Ōki, M.The Effects of the Neighbording Methoxycarbonyl group and sulful atuo(s) in carbon-sulfur bond clevava and ester exchange in fluorene systems, ChemInform, 1983, 14.
(30) Harris, G. M.Kinetics of isotopic exchange reactions, Transactions of the Faraday Society, 1951, 47, 716-721.
(31) Yang Kai Huang , C. F. H. Synthesis of Poly(meth)acrylates in Different Type and Topology by (Atom Transfer) Radical Polymerization and Vitrimerization by Introducing Dynamic Covalent Bond of β-Hydroxy Ester Moiety. CYCU, 2019.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top