跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/10 09:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林辰浩
研究生(外文):Chen-Hao Lin
論文名稱:海洋矽藻亮針桿藻於八公升光生物反應器之培養及其多醣與褐藻黃素之生產及純化
論文名稱(外文):Cultivation of Hyalosynedra toxoneides in an 8 L photobioreactor and the production and purification of its polysaccharides and fucoxanthin.
指導教授:王敏盈
指導教授(外文):Min-Ying Wang
口試委員:余豐益張嘉修孟孟孝
口試委員(外文):Feng-Yih YuJo-Shu ChangMengh-Siao Meng
口試日期:2023-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:68
中文關鍵詞:矽藻亮針桿藻岩藻黃素二乙氨基乙基纖維素膠體矽藻酸性多醣
外文關鍵詞:DiatomsHyalosynedra toxoneidesDiethylaminoethyl celluloseFucoxanthinDiatom polysaccharide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
矽藻為海洋環境中重要的初級生產者,富含許多高經濟價值的化合物,目前矽藻中的 fucoxanthin與多醣已被證實具有促進人體健康保健的活性,如何有效率的獲取及分析這些化合物為非常重要的研究課題。
研究中以培養矽藻 Hyalosynedra toxoneides 得知其於五百毫升光生物反應器中10f 培養基具最高的細胞濃度以及 fucoxanthin 產量但有最低的粗多醣產量,分別為0.86 g/L、7.88 mg/L及24.4 mg/L。後續於八公升光生物反應器中進行批次式培養、饋料批次式培養以及半連續式培養。並於 10f 濃度的半連續培養中,發現細胞產量可達1.18 ± 0.15 g/L, fucoxanthin產量為4.45 ± 0.73 mg/L,並且多醣產量為52.4 ± 0.4 mg/L。結果表明此培養方式具有高生化合物之產量。
萃取出之粗色素以膠體管柱層析 (silica gel chromatography) 純化 fucoxanthin後回收率可達73%,並以二乙氨基乙基纖維素膠體 (DEAE cellulose) 進行醣類純化,以五種鹽濃度水溶液 (0 M、0.5 M、1 M、1.5 M、2 M) 進行分離。五種鹽濃度能更細緻地區分出不同帶電性的多醣。本實驗得到各分層的多醣 (Peak 0- 4),其醣醛酸含量為0-4.3 %,硫化程度達0-4.6 %。並發現不同電荷醣類的生合成情形與培養基濃度有相關性。
本培養實驗得到了高生化合物產量結果,並於未來對萃取出之 fucoxanthin以及多醣進行相關的活性實驗,可進一步提升它們在矽藻培養及保健食品方面的實用性。
Diatoms, key primary producers in marine ecosystems, contain numerous high-value compounds. Specifically, fucoxanthin and polysaccharides in diatoms have been recognized for their health-promoting benefits, making their efficient extraction and analysis a crucial research area.
In this study, I cultured the diatom strain Hyalosynedra toxoneides and discovered that the highest cell and fucoxanthin concentrations, but the lowest crude polysaccharide yield, were achieved using a 10f medium in a 500 mL photobioreactor. These were respectively 0.86 g/L, 7.88 mg/L, and 24.4 mg/L. I subsequently performed batch, fed- batch, and semi-continuous cultivations in an 8 L photobioreactor. During semi-continuous cultivation at a 10f concentration, we found cell yields reached 1.18 ± 0.15 g/L, fucoxanthin yields were 4.45 ± 0.73 mg/L, and polysaccharide yields were 52.4 ± 0.4 mg/L.
Purification processes involving column chromatography and diethylaminoethyl cellulose gel were applied to crude pigment and crude polysaccharides, yielding fucoxanthin recovery rates up to 73%. Diethylaminoethyl cellulose gel separation with five different salt solutions (0 M、0.5 M、1 M、1.5 M、2 M) allowed us to differentiate polysaccharides based on charge more precisely than before. Polysaccharide layers (Peak 0-4) were obtained with uronic acid contents of 0-4.3% and sulfation degrees up to 0-4.6%.
This cultivation experiment yielded high production of biochemical compounds, and future activity experiments on the extracted fucoxanthin and polysaccharides can further enhance their practicality in diatom cultivation and health food applications.
摘要 i
Abstract ii
目錄 iii
表目錄 vi
圖目錄 vii
1. 前言 1
2. 研究動機與目的 2
3. 文獻回顧 3
3.1. 矽藻介紹 3
3.2. 矽藻培養 3
3.2.1. 批次 (Batch) 培養 4
3.2.2. 饋料批次 (Fed-batch) 培養 4
3.2.3. 半連續式 (Semi continuous) 培養 4
3.3. 矽藻色素 5
3.4. 矽藻多醣 5
4. 實驗材料與方法 6
4.1. 矽藻簡介 6
4.2. 矽藻培養方法 6
4.2.1 矽藻培養基配製 6
4.2.2. 五百毫升光生物反應器之批次培養 7
4.2.3. 五百毫升光生物反應器之 10f 濃度培養基搭配不同濃度矽酸鹽濃度批次培養 7
4.2.4. 五百毫升光生物反應器之饋料批次培養 7
4.2.5. 八公升光生物反應器培養 7
4.2.6. 八公升光生物反應器之批次式培養 (10f) 8
4.2.7. 八公升光生物反應器之饋料批次式培養 (10f) 8
4.2.8. 八公升光生物反應器之半連續式培養 8
4.2.9矽藻培養之分析 8
4.2.9.1 細胞計數 8
4.2.9.2光細胞密度 (OD750) 9
4.2.9.3 矽酸鹽殘餘量測定 (OD410) 9
4.2.9.4 水質pH 測定 9
4.2.9.5矽藻培養之生物量產率、比生長速率及細胞倍增時間計算 9
4.3. 矽藻之色素及粗多醣萃取 10
4.4 膠體管柱層析法純化分離矽藻粗色素 10
4.5矽藻粗色素中fucoxanthin 之HPLC濃度測定 11
4.6 矽藻水溶性多醣脫除蛋白質 11
4.7 五百毫升光生物反應器批次式培養獲得之矽藻水溶性多醣純化 12
4.8 八公升光生物反應器批次式培養獲得之矽藻水溶性多醣純化 12
4.9 多醣組成分析 12
4.9.1多醣含量測定 12
4.9.2醣醛酸測定 13
4.9.3硫酸鹽測定 13
5. 結果與討論 13
5.1 矽藻培養結果 13
5.1.1 五百毫升光生物反應器批次培養 13
5.1.2 五百毫升光生物反應器 10f 濃度培養基搭配不同濃度矽酸鹽濃度批次培養 14
5.1.3 五百毫升光生物反應器批次饋料培養 15
5.1.4 八公升光生物反應器批次培養 17
5.1.5 八公升光生物反應器饋料批次式培養 17
5.1.6 八公升光生物反應器半連續式培養 18
5.1.7 八公升光生物反應器半連續式培養產量與文獻比較 19
5.2 Fucoxanthin HPLC 分析 19
5.2.1 五百毫升光生物反應器批次式培養之 fucoxanthin HPLC 分析 19
5.2.2 五百毫升光生物反應器不同濃度矽酸鹽培養之 fucoxanthin HPLC 分析 20
5.2.3 五百毫升光生物反應器饋料批次式培養之 fucoxanthin HPLC 分析 20
5.2.4 八公升光生物反應器批次式培養之 fucoxanthin HPLC 分析 20
5.2.5 八公升光生物反應器饋料批次式培養之 fucoxanthin HPLC 分析 20
5.2.6 八公升光生物反應器半連續式培養之 fucoxanthin HPLC 分析 21
5.2.7 純化八公升光生物反應器培養生產 fucoxanthin 產量與文獻分析 21
5.2.8 純化八公升光生物反應器半連續式培養之fucoxanthin 22
5.3 粗多醣 DEAE 陰離子交換樹脂純化 22
5.3.1 五百毫升光生物反應器批次式培養粗多醣除蛋白結果 22
5.3.2 八公升半連續式培養粗多醣除蛋白結果 22
5.4 五百毫升光生物反應器培養獲得之多醣純化 23
5.4.1 f/2 批次式培養收穫粗多醣純化 23
5.4.2 2.5f 批次式培養收穫粗多醣純化 23
5.4.3 5f 批次式培養收穫粗多醣純化 23
5.4.4 10f 批次式培養收穫粗多醣純化 24
5.5 八公升半連續式培養獲得之多醣進行 DEAE 陰離子交換樹脂結果 24
5.5.1 2.5f 培養條件收穫粗多醣純化 24
5.5.2 5f 培養條件收穫粗多醣純化 24
5.5.3 10f 培養條件收穫粗多醣純化 25
5.5.4 三個培養條件收穫粗多醣純化比較 26
6. 結論及未來展望 27
7. 參考文獻 28
結果圖表 32
附錄圖表 64
Abd-Alla, M. H., Zohri, A.-N. A., El-Enany, A.-W. E., & Ali, S. M. (2017). Conversion of food processing wastes to biofuel using clostridia. Anaerobe, 48, 135-143. https://doi.org/https://doi.org/10.1016/j.anaerobe.2017.08.011
Bae, M., Kim, M.-B., Park, Y.-K., & Lee, J.-Y. (2020). Health benefits of fucoxanthin in the prevention of chronic diseases. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1865(11), 158618. https://doi.org/https://doi.org/10.1016/j.bbalip.2020.158618
Bae, M., Kim, M. B., Park, Y. K., & Lee, J. Y. (2020). Health benefits of fucoxanthin in the prevention of chronic diseases. Biochim Biophys Acta Mol Cell Biol Lipids, 1865(11), 158618. https://doi.org/10.1016/j.bbalip.2020.158618
Barkia, I., Al-Haj, L., Abdul Hamid, A., Zakaria, M., Saari, N., & Zadjali, F. (2019). Indigenous marine diatoms as novel sources of bioactive peptides with antihypertensive and antioxidant properties [https://doi.org/10.1111/ijfs.14006]. International Journal of Food Science & Technology, 54(5), 1514-1522. https://doi.org/https://doi.org/10.1111/ijfs.14006
Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54(2), 484-489. https://doi.org/https://doi.org/10.1016/0003-2697(73)90377-1
Borazjani, N. J., Tabarsa, M., You, S., & Rezaei, M. (2018). Purification, molecular properties, structural characterization, and immunomodulatory activities of water soluble polysaccharides from Sargassum angustifolium. International Journal of Biological Macromolecules, 109, 793-802. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2017.11.059
Butler, T., Kapoore, R. V., & Vaidyanathan, S. (2020). Phaeodactylum tricornutum: A Diatom Cell Factory. Trends in Biotechnology, 38(6), 606-622. https://doi.org/10.1016/j.tibtech.2019.12.023
Chen, J., Yang, J., Du, H., Aslam, M., Wang, W., Chen, W., Li, T., Liu, Z., & Liu, X. (2021). Laminarin, a Major Polysaccharide in Stramenopiles. Marine Drugs, 19(10).
Chiu, S.-Y., Kao, C.-Y., Tsai, M.-T., Ong, S.-C., Chen, C.-H., & Lin, C.-S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100(2), 833-838. https://doi.org/https://doi.org/10.1016/j.biortech.2008.06.061
DuBOIS, M. (1951). A Colorimetric Method for the
Determination of Sugars
Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1951). A Colorimetric Method for the Determination of Sugars. Nature, 168(4265), 167-167. https://doi.org/10.1038/168167a0
Fengzheng Gao , I. T. C., ITD) , Ren ́e H Wijffels , Maria J Barbosa (2020). Process optimization of fucoxanthin production with Tisochrysis lutea.
Gügi, B., Le Costaouec, T., Burel, C., Lerouge, P., Helbert, W., & Bardor, M. (2015). Diatom-Specific Oligosaccharide and Polysaccharide Structures Help to Unravel Biosynthetic Capabilities in Diatoms. Marine Drugs, 13(9), 5993-6018. https://www.mdpi.com/1660-3397/13/9/5993
Gao, F., Teles, I., Wijffels, R. H., & Barbosa, M. J. (2020). Process optimization of fucoxanthin production with Tisochrysis lutea. Bioresource Technology, 315, 123894. https://doi.org/https://doi.org/10.1016/j.biortech.2020.123894
Goessling, J. W., Su, Y., Maibohm, C., Ellegaard, M., & Kühl, M. (2018). Differences in the optical properties of valve and girdle band in a centric diatom. Interface Focus, 9(1), 20180031. https://doi.org/10.1098/rsfs.2018.0031
Hao, Y.-J., Ye, W.-Q., Wang, M., Liu, L.-L., Yu, S., Piao, X.-C., & Lian, M.-L. (2022). Selection of initial culture medium in fed-batch bioreactor culture of Rhodiola sachalinensis cells. Journal of Biotechnology, 346, 15-22. https://doi.org/https://doi.org/10.1016/j.jbiotec.2022.01.005
Henley, W. J. (2019). The past, present and future of algal continuous cultures in basic research and commercial applications. Algal Research, 43, 101636. https://doi.org/https://doi.org/10.1016/j.algal.2019.101636
HongbinLiu , M., FengZhu and PaulJ.Harrison. (2016). Effect of Diatom Silica Content on Copepod Grazing, Growth and Reproduction.
Huang, G., Vidal-Melgosa, S., Sichert, A., Becker, S., Fang, Y., Niggemann, J., Iversen, M. H., Cao, Y., & Hehemann, J.-H. (2021). Secretion of sulfated fucans by diatoms may contribute to marine aggregate formation [https://doi.org/10.1002/lno.11917]. Limnology and Oceanography, 66(10), 3768-3782. https://doi.org/https://doi.org/10.1002/lno.11917
IdaOrefce, M. M., Arianna Smerilli, Clementina Sansone,, & RaghuChandrasekaran, F. C. B. (2018). Role of nutrient concentrations and water movement on diatom’s productivity in culture.
Kalimuthu Senthilkumara, P. M., Jayachandran Venkatesana, Se-Kwon Kima. (2013). Brown seaweed fucoidan: Biological activity and apoptosis, growth signaling mechanism in cancer.
Klein, C., Claquin, P., Pannard, A., Napoléon, C., Le Roy, B., & Véron, B. (2011). Dynamics of soluble extracellular polymeric ­substances and transparent exopolymer particle pools in coastal ecosystems. Marine Ecology Progress Series, 427, 13-27. https://www.int-res.com/abstracts/meps/v427/p13-27/
Kuczynska, P., Jemiola-Rzeminska, M., & Strzalka, K. (2015). Photosynthetic Pigments in Diatoms. Marine Drugs, 13(9), 5847-5881.
Lai, H.-L., Yang, L.-C., Lin, P.-T., Lai, S.-Y., & Wang, M.-Y. (2020). Phagocytosis activity of three sulfated polysaccharides purified from a marine diatom cultured in a semi-continuous system. International Journal of Biological Macromolecules, 155, 951-960. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.11.054
Lee, J., Lee, S. Y., Park, S., & Middelberg, A. P. J. (1999). Control of fed-batch fermentations. Biotechnology Advances, 17(1), 29-48. https://doi.org/https://doi.org/10.1016/S0734-9750(98)00015-9
Liu, Y., Yan, C., Chen, J., Wang, Y., Liang, R., Zou, L., McClements, D. J., & Liu, W. (2020). Enhancement of beta-carotene stability by encapsulation in high internal phase emulsions stabilized by modified starch and tannic acid. Food Hydrocolloids, 109, 106083.
Marella, T. K., & Tiwari, A. (2020). Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin. Bioresource Technology, 307, 123245. https://doi.org/https://doi.org/10.1016/j.biortech.2020.123245
Martin-Jézéquel, V. (2000). SILICON METABOLISM IN DIATOMS: IMPLICATIONS FOR GROWTH 1.
Nagao, R., Takahashi, S., Suzuki, T., Dohmae, N., Nakazato, K., & Tomo, T. (2013). Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species. Photosynthesis Research, 117(1), 281-288. https://doi.org/10.1007/s11120-013-9903-5
Nielsen, S. S. (2017). Total Carbohydrate by Phenol-Sulfuric Acid Method. In S. S. Nielsen (Ed.), Food Analysis Laboratory Manual (pp. 137-141). Springer International Publishing. https://doi.org/10.1007/978-3-319-44127-6_14
Ryther, J. H., & Guillard, R. R. L. (1962). Studies of marine planktonic diatoms:ii. Use of cyclotella nana hustedt for assays of vitamin b12 in sea water. Canadian Journal of Microbiology, 8(4), 437-445. https://doi.org/10.1139/m62-057
Saide, A., Lauritano, C., & Ianora, A. (2020). Pheophorbide a: State of the Art. Marine Drugs, 18(5).
Sheng-Yi Chiu , C.-Y. K., Ming-Ta Tsai , Seow-Chin Ong , Chiun-Hsun Chen , Chih-Sheng Lin (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration.
Steffen Burkhardt, U. R. (1997). C02 availability affects elemental composition (C:N:P) of the marine diatom Skeletonema costatum.
Wang, L.-J., Fan, Y., Parsons, R. L., Hu, G.-R., Zhang, P.-Y., & Li, F.-L. (2018). A Rapid Method for the Determination of Fucoxanthin in Diatom. Marine Drugs, 16(1).
Wetherbee, R. (2002). The Diatom Glasshouse.
Xuemei Maoa, S. H. Y. C., Xue Lue, Jianfeng Yua,, Bin Liua. (2020). High silicate concentration facilitates fucoxanthin and eicosapentaenoic acid (EPA) production under heterotrophic condition in the marine diatom Nitzschia laevis.
Yam Sim Khaw , F. M. Y., Hui Teng Tan , Nur Amirah Izyan Noor Mazli ,Muhammad Farhan Nazarudin , Noor Azmi Shaharuddin , Abdul Rahman Omar , Kazutaka Takahashi (2022). Fucoxanthin Production of Microalgae under Different Culture Factors: A Systematic Review.
Yang, M., Zhao, W., & Xie, X. (2014). Effects of nitrogen, phosphorus, iron and silicon on growth of five species of marine benthic diatoms. Acta Ecologica Sinica, 34(6), 311-319. https://doi.org/https://doi.org/10.1016/j.chnaes.2014.10.003
Yu Wang, M. X., Qi Cao , Aiguo Ji , Hao Liang and Shuliang Song (2019). Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies.
Zhang, H., Tang, Y., Zhang, Y., Zhang, S., Qu, J., Wang, X., Kong, R., Han, C., & Liu, Z. (2015). Fucoxanthin: A Promising Medicinal and Nutritional Ingredient. Evidence-Based Complementary and Alternative Medicine, 2015, 723515. https://doi.org/10.1155/2015/723515
Zhao, X., Gao, L., & Zhao, X. (2022). Rapid Purification of Fucoxanthin from Phaeodactylum tricornutum. Molecules, 27(10).
李冠樺. (2022). Effects of silicate on the growth and fucoxanthin production of the marine microalgae Navicula lanceolata and antioxidant activity analysis.
林娉婷. (2018). Production of polysaccharides by a marine diatom using semi-continuous system.
高炳昀. 硫酸銅對微矽藻的毒性實驗.
許哲維. (2020). Production and Anti-osteoclastogenesis Activity Analysis of Diatom Polysaccharides by a Semi-continuous Photobioreactor System.
蔡政峰. (2018). Production and Purification of Fucoxanthin from a Semi-continuous Photobioreactor and The Analysis of Its Biological activity.
電子全文 電子全文(網際網路公開日期:20280810)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top