|
Abd-Alla, M. H., Zohri, A.-N. A., El-Enany, A.-W. E., & Ali, S. M. (2017). Conversion of food processing wastes to biofuel using clostridia. Anaerobe, 48, 135-143. https://doi.org/https://doi.org/10.1016/j.anaerobe.2017.08.011 Bae, M., Kim, M.-B., Park, Y.-K., & Lee, J.-Y. (2020). Health benefits of fucoxanthin in the prevention of chronic diseases. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1865(11), 158618. https://doi.org/https://doi.org/10.1016/j.bbalip.2020.158618 Bae, M., Kim, M. B., Park, Y. K., & Lee, J. Y. (2020). Health benefits of fucoxanthin in the prevention of chronic diseases. Biochim Biophys Acta Mol Cell Biol Lipids, 1865(11), 158618. https://doi.org/10.1016/j.bbalip.2020.158618 Barkia, I., Al-Haj, L., Abdul Hamid, A., Zakaria, M., Saari, N., & Zadjali, F. (2019). Indigenous marine diatoms as novel sources of bioactive peptides with antihypertensive and antioxidant properties [https://doi.org/10.1111/ijfs.14006]. International Journal of Food Science & Technology, 54(5), 1514-1522. https://doi.org/https://doi.org/10.1111/ijfs.14006 Blumenkrantz, N., & Asboe-Hansen, G. (1973). New method for quantitative determination of uronic acids. Analytical Biochemistry, 54(2), 484-489. https://doi.org/https://doi.org/10.1016/0003-2697(73)90377-1 Borazjani, N. J., Tabarsa, M., You, S., & Rezaei, M. (2018). Purification, molecular properties, structural characterization, and immunomodulatory activities of water soluble polysaccharides from Sargassum angustifolium. International Journal of Biological Macromolecules, 109, 793-802. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2017.11.059 Butler, T., Kapoore, R. V., & Vaidyanathan, S. (2020). Phaeodactylum tricornutum: A Diatom Cell Factory. Trends in Biotechnology, 38(6), 606-622. https://doi.org/10.1016/j.tibtech.2019.12.023 Chen, J., Yang, J., Du, H., Aslam, M., Wang, W., Chen, W., Li, T., Liu, Z., & Liu, X. (2021). Laminarin, a Major Polysaccharide in Stramenopiles. Marine Drugs, 19(10). Chiu, S.-Y., Kao, C.-Y., Tsai, M.-T., Ong, S.-C., Chen, C.-H., & Lin, C.-S. (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresource Technology, 100(2), 833-838. https://doi.org/https://doi.org/10.1016/j.biortech.2008.06.061 DuBOIS, M. (1951). A Colorimetric Method for the Determination of Sugars Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1951). A Colorimetric Method for the Determination of Sugars. Nature, 168(4265), 167-167. https://doi.org/10.1038/168167a0 Fengzheng Gao , I. T. C., ITD) , Ren ́e H Wijffels , Maria J Barbosa (2020). Process optimization of fucoxanthin production with Tisochrysis lutea. Gügi, B., Le Costaouec, T., Burel, C., Lerouge, P., Helbert, W., & Bardor, M. (2015). Diatom-Specific Oligosaccharide and Polysaccharide Structures Help to Unravel Biosynthetic Capabilities in Diatoms. Marine Drugs, 13(9), 5993-6018. https://www.mdpi.com/1660-3397/13/9/5993 Gao, F., Teles, I., Wijffels, R. H., & Barbosa, M. J. (2020). Process optimization of fucoxanthin production with Tisochrysis lutea. Bioresource Technology, 315, 123894. https://doi.org/https://doi.org/10.1016/j.biortech.2020.123894 Goessling, J. W., Su, Y., Maibohm, C., Ellegaard, M., & Kühl, M. (2018). Differences in the optical properties of valve and girdle band in a centric diatom. Interface Focus, 9(1), 20180031. https://doi.org/10.1098/rsfs.2018.0031 Hao, Y.-J., Ye, W.-Q., Wang, M., Liu, L.-L., Yu, S., Piao, X.-C., & Lian, M.-L. (2022). Selection of initial culture medium in fed-batch bioreactor culture of Rhodiola sachalinensis cells. Journal of Biotechnology, 346, 15-22. https://doi.org/https://doi.org/10.1016/j.jbiotec.2022.01.005 Henley, W. J. (2019). The past, present and future of algal continuous cultures in basic research and commercial applications. Algal Research, 43, 101636. https://doi.org/https://doi.org/10.1016/j.algal.2019.101636 HongbinLiu , M., FengZhu and PaulJ.Harrison. (2016). Effect of Diatom Silica Content on Copepod Grazing, Growth and Reproduction. Huang, G., Vidal-Melgosa, S., Sichert, A., Becker, S., Fang, Y., Niggemann, J., Iversen, M. H., Cao, Y., & Hehemann, J.-H. (2021). Secretion of sulfated fucans by diatoms may contribute to marine aggregate formation [https://doi.org/10.1002/lno.11917]. Limnology and Oceanography, 66(10), 3768-3782. https://doi.org/https://doi.org/10.1002/lno.11917 IdaOrefce, M. M., Arianna Smerilli, Clementina Sansone,, & RaghuChandrasekaran, F. C. B. (2018). Role of nutrient concentrations and water movement on diatom’s productivity in culture. Kalimuthu Senthilkumara, P. M., Jayachandran Venkatesana, Se-Kwon Kima. (2013). Brown seaweed fucoidan: Biological activity and apoptosis, growth signaling mechanism in cancer. Klein, C., Claquin, P., Pannard, A., Napoléon, C., Le Roy, B., & Véron, B. (2011). Dynamics of soluble extracellular polymeric substances and transparent exopolymer particle pools in coastal ecosystems. Marine Ecology Progress Series, 427, 13-27. https://www.int-res.com/abstracts/meps/v427/p13-27/ Kuczynska, P., Jemiola-Rzeminska, M., & Strzalka, K. (2015). Photosynthetic Pigments in Diatoms. Marine Drugs, 13(9), 5847-5881. Lai, H.-L., Yang, L.-C., Lin, P.-T., Lai, S.-Y., & Wang, M.-Y. (2020). Phagocytosis activity of three sulfated polysaccharides purified from a marine diatom cultured in a semi-continuous system. International Journal of Biological Macromolecules, 155, 951-960. https://doi.org/https://doi.org/10.1016/j.ijbiomac.2019.11.054 Lee, J., Lee, S. Y., Park, S., & Middelberg, A. P. J. (1999). Control of fed-batch fermentations. Biotechnology Advances, 17(1), 29-48. https://doi.org/https://doi.org/10.1016/S0734-9750(98)00015-9 Liu, Y., Yan, C., Chen, J., Wang, Y., Liang, R., Zou, L., McClements, D. J., & Liu, W. (2020). Enhancement of beta-carotene stability by encapsulation in high internal phase emulsions stabilized by modified starch and tannic acid. Food Hydrocolloids, 109, 106083. Marella, T. K., & Tiwari, A. (2020). Marine diatom Thalassiosira weissflogii based biorefinery for co-production of eicosapentaenoic acid and fucoxanthin. Bioresource Technology, 307, 123245. https://doi.org/https://doi.org/10.1016/j.biortech.2020.123245 Martin-Jézéquel, V. (2000). SILICON METABOLISM IN DIATOMS: IMPLICATIONS FOR GROWTH 1. Nagao, R., Takahashi, S., Suzuki, T., Dohmae, N., Nakazato, K., & Tomo, T. (2013). Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species. Photosynthesis Research, 117(1), 281-288. https://doi.org/10.1007/s11120-013-9903-5 Nielsen, S. S. (2017). Total Carbohydrate by Phenol-Sulfuric Acid Method. In S. S. Nielsen (Ed.), Food Analysis Laboratory Manual (pp. 137-141). Springer International Publishing. https://doi.org/10.1007/978-3-319-44127-6_14 Ryther, J. H., & Guillard, R. R. L. (1962). Studies of marine planktonic diatoms:ii. Use of cyclotella nana hustedt for assays of vitamin b12 in sea water. Canadian Journal of Microbiology, 8(4), 437-445. https://doi.org/10.1139/m62-057 Saide, A., Lauritano, C., & Ianora, A. (2020). Pheophorbide a: State of the Art. Marine Drugs, 18(5). Sheng-Yi Chiu , C.-Y. K., Ming-Ta Tsai , Seow-Chin Ong , Chiun-Hsun Chen , Chih-Sheng Lin (2009). Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Steffen Burkhardt, U. R. (1997). C02 availability affects elemental composition (C:N:P) of the marine diatom Skeletonema costatum. Wang, L.-J., Fan, Y., Parsons, R. L., Hu, G.-R., Zhang, P.-Y., & Li, F.-L. (2018). A Rapid Method for the Determination of Fucoxanthin in Diatom. Marine Drugs, 16(1). Wetherbee, R. (2002). The Diatom Glasshouse. Xuemei Maoa, S. H. Y. C., Xue Lue, Jianfeng Yua,, Bin Liua. (2020). High silicate concentration facilitates fucoxanthin and eicosapentaenoic acid (EPA) production under heterotrophic condition in the marine diatom Nitzschia laevis. Yam Sim Khaw , F. M. Y., Hui Teng Tan , Nur Amirah Izyan Noor Mazli ,Muhammad Farhan Nazarudin , Noor Azmi Shaharuddin , Abdul Rahman Omar , Kazutaka Takahashi (2022). Fucoxanthin Production of Microalgae under Different Culture Factors: A Systematic Review. Yang, M., Zhao, W., & Xie, X. (2014). Effects of nitrogen, phosphorus, iron and silicon on growth of five species of marine benthic diatoms. Acta Ecologica Sinica, 34(6), 311-319. https://doi.org/https://doi.org/10.1016/j.chnaes.2014.10.003 Yu Wang, M. X., Qi Cao , Aiguo Ji , Hao Liang and Shuliang Song (2019). Biological Activities of Fucoidan and the Factors Mediating Its Therapeutic Effects: A Review of Recent Studies. Zhang, H., Tang, Y., Zhang, Y., Zhang, S., Qu, J., Wang, X., Kong, R., Han, C., & Liu, Z. (2015). Fucoxanthin: A Promising Medicinal and Nutritional Ingredient. Evidence-Based Complementary and Alternative Medicine, 2015, 723515. https://doi.org/10.1155/2015/723515 Zhao, X., Gao, L., & Zhao, X. (2022). Rapid Purification of Fucoxanthin from Phaeodactylum tricornutum. Molecules, 27(10). 李冠樺. (2022). Effects of silicate on the growth and fucoxanthin production of the marine microalgae Navicula lanceolata and antioxidant activity analysis. 林娉婷. (2018). Production of polysaccharides by a marine diatom using semi-continuous system. 高炳昀. 硫酸銅對微矽藻的毒性實驗. 許哲維. (2020). Production and Anti-osteoclastogenesis Activity Analysis of Diatom Polysaccharides by a Semi-continuous Photobioreactor System. 蔡政峰. (2018). Production and Purification of Fucoxanthin from a Semi-continuous Photobioreactor and The Analysis of Its Biological activity.
|