跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/12 00:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:辛古安
研究生(外文):Anoop Kumar Singh
論文名稱:寬能隙氧化鎵鋅薄膜之材料生長與元件應用研究
論文名稱(外文):Growth, Characterization and Device Applications of Wide-Bandgap ZnGa2O4 Thin Films
指導教授:武東星
指導教授(外文):Dong-Sing Wuu
口試委員:洪瑞華林佳鋒吳宛玉劉柏良
口試委員(外文):Ray-Hua HorngChia-Feng LinWan-Yu WuPo-Liang Liu
口試日期:2023-07-29
學位類別:博士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:47
外文關鍵詞:deep-ultraviolet photodetectorgas sensorphosphorradio-frequency magnetron sputteringZnGa2O4
相關次數:
  • 被引用被引用:0
  • 點閱點閱:21
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本論文之研究重點將針對 ZnGa2O4 進行全面的研究,ZnGa2O4 為一種寬能隙半導體材料,對光電和功率電子應用具有可觀的潛力,該材料具有高熱穩定性、優異的光電性能和紫外吸收能力等獨特特性,使其成為製作先進元件的理想材料。本研究使用射頻磁控濺射技術,在最密堆積面之藍寶石基板上沉積了 ZnGa2O4 和鋁摻雜 ZnGa2O4 薄膜,並利用X光繞射儀、掃描式電子顯微鏡、穿透式電子顯微鏡、原子力顯微鏡和光致螢光光譜等表徵技術對其薄膜的結晶結構、組成形態和光學性質進行了系統地分析。同時,研究了基於鋁摻雜 ZnGa2O4 薄膜的深紫外光探測器特性及光致螢光特性之表徵分析。此外,透過 ZnGa2O4 薄膜與 NO 氣氛進行反映實驗,從響應時間和恢復時間的結果顯示,這些薄膜對特定氣體具有高靈敏度與專一選擇性,並與現有的氣體感測材料進行了比較,未來將很有機會應用於氣體感測領域中。研究結果表明,通過射頻磁控濺射技術製備的 ZnGa2O4 和鋁摻雜 ZnGa2O4 薄膜具有優異的深紫外光探測特性、光致螢光特性和潛在的氣體感測能力。這些研究成果有助於深入了解 ZnGa2O4 薄膜的生長過程和特性,並為開發先進的光電元件和氣體感測技術提供重要的基礎,從其之特性表現可以知道,ZnGa2O4 薄膜未來將非常有機會成為多功能元件應用的先進材料。
This dissertation focuses on the comprehensive study of ZnGa2O4, a wide-bandgap semiconductor with exceptional properties that hold significant promise for both optoelectronic and power electronic applications. The unique characteristics of ZnGa2O4, including its high thermal stability, excellent electrical properties, and UV absorption capabilities, make it an attractive material for advanced device fabrication. ZnGa2O4 films and Al-doped ZnGa2O4 films were deposited on c-plane sapphire substrates using RF magnetron sputtering. The structural, morphological, and optical properties of the films were analyzed using X-ray diffraction, scanning electron microscopy, atomic force microscopy transmission electron microscopy, and photoluminescence spectroscopy etc. Photoluminescence characterization of the Al-doped ZnGa2O4 films was performed to investigate their phosphor properties. The deep-ultraviolet photodetector characteristics based on Al-doped ZnGa2O4 film are also investigated. Furthermore, the gas sensing characteristics of the ZnO: ZnGa2O4 films were evaluated by conducting experiments with NO target. The films demonstrated high sensitivity and selectivity towards specific gases, making them ideal candidate for gas sensing applications. The response and recovery times of the gas sensor were determined, and their performance was compared to existing gas sensing materials. The results indicate that RF magnetron sputtered Al-doped ZnGa2O4 films possess excellent photoluminescence and deep-ultraviolet photodetector characteristics whereas ZnO: ZnGa2O4 films possess promising gas sensing capabilities. These results contribute to the understanding of the growth process and characterization of ZnGa2O4 based films, providing valuable insights for the development of advanced optoelectronic devices and gas sensing technologies. The combination of deep-ultraviolet photodetector, photoluminescence, and gas sensing characteristics makes ZnGa2O4 based films a versatile material for a wide range of next generation applications.
摘要 i
Abstract ii
Table of Contents iii
List of Tables v
List of Figures vi
Chapter 1. Introduction 1
1.1 Basic Properties 1
1.2 Crystal Structure 1
1.3 Defect Structure 2
1.4 Conductivity Control and Doping 2
1.5 Research Gap and Motivation 3
Chapter 2. Growth Method, Characterization Techniques, and Experimental 6
2.1 Growth Method: Radio-Frequency Magnetron Sputtering 6
2.2 Characterization Techniques 8
2.2.1 Structural Characterization 8
2.2.2 Surface Morphology 10
2.2.3 Optical Characterization 13
2.2.4 Electrical Characterizations 16
2.3 Experimental 16
2.3.1 Growth of Aluminum-doped ZnGa2O4 films for phosphor and DUV PDs16
2.3.2 Growth of ZnO: ZnGa2O4 films for NO gas sensor 17
Chapter 3. Results and Discussion 19
3.1 Growth of Aluminum-doped ZnGa2O4 films for Phosphor and Deep-Ultraviolet Photodetector Applications 19
3.1.1 Film Characteristics 19
3.1.2 Devices (Phosphor and DUV PDs) 25
3.2 Growth of ZnO: ZnGa2O4 films for Gas Sensor Applications 28
3.2.1 Film Characteristics 28
3.2.2 Gas Sensor 32
Chapter 4. Conclusions 36
Chapter 5. Future Work and Publications 37
5.1 Future Work 37
5.2 Publications 37
References 39
[1]J. Liu, Z. Li, W. Hao, W. Mu, Q. He, X. Zhou, X. Zhao, G. Xu, Z. Jia, X. Tao, S. Long, Pt/ZnGaO Schottky barrier diodes fabricated by using single crystal n-ZnGaO (111) substrates, IEEE Electron Device Lett. 43 (2022) 2061–2064. https://doi.org/10.1109/LED.2022.3219073.
[2]P.H. Huang, Y.C. Shen, C.Y. Tung, C.Y. Huang, C.S. Tan, R.H. Horng, Energy-saving ZnGa2O4 phototransistor improved by thermal annealing, ACS Appl. Electron. Mater. 2 (2020) 3515–3521. https://doi.org/10.1021/acsaelm.0c00394.
[3]K. Ling, K. Li, W. Zhang, Z. Wang, X. Liu, Comprehensive enhancement of ZnGa2O4-based solar blind photodetector performance by suppressing defects in oxygen-rich atmosphere, Vacuum. 215 (2023) 112279. https://doi.org/10.1016/j.vacuum.2023.112279.
[4]D. Han, K. Liu, Q. Hou, X. Chen, J. Yang, B. Li, Z. Zhang, L. Liu, D. Shen, Self-powered solar-blind ZnGa2O4 UV photodetector with ultra-fast response speed, Sensors Actuators, A Phys. 315 (2020) 112354. https://doi.org/10.1016/j.sna.2020.112354.
[5]Z. Galazka, S. Ganschow, R. Schewski, K. Irmscher, D. Klimm, A. Kwasniewski, M. Pietsch, A. Fiedler, I.S. Jonack, M. Albrecht, T. Schröder, M. Bickermann, Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals, APL Mater. 7 (2019). https://doi.org/10.1063/1.5053867.
[6]J. Boy, M. Handwerg, R. Mitdank, Z. Galazka, S.F. Fischer, Charge carrier density, mobility, and Seebeck coefficient of melt-grown bulk ZnGa2O4 single crystals, AIP Adv. 10 (2020). https://doi.org/10.1063/5.0002847.
[7]X. Hao, Q. Lu, Y. Zhang, W. Li, Y. Zhang, T. Liu, X. Liang, F. Liu, X. Yan, Y. Gao, L. Wang, G. Lu, Insight into the effect of the continuous testing and aging on the SO2 sensing characteristics of a YSZ (Yttria-stabilized Zirconia)-based sensor utilizing ZnGa2O4 and Pt electrodes, J. Hazard. Mater. 388 (2020). https://doi.org/10.1016/j.jhazmat.2019.121772.
[8]B. Wang, H. Wang, B. Tu, P. Xu, W. Wang, Z. Fu, Theoretical insight into optical properties of ZnGa2O4 transparent ceramic, Mater. Today Commun. 34 (2023) 104846. https://doi.org/10.1016/j.mtcomm.2022.104846.
[9]F. Reichmann, J. Dabrowski, A.P. Becker, W.M. Klesse, K. Irmscher, R. Schewski, Z. Galazka, M. Mulazzi, Experimental and theoretical investigation of the surface electronic structure of ZnGa2O4 (100) Single-Crystals, Phys. Status Solidi Basic Res. 259 (2022). https://doi.org/10.1002/pssb.202100452.
[10]M.M. Afandi, J. Kim, A UV-emitting and -sensing device from ZnGa2O4 oxide layer in metal-oxide-semiconductor structure, J. Sci. Adv. Mater. Devices. 8 (2023) 100531. https://doi.org/10.1016/j.jsamd.2022.100531.
[11]Z. Chi, T. Tchelidze, C. Sartel, T. Gamsakhurdashvili, I. Madaci, H. Yamano, V. Sallet, Y. Dumont, A. Pérez-Tomás, F. Medjdoub, E. Chikoidze, Assessment of large critical electric field in ultra-wide bandgap p-type spinel ZnGa2O4, J. Phys. D. Appl. Phys. 56 (2023). https://doi.org/10.1088/1361-6463/acbb14.
[12]F.P. Sabino, I. Chatratin, A. Janotti, G.M. Dalpian, Hole conductivity through a defect band in ZnGa2O4, Phys. Rev. Mater. 6 (2022) 1–10. https://doi.org/10.1103/PhysRevMaterials.6.064602.
[13]Y. Jang, S. Hong, J. Seo, H. Cho, K. Char, Z. Galazka, Thin film transistors based on ultra-wide bandgap spinel ZnGa2O4, Appl. Phys. Lett. 116 (2020) 2–7. https://doi.org/10.1063/5.0007716.
[14]Z. Chi, F.G. Tarntair, M. Frégnaux, W.Y. Wu, C. Sartel, I. Madaci, P. Chapon, V. Sallet, Y. Dumont, A.P. Tomás, R.H. Horng, E. Chikoidze, Bipolar self-doping in ultra-wide bandgap spinel ZnGa2O4, Mater. Today Phys. 20 (2021). https://doi.org/10.1016/j.mtphys.2021.100466.
[15]Y.E. Lee, D.P. Norton, J.D. Budai, Y. Wei, Enhanced ultraviolet photoconductivity in semiconducting ZnGa2O4 thin films, J. Appl. Phys. 90 (2001) 3863–3866. https://doi.org/10.1063/1.1396829.
[16]Y.E. Lee, D.P. Norton, J.D. Budai, P.D. Rack, J. Peterson, M.D. Potter, Photo- and low-voltage cathodoluminescence in lithium zinc gallate blue and green thin-film phosphors, J. Appl. Phys. 91 (2002) 2974–2977. https://doi.org/10.1063/1.1448863.
[17]R.H. Horng, A. Sood, F.G. Tarntair, D.S. Wuu, C.L. Hsiao, S.J. Pratap, Ion implantation effects on the characteristics of β-Ga2O3 epilayers grown on sapphire by MOCVD, Ceram. Int. 48 (2022) 36425–36432. https://doi.org/10.1016/j.ceramint.2022.08.202.
[18]A. Sood, D.S. Wuu, F.G. Tarntair, N.T. Sao, T.L. Wu, N. Tumilty, H.C. Kuo, S.J. Pratap, R.H. Horng, Electrical performance study of Schottky barrier diodes using ion implanted β-Ga2O3 epilayers grown on sapphire substrates, Mater. Today Adv. 17 (2023) 100346. https://doi.org/10.1016/j.mtadv.2023.100346.
[19]K.D. Leedy, K.D. Chabak, V. Vasilyev, D.C. Look, K. Mahalingam, J.L. Brown, A.J. Green, C.T. Bowers, A. Crespo, D.B. Thomson, G.H. Jessen, Si content variation and influence of deposition atmosphere in homoepitaxial Si-doped β-Ga2O3 films by pulsed laser deposition, APL Mater. 6 (2018). https://doi.org/10.1063/1.5047214.
[20]F. Zhang, M. Arita, X. Wang, Z. Chen, K. Saito, T. Tanaka, M. Nishio, T. Motooka, Q. Guo, Toward controlling the carrier density of Si doped Ga2O3 films by pulsed laser deposition, Appl. Phys. Lett. 109 (2016). https://doi.org/10.1063/1.4962463.
[21]Y.X. Yan, S. Zheng, L.Q. Xiong, F. Wang, J. Cheng, F.S. Li, Z.W. Xiao, First-principles calculations of structural, electronic and optical properties of ZnGa2O4:Cr3+ system, J. Alloys Compd. 890 (2022) 161862. https://doi.org/10.1016/j.jallcom.2021.161862.
[22]M.K. Hussen, F.B. Dejene, Quenching effect of in co-doping on the photoluminescence of ZnGa2-xInxO4:Cr3+ phosphors, Mater. Res. Express. 6 (2019). https://doi.org/10.1088/2053-1591/ab4bf2.
[23]Y. Cheng, K. Sun, P. Ge, Up-conversion luminescence in Yb3+/Er3+ co-doped ZnGa2O4 and ZnAl2O4 powder phosphors, Optik (Stuttg). 170 (2018) 1–9. https://doi.org/10.1016/j.ijleo.2018.05.086.
[24]S.S. Yi, J.S. Bae, B.K. Moon, J.H. Jeong, I.W. Kim, H.L. Park, Photoluminescence behavior of pulsed laser deposited ZnGa2O4 thin-film phosphors grown on various substrates, Appl. Phys. A Mater. Sci. Process. 76 (2003) 433–437. https://doi.org/10.1007/s00339-002-1898-2.
[25]C. Satya Kamal, S. Boddu, B. Vishwanadh, K.R. Rao, V. Sudarsan, R.K. Vatsa, Blue luminescence from ZnGa2O4: Effect of lattice distortion and particle size, J. Lumin. 188 (2017) 429–435. https://doi.org/10.1016/j.jlumin.2017.04.056.
[26]A. De Vos, K. Lejaeghere, D.E.P. Vanpoucke, J.J. Joos, P.F. Smet, K. Hemelsoet, First-Principles Study of Antisite Defect Configurations in ZnGa2O4:Cr Persistent Phosphors, Inorg. Chem. 55 (2016) 2402–2412. https://doi.org/10.1021/acs.inorgchem.5b02805.
[27]J.H. Lee, H.J. Park, K. Yoo, B.W. Kim, J.C. Lee, S. Park, Characteristics of nano-sized ZnGa2O4 phosphor prepared by solution combustion method and solid state reaction method, J. Eur. Ceram. Soc. 27 (2007) 965–968. https://doi.org/10.1016/j.jeurceramsoc.2006.04.153.
[28]Y. Jang, S. Hong, J. Seo, H. Cho, K. Char, Z. Galazka, Thin film transistors based on ultra-wide bandgap spinel ZnGa2O4, Appl. Phys. Lett. 116 (2020) 3–8. https://doi.org/10.1063/5.0007716.
[29]A. Mirzaei, G. Neri, Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review, Sensors Actuators, B Chem. 237 (2016) 749–775. https://doi.org/10.1016/j.snb.2016.06.114.
[30]S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim, Recent advances in energy-saving chemiresistive gas sensors: A review, Nano Energy. 79 (2021) 105369. https://doi.org/10.1016/j.nanoen.2020.105369.
[31]A.Z. Sadek, S. Choopun, W. Wlodarski, S.J. Ippolito, K. Kalantar-zadeh, Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing, IEEE Sens. J. 7 (2007) 919–924. https://doi.org/10.1109/JSEN.2007.895963.
[32]Y.T. Tsai, S.J. Chang, L.W. Ji, Y.J. Hsiao, I.T. Tang, H.Y. Lu, Y.L. Chu, High sensitivity of NO gas sensors based on novel Ag-doped ZnO Nanoflowers enhanced with a UV light-emitting diode, ACS Omega. 3 (2018) 13798–13807. https://doi.org/10.1021/acsomega.8b01882.
[33]G.P. Evans, D.J. Buckley, N.T. Skipper, I.P. Parkin, Single-walled carbon nanotube composite inks for printed gas sensors: Enhanced detection of NO2, NH3, EtOH and acetone, RSC Adv. 4 (2014) 51395–51403. https://doi.org/10.1039/c4ra09568e.
[34]M. Reddeppa, B.G. Park, G. Murali, S.H. Choi, N.D. Chinh, D. Kim, W. Yang, M.D. Kim, NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: Study of UV light illuminations and humidity, Sensors Actuators, B Chem. 308 (2020) 127700. https://doi.org/10.1016/j.snb.2020.127700.
[35]J.Y. Jeon, B.C. Kang, Y.T. Byun, T.J. Ha, High-performance gas sensors based on single-wall carbon nanotube random networks for the detection of nitric oxide down to the ppb-level, Nanoscale. 11 (2019) 1587–1594. https://doi.org/10.1039/c8nr07393g.
[36]C.H. Kwak, H.S. Woo, F. Abdel-Hady, A.A. Wazzan, J.H. Lee, Vapor-phase growth of urchin-like Mg-doped ZnO nanowire networks and their application to highly sensitive and selective detection of ethanol, Sensors Actuators, B Chem. 223 (2016) 527–534. https://doi.org/10.1016/j.snb.2015.09.120.
[37]A. Sharma, M. Tomar, V. Gupta, Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters, Sensors Actuators, B Chem. 181 (2013) 735–742. https://doi.org/10.1016/j.snb.2013.01.074.
[38]C.H. Lin, S.J. Chang, T.J. Hsueh, A WO3 nanoparticles NO gas sensor prepared by hot-wire CVD, IEEE Electron Device Lett. 38 (2017) 266–269. https://doi.org/10.1109/LED.2016.2647235.
[39]S. An, S. Park, H. Ko, C. Lee, Fabrication of WO3 nanotube sensors and their gas sensing properties, Ceram. Int. 40 (2014) 1423–1429. https://doi.org/10.1016/j.ceramint.2013.07.025.
[40]J. Liu, S. Li, B. Zhang, Y. Wang, Y. Gao, X. Liang, Y. Wang, G. Lu, Flower-like In2O3 modified by reduced graphene oxide sheets serving as a highly sensitive gas sensor for trace NO2 detection, J. Colloid Interface Sci. 504 (2017) 206–213. https://doi.org/10.1016/j.jcis.2017.05.053.
[41]A. Gorshkova, M. Gorshkov, N. Tripathi, K. Tukmakov, V. Podlipnov, D. Artemyev, P. Mishra, V. Pavelyev, V. Platonov, N.A. Djuzhev, Enhancement in NO2 sensing properties of SWNTs: A detailed analysis on functionalization of SWNTs with Z-Gly-OH, J. Mater. Sci. Mater. Electron. 34 (2023) 1–11. https://doi.org/10.1007/s10854-022-09551-5.
[42]S. Kumar, G. Meng, P. Mishra, N. Tripathi, A.G. Bannov, A systematic review on 2D MoS2 for nitrogen dioxide (NO2) sensing at room temperature, Mater. Today Commun. 34 (2023) 105045. https://doi.org/10.1016/j.mtcomm.2022.105045.
[43]R. Bajpai, A. Motayed, A. V. Davydov, V.P. Oleshko, G.S. Aluri, K.A. Bertness, M. V. Rao, M.E. Zaghloul, UV-assisted alcohol sensing using SnO2 functionalized GaN nanowire devices, Sensors Actuators, B Chem. 171–172 (2012) 499–507. https://doi.org/10.1016/j.snb.2012.05.018.
[44]A.M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J.R. Morante, N. Yamazoe, Cr-doped TiO2 gas sensor for exhaust NO2 monitoring, Sensors Actuators, B Chem. 93 (2003) 509–518. https://doi.org/10.1016/S0925-4005(03)00183-7.
[45]S.W. Fan, A.K. Srivastava, V.P. Dravid, UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO, Appl. Phys. Lett. 95 (2009) 1–4. https://doi.org/10.1063/1.3243458.
[46]B. Urasinska-Wojcik, T.A. Vincent, M.F. Chowdhury, J.W. Gardner, Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment, Sensors Actuators, B Chem. 239 (2017) 1051–1059. https://doi.org/10.1016/j.snb.2016.08.080.
[47]S.P. Arnold, S.M. Prokes, F.K. Perkins, M.E. Zaghloul, Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor, Appl. Phys. Lett. 95 (2009) 2007–2010. https://doi.org/10.1063/1.3223617.
[48]C.Y. Lin, J.G. Chen, W.Y. Feng, C.W. Lin, J.W. Huang, J.J. Tunney, K.C. Ho, Using a TiO2/ZnO double-layer film for improving the sensing performance of ZnO based NO gas sensor, Sensors Actuators, B Chem. 157 (2011) 361–367. https://doi.org/10.1016/j.snb.2011.04.056.
[49]H. Zhai, Z. Wu, Z. Fang, Recent progress of Ga2O3-based gas sensors, Ceram. Int. 48 (2022) 24213–24233. https://doi.org/10.1016/j.ceramint.2022.06.066.
[50]V. V. Ganbavle, M.A. Patil, H.P. Deshmukh, K.Y. Rajpure, Development of Zn2SnO4 thin films deposited by spray pyrolysis method and their utility for NO2 gas sensors at moderate operating temperature, J. Anal. Appl. Pyrolysis. 107 (2014) 233–241. https://doi.org/10.1016/j.jaap.2014.03.006.
[51]A.K. Singh, C.C. Yen, K.P. Chang, D.S. Wuu, Ing, Influence of Al doping on crystal structure , optical , and photoluminescence characteristics of ZnGa2O4 films, Mater. Sci. Semicond. Process. 150 (2022) 106962. https://doi.org/10.1016/j.mssp.2022.106962.
[52]J.G. Han, Recent progress in thin film processing by magnetron sputtering with plasma diagnostics, J. Phys. D. Appl. Phys. 42 (2009). https://doi.org/10.1088/0022-3727/42/4/043001.
[53]M.S. Hossain, M.A. Islam, M.M. Aliyu, P. Chelvanathan, T. Razykov, K. Sopian, N. Amin, Effect of annealing on the properties of ZnxCd1-xS thin film growth by RF magnetron co-sputtering, Energy Procedia. 33 (2013) 214–222. https://doi.org/10.1016/j.egypro.2013.05.060.
[54]S. Li, S. Jiao, D. Wang, S. Gao, J. Wang, The influence of sputtering power on the structural, morphological and optical properties of β-Ga2O3 thin films, J. Alloys Compd. 753 (2018) 186–191. https://doi.org/10.1016/j.jallcom.2018.04.196.
[55]W.-L. Huang, C.-H. Li, S.-P. Chang, S.-J. Chang, The effect of oxygen partial pressure and annealing process on the characteristics of ZnGa2O4 MSM UV photodetector , ECS J. Solid State Sci. Technol. 8 (2019) Q3213–Q3216. https://doi.org/10.1149/2.0371907jss.
[56]Y. Xin, Z. Gao, X. Shang, J. Wu, D. Yu, J. Xiu, Z. Li, Effect of thermal annealing on the structural and optical properties of ZnGa2O4 films deposited on sapphire by magnetron sputtering, J. Alloys Compd. 933 (2023) 167760. https://doi.org/10.1016/j.jallcom.2022.167760.
[57]X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, H. Ma, Effects of sputtering power on the properties of ZnO:Ga films deposited by r.f. magnetron-sputtering at low temperature, J. Cryst. Growth. 274 (2005) 474–479. https://doi.org/10.1016/j.jcrysgro.2004.10.037.
[58]K. Gu, Z. Zhang, K. Tang, J. Huang, M. Liao, L. Wang, Effects of sputtering pressure and oxygen partial pressure on amorphous Ga2O3 film-based solar-blind ultraviolet photodetectors, Appl. Surf. Sci. 605 (2022) 154606. https://doi.org/10.1016/j.apsusc.2022.154606.
[59]K.M. Krishna, G. Anoop, M.K. Jayaraj, Effect of substrate temperature on the structural and luminescent characteristics of RF-magnetron-sputtered ZnGa2O4:Dy3+ thin films, J. Electrochem. Soc. 154 (2007) J379. https://doi.org/10.1149/1.2780859.
[60]L.P. Peng, L. Fang, X.F. Yang, Y.J. Li, Q.L. Huang, F. Wu, C.Y. Kong, Effect of annealing temperature on the structure and optical properties of In-doped ZnO thin films, J. Alloys Compd. 484 (2009) 575–579. https://doi.org/10.1016/j.jallcom.2009.04.139.
[61]S. Hwang, J.H. Lee, C.H. Woo, J.Y. Lee, H.K. Cho, Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors, Thin Solid Films. 519 (2011) 5146–5149. https://doi.org/10.1016/j.tsf.2011.01.074.
[62]U. Chaitra, D. Kekuda, K. Mohan Rao, Effect of annealing temperature on the evolution of structural, microstructural, and optical properties of spin coated ZnO thin films, Ceram. Int. 43 (2017) 7115–7122. https://doi.org/10.1016/j.ceramint.2017.02.144.
[63]S.H. Yuan, S.L. Ou, S.Y. Huang, D.S. Wuu, Enhanced deep-ultraviolet responsivity in aluminum-gallium oxide photodetectors via structure deformation by high-oxygen-pressure pulsed laser deposition, ACS Appl. Mater. Interfaces. 11 (2019) 17563–17569. https://doi.org/10.1021/acsami.9b04354.
[64]C.C. Wang, S.H. Yuan, S.L. Ou, S.Y. Huang, K.Y. Lin, Y.A. Chen, P.W. Hsiao, D.S. Wuu, Growth and characterization of co-sputtered aluminum-gallium oxide thin films on sapphire substrates, J. Alloys Compd. 765 (2018) 894–900. https://doi.org/10.1016/j.jallcom.2018.06.270.
[65]A.K. Singh, P.W. Chen, D.S. Wuu, Growth and characterization of co-sputtered Al-doped ZnGa2O4 films for enhancing deep-ultraviolet photoresponse, Appl. Surf. Sci. 566 (2021) 150714. https://doi.org/10.1016/j.apsusc.2021.150714.
[66]R.H. Horng, C.Y. Huang, S.L. Ou, T.K. Juang, P.L. Liu, Epitaxial Growth of ZnGa2O4: A new, deep ultraviolet semiconductor candidate, Cryst. Growth Des. 17 (2017) 6071–6078. https://doi.org/10.1021/acs.cgd.7b01159.
[67]S.S. Yi, I.W. Kim, J.S. Bae, B.K. Moon, S.B. Kim, J.H. Jeong, Luminescence characteristics of ZnGa2O4 thin film phosphors grown by pulsed laser deposition, Mater. Lett. 57 (2002) 904–909. https://doi.org/10.1016/S0167-577X(02)00893-5.
[68]W. Zhang, J. Zhang, Z. Chen, T. Wang, S. Zheng, Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors, J. Lumin. 130 (2010) 1738–1743. https://doi.org/10.1016/j.jlumin.2010.04.002.
[69]W.K. Wang, Y.J. Xu, S.Y. Huang, K.F. Liu, P.C. Tsai, Structural characteristics and photoluminescence properties of sputter-deposition ZnGa2O4 thin films on sapphire and Si (100) substrates, Coatings. 9 (2019). https://doi.org/10.3390/coatings9080469.
[70]S.S. Yi, I.W. Kim, H.L. Park, J.S. Bae, B.K. Moon, J.H. Jeong, Luminescence characteristics of pulsed laser deposited ZnGa2O4 thin film phosphors grown on various substrates, J. Cryst. Growth. 247 (2003) 213–218. https://doi.org/10.1016/S0022-0248(02)01915-2.
[71]T.A. Safeera, E.I. Anila, An investigation on the luminescence quenching mechanism of ZnGa2O4:Tb3+ phosphor, J. Lumin. 205 (2019) 277–281. https://doi.org/10.1016/j.jlumin.2018.09.033.
[72]Y.E. Lee, D.P. Norton, C. Park, C.M. Rouleau, Blue photoluminescence in ZnGa2O4 thin-film phosphors, J. Appl. Phys. 89 (2001) 1653–1656. https://doi.org/10.1063/1.1287228.
[73]S.H. Tsai, Y.C. Shen, C.Y. Huang, R.H. Horng, Deep-ultraviolet Schottky photodetectors with high deep-ultraviolet/visible rejection based on a ZnGa2O4 thin film, Appl. Surf. Sci. 496 (2019) 143670. https://doi.org/10.1016/j.apsusc.2019.143670.
[74]A. Guo, L. Zhang, N. Cao, T. Lu, Y. Zhu, D. Tian, Z. Zhou, S. He, B. Xia, F. Zhao, Pulsed laser deposition of ZnGa2O4 thin films on Al2O3 and Si substrates for deep optoelectronic devices applications, Appl. Phys. Express. 16 (2023). https://doi.org/10.35848/1882-0786/acb98c.
[75]P.W. Chen, S.Y. Huang, S.H. Yuan, Y.A. Chen, P.W. Hsiao, D.S. Wuu, Quasi-single-crystalline ZnGa2O4 films via solid phase epitaxy for enhancing deep-ultraviolet photoresponse, Adv. Mater. Interfaces. 6 (2019) 2–11. https://doi.org/10.1002/admi.201901075.
[76]A.B. Khatibani, M. Abbasi, S.M. Rozati, Peculiarities of deposition times on gas sensing behaviour of vanadium oxide thin films, Acta Phys. Pol. A. 129 (2016) 1245–1251. https://doi.org/10.12693/APhysPolA.129.1245.
[77]C.H. Tien, B.W. Hsiao, C.M. Chen, M.I. Chen, J.L. Chiang, D.S. Wuu, Nitrogen and oxygen annealing effects on properties of aluminum-gallium oxide films grown by pulsed laser deposition, Ceram. Int. 46 (2020) 24147–24154. https://doi.org/10.1016/j.ceramint.2020.06.194.
[78]P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, CO2 gas sensing properties of DC reactive magnetron sputtered ZnO thin film, Ceram. Int. 40 (2014) 13115–13122. https://doi.org/10.1016/j.ceramint.2014.05.011.
[79]A.K. Singh, C.C. Yen, C.F. Wen, R.H. Horng, D.S. Wuu, Growth and characterization of sputtered ZnO:ZnGa2O4 dual-phase films on sapphire substrates for NO gas-sensing applications, ACS Appl. Electron. Mater. (2023). https://doi.org/10.1021/acsaelm.3c00045.
[80]M.R. Wu, W.Z. Li, C.Y. Tung, C.Y. Huang, Y.H. Chiang, P.L. Liu, R.H. Horng, NO gas sensor based on ZnGa2O4 epilayer grown by metalorganic chemical vapor deposition, Sci. Rep. 9 (2019) 1–9. https://doi.org/10.1038/s41598-019-43752-z.
[81]H.N. Hieu, N.M. Vuong, H. Jung, D.M. Jang, D. Kim, H. Kim, S.K. Hong, Optimization of a zinc oxide urchin-like structure for high-performance gas sensing, J. Mater. Chem. 22 (2012) 1127–1134. https://doi.org/10.1039/c1jm13696h.
[82]R.H. Horng, S.H. Lin, D.R. Hung, P.H. Chao, P.K. Fu, C.H. Chen, Y.C. Chen, J.H. Shao, C.Y. Huang, F.G. Tarntair, P.L. Liu, C.L. Hsiao, Structure effect on the response of ZnGa2O4 gas sensor for nitric oxide applications, Nanomaterials. 12 (2022) 3759. https://doi.org/10.3390/nano12213759.
[83]Z.X. Cai, H.Y. Li, X.N. Yang, X. Guo, NO sensing by single crystalline WO3 nanowires, Sensors Actuators, B Chem. 219 (2015) 346–353. https://doi.org/10.1016/j.snb.2015.05.036.
[84]A.S.M.I. Uddin, D.T. Phan, G.S. Chung, Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid, Sensors Actuators, B Chem. 207 (2015) 362–369. https://doi.org/10.1016/j.snb.2014.10.091.
[85]C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: Sensitivity and influencing factors, Sensors. 10 (2010) 2088–2106. https://doi.org/10.3390/s100302088.
[86]T.T. Li, N. Bao, A.F. Geng, H. Yu, Y. Yang, X.T. Dong, Study on room temperature gas-sensing performance of CuO film-decorated ordered porous ZnO composite by In2 O3 sensitization, R. Soc. Open Sci. 5 (2018). https://doi.org/10.1098/rsos.171788.
[87]W.Z. Li, M.R. Wu, C.Y. Tung, C.Y. Huang, C.S. Tan, Y.S. Huang, L.J. Chen, R.H. Horng, Strain control of a NO gas sensor based on Ga-doped ZnO epilayers, ACS Appl. Electron. Mater. 2 (2020) 1365–1372. https://doi.org/10.1021/acsaelm.0c00145.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top