|
[1]J. Liu, Z. Li, W. Hao, W. Mu, Q. He, X. Zhou, X. Zhao, G. Xu, Z. Jia, X. Tao, S. Long, Pt/ZnGaO Schottky barrier diodes fabricated by using single crystal n-ZnGaO (111) substrates, IEEE Electron Device Lett. 43 (2022) 2061–2064. https://doi.org/10.1109/LED.2022.3219073. [2]P.H. Huang, Y.C. Shen, C.Y. Tung, C.Y. Huang, C.S. Tan, R.H. Horng, Energy-saving ZnGa2O4 phototransistor improved by thermal annealing, ACS Appl. Electron. Mater. 2 (2020) 3515–3521. https://doi.org/10.1021/acsaelm.0c00394. [3]K. Ling, K. Li, W. Zhang, Z. Wang, X. Liu, Comprehensive enhancement of ZnGa2O4-based solar blind photodetector performance by suppressing defects in oxygen-rich atmosphere, Vacuum. 215 (2023) 112279. https://doi.org/10.1016/j.vacuum.2023.112279. [4]D. Han, K. Liu, Q. Hou, X. Chen, J. Yang, B. Li, Z. Zhang, L. Liu, D. Shen, Self-powered solar-blind ZnGa2O4 UV photodetector with ultra-fast response speed, Sensors Actuators, A Phys. 315 (2020) 112354. https://doi.org/10.1016/j.sna.2020.112354. [5]Z. Galazka, S. Ganschow, R. Schewski, K. Irmscher, D. Klimm, A. Kwasniewski, M. Pietsch, A. Fiedler, I.S. Jonack, M. Albrecht, T. Schröder, M. Bickermann, Ultra-wide bandgap, conductive, high mobility, and high quality melt-grown bulk ZnGa2O4 single crystals, APL Mater. 7 (2019). https://doi.org/10.1063/1.5053867. [6]J. Boy, M. Handwerg, R. Mitdank, Z. Galazka, S.F. Fischer, Charge carrier density, mobility, and Seebeck coefficient of melt-grown bulk ZnGa2O4 single crystals, AIP Adv. 10 (2020). https://doi.org/10.1063/5.0002847. [7]X. Hao, Q. Lu, Y. Zhang, W. Li, Y. Zhang, T. Liu, X. Liang, F. Liu, X. Yan, Y. Gao, L. Wang, G. Lu, Insight into the effect of the continuous testing and aging on the SO2 sensing characteristics of a YSZ (Yttria-stabilized Zirconia)-based sensor utilizing ZnGa2O4 and Pt electrodes, J. Hazard. Mater. 388 (2020). https://doi.org/10.1016/j.jhazmat.2019.121772. [8]B. Wang, H. Wang, B. Tu, P. Xu, W. Wang, Z. Fu, Theoretical insight into optical properties of ZnGa2O4 transparent ceramic, Mater. Today Commun. 34 (2023) 104846. https://doi.org/10.1016/j.mtcomm.2022.104846. [9]F. Reichmann, J. Dabrowski, A.P. Becker, W.M. Klesse, K. Irmscher, R. Schewski, Z. Galazka, M. Mulazzi, Experimental and theoretical investigation of the surface electronic structure of ZnGa2O4 (100) Single-Crystals, Phys. Status Solidi Basic Res. 259 (2022). https://doi.org/10.1002/pssb.202100452. [10]M.M. Afandi, J. Kim, A UV-emitting and -sensing device from ZnGa2O4 oxide layer in metal-oxide-semiconductor structure, J. Sci. Adv. Mater. Devices. 8 (2023) 100531. https://doi.org/10.1016/j.jsamd.2022.100531. [11]Z. Chi, T. Tchelidze, C. Sartel, T. Gamsakhurdashvili, I. Madaci, H. Yamano, V. Sallet, Y. Dumont, A. Pérez-Tomás, F. Medjdoub, E. Chikoidze, Assessment of large critical electric field in ultra-wide bandgap p-type spinel ZnGa2O4, J. Phys. D. Appl. Phys. 56 (2023). https://doi.org/10.1088/1361-6463/acbb14. [12]F.P. Sabino, I. Chatratin, A. Janotti, G.M. Dalpian, Hole conductivity through a defect band in ZnGa2O4, Phys. Rev. Mater. 6 (2022) 1–10. https://doi.org/10.1103/PhysRevMaterials.6.064602. [13]Y. Jang, S. Hong, J. Seo, H. Cho, K. Char, Z. Galazka, Thin film transistors based on ultra-wide bandgap spinel ZnGa2O4, Appl. Phys. Lett. 116 (2020) 2–7. https://doi.org/10.1063/5.0007716. [14]Z. Chi, F.G. Tarntair, M. Frégnaux, W.Y. Wu, C. Sartel, I. Madaci, P. Chapon, V. Sallet, Y. Dumont, A.P. Tomás, R.H. Horng, E. Chikoidze, Bipolar self-doping in ultra-wide bandgap spinel ZnGa2O4, Mater. Today Phys. 20 (2021). https://doi.org/10.1016/j.mtphys.2021.100466. [15]Y.E. Lee, D.P. Norton, J.D. Budai, Y. Wei, Enhanced ultraviolet photoconductivity in semiconducting ZnGa2O4 thin films, J. Appl. Phys. 90 (2001) 3863–3866. https://doi.org/10.1063/1.1396829. [16]Y.E. Lee, D.P. Norton, J.D. Budai, P.D. Rack, J. Peterson, M.D. Potter, Photo- and low-voltage cathodoluminescence in lithium zinc gallate blue and green thin-film phosphors, J. Appl. Phys. 91 (2002) 2974–2977. https://doi.org/10.1063/1.1448863. [17]R.H. Horng, A. Sood, F.G. Tarntair, D.S. Wuu, C.L. Hsiao, S.J. Pratap, Ion implantation effects on the characteristics of β-Ga2O3 epilayers grown on sapphire by MOCVD, Ceram. Int. 48 (2022) 36425–36432. https://doi.org/10.1016/j.ceramint.2022.08.202. [18]A. Sood, D.S. Wuu, F.G. Tarntair, N.T. Sao, T.L. Wu, N. Tumilty, H.C. Kuo, S.J. Pratap, R.H. Horng, Electrical performance study of Schottky barrier diodes using ion implanted β-Ga2O3 epilayers grown on sapphire substrates, Mater. Today Adv. 17 (2023) 100346. https://doi.org/10.1016/j.mtadv.2023.100346. [19]K.D. Leedy, K.D. Chabak, V. Vasilyev, D.C. Look, K. Mahalingam, J.L. Brown, A.J. Green, C.T. Bowers, A. Crespo, D.B. Thomson, G.H. Jessen, Si content variation and influence of deposition atmosphere in homoepitaxial Si-doped β-Ga2O3 films by pulsed laser deposition, APL Mater. 6 (2018). https://doi.org/10.1063/1.5047214. [20]F. Zhang, M. Arita, X. Wang, Z. Chen, K. Saito, T. Tanaka, M. Nishio, T. Motooka, Q. Guo, Toward controlling the carrier density of Si doped Ga2O3 films by pulsed laser deposition, Appl. Phys. Lett. 109 (2016). https://doi.org/10.1063/1.4962463. [21]Y.X. Yan, S. Zheng, L.Q. Xiong, F. Wang, J. Cheng, F.S. Li, Z.W. Xiao, First-principles calculations of structural, electronic and optical properties of ZnGa2O4:Cr3+ system, J. Alloys Compd. 890 (2022) 161862. https://doi.org/10.1016/j.jallcom.2021.161862. [22]M.K. Hussen, F.B. Dejene, Quenching effect of in co-doping on the photoluminescence of ZnGa2-xInxO4:Cr3+ phosphors, Mater. Res. Express. 6 (2019). https://doi.org/10.1088/2053-1591/ab4bf2. [23]Y. Cheng, K. Sun, P. Ge, Up-conversion luminescence in Yb3+/Er3+ co-doped ZnGa2O4 and ZnAl2O4 powder phosphors, Optik (Stuttg). 170 (2018) 1–9. https://doi.org/10.1016/j.ijleo.2018.05.086. [24]S.S. Yi, J.S. Bae, B.K. Moon, J.H. Jeong, I.W. Kim, H.L. Park, Photoluminescence behavior of pulsed laser deposited ZnGa2O4 thin-film phosphors grown on various substrates, Appl. Phys. A Mater. Sci. Process. 76 (2003) 433–437. https://doi.org/10.1007/s00339-002-1898-2. [25]C. Satya Kamal, S. Boddu, B. Vishwanadh, K.R. Rao, V. Sudarsan, R.K. Vatsa, Blue luminescence from ZnGa2O4: Effect of lattice distortion and particle size, J. Lumin. 188 (2017) 429–435. https://doi.org/10.1016/j.jlumin.2017.04.056. [26]A. De Vos, K. Lejaeghere, D.E.P. Vanpoucke, J.J. Joos, P.F. Smet, K. Hemelsoet, First-Principles Study of Antisite Defect Configurations in ZnGa2O4:Cr Persistent Phosphors, Inorg. Chem. 55 (2016) 2402–2412. https://doi.org/10.1021/acs.inorgchem.5b02805. [27]J.H. Lee, H.J. Park, K. Yoo, B.W. Kim, J.C. Lee, S. Park, Characteristics of nano-sized ZnGa2O4 phosphor prepared by solution combustion method and solid state reaction method, J. Eur. Ceram. Soc. 27 (2007) 965–968. https://doi.org/10.1016/j.jeurceramsoc.2006.04.153. [28]Y. Jang, S. Hong, J. Seo, H. Cho, K. Char, Z. Galazka, Thin film transistors based on ultra-wide bandgap spinel ZnGa2O4, Appl. Phys. Lett. 116 (2020) 3–8. https://doi.org/10.1063/5.0007716. [29]A. Mirzaei, G. Neri, Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review, Sensors Actuators, B Chem. 237 (2016) 749–775. https://doi.org/10.1016/j.snb.2016.06.114. [30]S.M. Majhi, A. Mirzaei, H.W. Kim, S.S. Kim, T.W. Kim, Recent advances in energy-saving chemiresistive gas sensors: A review, Nano Energy. 79 (2021) 105369. https://doi.org/10.1016/j.nanoen.2020.105369. [31]A.Z. Sadek, S. Choopun, W. Wlodarski, S.J. Ippolito, K. Kalantar-zadeh, Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon sensing, IEEE Sens. J. 7 (2007) 919–924. https://doi.org/10.1109/JSEN.2007.895963. [32]Y.T. Tsai, S.J. Chang, L.W. Ji, Y.J. Hsiao, I.T. Tang, H.Y. Lu, Y.L. Chu, High sensitivity of NO gas sensors based on novel Ag-doped ZnO Nanoflowers enhanced with a UV light-emitting diode, ACS Omega. 3 (2018) 13798–13807. https://doi.org/10.1021/acsomega.8b01882. [33]G.P. Evans, D.J. Buckley, N.T. Skipper, I.P. Parkin, Single-walled carbon nanotube composite inks for printed gas sensors: Enhanced detection of NO2, NH3, EtOH and acetone, RSC Adv. 4 (2014) 51395–51403. https://doi.org/10.1039/c4ra09568e. [34]M. Reddeppa, B.G. Park, G. Murali, S.H. Choi, N.D. Chinh, D. Kim, W. Yang, M.D. Kim, NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: Study of UV light illuminations and humidity, Sensors Actuators, B Chem. 308 (2020) 127700. https://doi.org/10.1016/j.snb.2020.127700. [35]J.Y. Jeon, B.C. Kang, Y.T. Byun, T.J. Ha, High-performance gas sensors based on single-wall carbon nanotube random networks for the detection of nitric oxide down to the ppb-level, Nanoscale. 11 (2019) 1587–1594. https://doi.org/10.1039/c8nr07393g. [36]C.H. Kwak, H.S. Woo, F. Abdel-Hady, A.A. Wazzan, J.H. Lee, Vapor-phase growth of urchin-like Mg-doped ZnO nanowire networks and their application to highly sensitive and selective detection of ethanol, Sensors Actuators, B Chem. 223 (2016) 527–534. https://doi.org/10.1016/j.snb.2015.09.120. [37]A. Sharma, M. Tomar, V. Gupta, Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters, Sensors Actuators, B Chem. 181 (2013) 735–742. https://doi.org/10.1016/j.snb.2013.01.074. [38]C.H. Lin, S.J. Chang, T.J. Hsueh, A WO3 nanoparticles NO gas sensor prepared by hot-wire CVD, IEEE Electron Device Lett. 38 (2017) 266–269. https://doi.org/10.1109/LED.2016.2647235. [39]S. An, S. Park, H. Ko, C. Lee, Fabrication of WO3 nanotube sensors and their gas sensing properties, Ceram. Int. 40 (2014) 1423–1429. https://doi.org/10.1016/j.ceramint.2013.07.025. [40]J. Liu, S. Li, B. Zhang, Y. Wang, Y. Gao, X. Liang, Y. Wang, G. Lu, Flower-like In2O3 modified by reduced graphene oxide sheets serving as a highly sensitive gas sensor for trace NO2 detection, J. Colloid Interface Sci. 504 (2017) 206–213. https://doi.org/10.1016/j.jcis.2017.05.053. [41]A. Gorshkova, M. Gorshkov, N. Tripathi, K. Tukmakov, V. Podlipnov, D. Artemyev, P. Mishra, V. Pavelyev, V. Platonov, N.A. Djuzhev, Enhancement in NO2 sensing properties of SWNTs: A detailed analysis on functionalization of SWNTs with Z-Gly-OH, J. Mater. Sci. Mater. Electron. 34 (2023) 1–11. https://doi.org/10.1007/s10854-022-09551-5. [42]S. Kumar, G. Meng, P. Mishra, N. Tripathi, A.G. Bannov, A systematic review on 2D MoS2 for nitrogen dioxide (NO2) sensing at room temperature, Mater. Today Commun. 34 (2023) 105045. https://doi.org/10.1016/j.mtcomm.2022.105045. [43]R. Bajpai, A. Motayed, A. V. Davydov, V.P. Oleshko, G.S. Aluri, K.A. Bertness, M. V. Rao, M.E. Zaghloul, UV-assisted alcohol sensing using SnO2 functionalized GaN nanowire devices, Sensors Actuators, B Chem. 171–172 (2012) 499–507. https://doi.org/10.1016/j.snb.2012.05.018. [44]A.M. Ruiz, G. Sakai, A. Cornet, K. Shimanoe, J.R. Morante, N. Yamazoe, Cr-doped TiO2 gas sensor for exhaust NO2 monitoring, Sensors Actuators, B Chem. 93 (2003) 509–518. https://doi.org/10.1016/S0925-4005(03)00183-7. [45]S.W. Fan, A.K. Srivastava, V.P. Dravid, UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO, Appl. Phys. Lett. 95 (2009) 1–4. https://doi.org/10.1063/1.3243458. [46]B. Urasinska-Wojcik, T.A. Vincent, M.F. Chowdhury, J.W. Gardner, Ultrasensitive WO3 gas sensors for NO2 detection in air and low oxygen environment, Sensors Actuators, B Chem. 239 (2017) 1051–1059. https://doi.org/10.1016/j.snb.2016.08.080. [47]S.P. Arnold, S.M. Prokes, F.K. Perkins, M.E. Zaghloul, Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor, Appl. Phys. Lett. 95 (2009) 2007–2010. https://doi.org/10.1063/1.3223617. [48]C.Y. Lin, J.G. Chen, W.Y. Feng, C.W. Lin, J.W. Huang, J.J. Tunney, K.C. Ho, Using a TiO2/ZnO double-layer film for improving the sensing performance of ZnO based NO gas sensor, Sensors Actuators, B Chem. 157 (2011) 361–367. https://doi.org/10.1016/j.snb.2011.04.056. [49]H. Zhai, Z. Wu, Z. Fang, Recent progress of Ga2O3-based gas sensors, Ceram. Int. 48 (2022) 24213–24233. https://doi.org/10.1016/j.ceramint.2022.06.066. [50]V. V. Ganbavle, M.A. Patil, H.P. Deshmukh, K.Y. Rajpure, Development of Zn2SnO4 thin films deposited by spray pyrolysis method and their utility for NO2 gas sensors at moderate operating temperature, J. Anal. Appl. Pyrolysis. 107 (2014) 233–241. https://doi.org/10.1016/j.jaap.2014.03.006. [51]A.K. Singh, C.C. Yen, K.P. Chang, D.S. Wuu, Ing, Influence of Al doping on crystal structure , optical , and photoluminescence characteristics of ZnGa2O4 films, Mater. Sci. Semicond. Process. 150 (2022) 106962. https://doi.org/10.1016/j.mssp.2022.106962. [52]J.G. Han, Recent progress in thin film processing by magnetron sputtering with plasma diagnostics, J. Phys. D. Appl. Phys. 42 (2009). https://doi.org/10.1088/0022-3727/42/4/043001. [53]M.S. Hossain, M.A. Islam, M.M. Aliyu, P. Chelvanathan, T. Razykov, K. Sopian, N. Amin, Effect of annealing on the properties of ZnxCd1-xS thin film growth by RF magnetron co-sputtering, Energy Procedia. 33 (2013) 214–222. https://doi.org/10.1016/j.egypro.2013.05.060. [54]S. Li, S. Jiao, D. Wang, S. Gao, J. Wang, The influence of sputtering power on the structural, morphological and optical properties of β-Ga2O3 thin films, J. Alloys Compd. 753 (2018) 186–191. https://doi.org/10.1016/j.jallcom.2018.04.196. [55]W.-L. Huang, C.-H. Li, S.-P. Chang, S.-J. Chang, The effect of oxygen partial pressure and annealing process on the characteristics of ZnGa2O4 MSM UV photodetector , ECS J. Solid State Sci. Technol. 8 (2019) Q3213–Q3216. https://doi.org/10.1149/2.0371907jss. [56]Y. Xin, Z. Gao, X. Shang, J. Wu, D. Yu, J. Xiu, Z. Li, Effect of thermal annealing on the structural and optical properties of ZnGa2O4 films deposited on sapphire by magnetron sputtering, J. Alloys Compd. 933 (2023) 167760. https://doi.org/10.1016/j.jallcom.2022.167760. [57]X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, H. Ma, Effects of sputtering power on the properties of ZnO:Ga films deposited by r.f. magnetron-sputtering at low temperature, J. Cryst. Growth. 274 (2005) 474–479. https://doi.org/10.1016/j.jcrysgro.2004.10.037. [58]K. Gu, Z. Zhang, K. Tang, J. Huang, M. Liao, L. Wang, Effects of sputtering pressure and oxygen partial pressure on amorphous Ga2O3 film-based solar-blind ultraviolet photodetectors, Appl. Surf. Sci. 605 (2022) 154606. https://doi.org/10.1016/j.apsusc.2022.154606. [59]K.M. Krishna, G. Anoop, M.K. Jayaraj, Effect of substrate temperature on the structural and luminescent characteristics of RF-magnetron-sputtered ZnGa2O4:Dy3+ thin films, J. Electrochem. Soc. 154 (2007) J379. https://doi.org/10.1149/1.2780859. [60]L.P. Peng, L. Fang, X.F. Yang, Y.J. Li, Q.L. Huang, F. Wu, C.Y. Kong, Effect of annealing temperature on the structure and optical properties of In-doped ZnO thin films, J. Alloys Compd. 484 (2009) 575–579. https://doi.org/10.1016/j.jallcom.2009.04.139. [61]S. Hwang, J.H. Lee, C.H. Woo, J.Y. Lee, H.K. Cho, Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors, Thin Solid Films. 519 (2011) 5146–5149. https://doi.org/10.1016/j.tsf.2011.01.074. [62]U. Chaitra, D. Kekuda, K. Mohan Rao, Effect of annealing temperature on the evolution of structural, microstructural, and optical properties of spin coated ZnO thin films, Ceram. Int. 43 (2017) 7115–7122. https://doi.org/10.1016/j.ceramint.2017.02.144. [63]S.H. Yuan, S.L. Ou, S.Y. Huang, D.S. Wuu, Enhanced deep-ultraviolet responsivity in aluminum-gallium oxide photodetectors via structure deformation by high-oxygen-pressure pulsed laser deposition, ACS Appl. Mater. Interfaces. 11 (2019) 17563–17569. https://doi.org/10.1021/acsami.9b04354. [64]C.C. Wang, S.H. Yuan, S.L. Ou, S.Y. Huang, K.Y. Lin, Y.A. Chen, P.W. Hsiao, D.S. Wuu, Growth and characterization of co-sputtered aluminum-gallium oxide thin films on sapphire substrates, J. Alloys Compd. 765 (2018) 894–900. https://doi.org/10.1016/j.jallcom.2018.06.270. [65]A.K. Singh, P.W. Chen, D.S. Wuu, Growth and characterization of co-sputtered Al-doped ZnGa2O4 films for enhancing deep-ultraviolet photoresponse, Appl. Surf. Sci. 566 (2021) 150714. https://doi.org/10.1016/j.apsusc.2021.150714. [66]R.H. Horng, C.Y. Huang, S.L. Ou, T.K. Juang, P.L. Liu, Epitaxial Growth of ZnGa2O4: A new, deep ultraviolet semiconductor candidate, Cryst. Growth Des. 17 (2017) 6071–6078. https://doi.org/10.1021/acs.cgd.7b01159. [67]S.S. Yi, I.W. Kim, J.S. Bae, B.K. Moon, S.B. Kim, J.H. Jeong, Luminescence characteristics of ZnGa2O4 thin film phosphors grown by pulsed laser deposition, Mater. Lett. 57 (2002) 904–909. https://doi.org/10.1016/S0167-577X(02)00893-5. [68]W. Zhang, J. Zhang, Z. Chen, T. Wang, S. Zheng, Spectrum designation and effect of Al substitution on the luminescence of Cr3+ doped ZnGa2O4 nano-sized phosphors, J. Lumin. 130 (2010) 1738–1743. https://doi.org/10.1016/j.jlumin.2010.04.002. [69]W.K. Wang, Y.J. Xu, S.Y. Huang, K.F. Liu, P.C. Tsai, Structural characteristics and photoluminescence properties of sputter-deposition ZnGa2O4 thin films on sapphire and Si (100) substrates, Coatings. 9 (2019). https://doi.org/10.3390/coatings9080469. [70]S.S. Yi, I.W. Kim, H.L. Park, J.S. Bae, B.K. Moon, J.H. Jeong, Luminescence characteristics of pulsed laser deposited ZnGa2O4 thin film phosphors grown on various substrates, J. Cryst. Growth. 247 (2003) 213–218. https://doi.org/10.1016/S0022-0248(02)01915-2. [71]T.A. Safeera, E.I. Anila, An investigation on the luminescence quenching mechanism of ZnGa2O4:Tb3+ phosphor, J. Lumin. 205 (2019) 277–281. https://doi.org/10.1016/j.jlumin.2018.09.033. [72]Y.E. Lee, D.P. Norton, C. Park, C.M. Rouleau, Blue photoluminescence in ZnGa2O4 thin-film phosphors, J. Appl. Phys. 89 (2001) 1653–1656. https://doi.org/10.1063/1.1287228. [73]S.H. Tsai, Y.C. Shen, C.Y. Huang, R.H. Horng, Deep-ultraviolet Schottky photodetectors with high deep-ultraviolet/visible rejection based on a ZnGa2O4 thin film, Appl. Surf. Sci. 496 (2019) 143670. https://doi.org/10.1016/j.apsusc.2019.143670. [74]A. Guo, L. Zhang, N. Cao, T. Lu, Y. Zhu, D. Tian, Z. Zhou, S. He, B. Xia, F. Zhao, Pulsed laser deposition of ZnGa2O4 thin films on Al2O3 and Si substrates for deep optoelectronic devices applications, Appl. Phys. Express. 16 (2023). https://doi.org/10.35848/1882-0786/acb98c. [75]P.W. Chen, S.Y. Huang, S.H. Yuan, Y.A. Chen, P.W. Hsiao, D.S. Wuu, Quasi-single-crystalline ZnGa2O4 films via solid phase epitaxy for enhancing deep-ultraviolet photoresponse, Adv. Mater. Interfaces. 6 (2019) 2–11. https://doi.org/10.1002/admi.201901075. [76]A.B. Khatibani, M. Abbasi, S.M. Rozati, Peculiarities of deposition times on gas sensing behaviour of vanadium oxide thin films, Acta Phys. Pol. A. 129 (2016) 1245–1251. https://doi.org/10.12693/APhysPolA.129.1245. [77]C.H. Tien, B.W. Hsiao, C.M. Chen, M.I. Chen, J.L. Chiang, D.S. Wuu, Nitrogen and oxygen annealing effects on properties of aluminum-gallium oxide films grown by pulsed laser deposition, Ceram. Int. 46 (2020) 24147–24154. https://doi.org/10.1016/j.ceramint.2020.06.194. [78]P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, CO2 gas sensing properties of DC reactive magnetron sputtered ZnO thin film, Ceram. Int. 40 (2014) 13115–13122. https://doi.org/10.1016/j.ceramint.2014.05.011. [79]A.K. Singh, C.C. Yen, C.F. Wen, R.H. Horng, D.S. Wuu, Growth and characterization of sputtered ZnO:ZnGa2O4 dual-phase films on sapphire substrates for NO gas-sensing applications, ACS Appl. Electron. Mater. (2023). https://doi.org/10.1021/acsaelm.3c00045. [80]M.R. Wu, W.Z. Li, C.Y. Tung, C.Y. Huang, Y.H. Chiang, P.L. Liu, R.H. Horng, NO gas sensor based on ZnGa2O4 epilayer grown by metalorganic chemical vapor deposition, Sci. Rep. 9 (2019) 1–9. https://doi.org/10.1038/s41598-019-43752-z. [81]H.N. Hieu, N.M. Vuong, H. Jung, D.M. Jang, D. Kim, H. Kim, S.K. Hong, Optimization of a zinc oxide urchin-like structure for high-performance gas sensing, J. Mater. Chem. 22 (2012) 1127–1134. https://doi.org/10.1039/c1jm13696h. [82]R.H. Horng, S.H. Lin, D.R. Hung, P.H. Chao, P.K. Fu, C.H. Chen, Y.C. Chen, J.H. Shao, C.Y. Huang, F.G. Tarntair, P.L. Liu, C.L. Hsiao, Structure effect on the response of ZnGa2O4 gas sensor for nitric oxide applications, Nanomaterials. 12 (2022) 3759. https://doi.org/10.3390/nano12213759. [83]Z.X. Cai, H.Y. Li, X.N. Yang, X. Guo, NO sensing by single crystalline WO3 nanowires, Sensors Actuators, B Chem. 219 (2015) 346–353. https://doi.org/10.1016/j.snb.2015.05.036. [84]A.S.M.I. Uddin, D.T. Phan, G.S. Chung, Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid, Sensors Actuators, B Chem. 207 (2015) 362–369. https://doi.org/10.1016/j.snb.2014.10.091. [85]C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: Sensitivity and influencing factors, Sensors. 10 (2010) 2088–2106. https://doi.org/10.3390/s100302088. [86]T.T. Li, N. Bao, A.F. Geng, H. Yu, Y. Yang, X.T. Dong, Study on room temperature gas-sensing performance of CuO film-decorated ordered porous ZnO composite by In2 O3 sensitization, R. Soc. Open Sci. 5 (2018). https://doi.org/10.1098/rsos.171788. [87]W.Z. Li, M.R. Wu, C.Y. Tung, C.Y. Huang, C.S. Tan, Y.S. Huang, L.J. Chen, R.H. Horng, Strain control of a NO gas sensor based on Ga-doped ZnO epilayers, ACS Appl. Electron. Mater. 2 (2020) 1365–1372. https://doi.org/10.1021/acsaelm.0c00145.
|