跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/06 16:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張銘芳
研究生(外文):Ming-Fang Zhang
論文名稱:水熱-化學電池法製備高光電化學反應之BaTiO3/TiO2異質結構薄膜並輔以第一原理計算
論文名稱(外文):Preparation of BaTiO3/TiO2 Heterostructure Thin Films with High Photoelectrochemical Response by a Hydrothermal-Galvanic Couple Method Aided by First-Principles Calculations
指導教授:呂福興
指導教授(外文):Fu-Hsing Lu
口試委員:段維新曾文甲蔡健益
口試日期:2023-06-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:97
中文關鍵詞:異質結構光電流第一原理計算水熱-化學電池
外文關鍵詞:HeterostructurephotocurrentFirst-principlesHydrothermal-galvanic couple method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:13
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究擬製備異質結構薄膜期能提高材料的光電化學響應,文獻生成BaTiO3/TiO2異質結構的方法多為水熱法或空氣燒結,其中並未有以水熱化學法並以還原氣氛熱處理製備者。本研究利用水熱-化學電池法,於溶液中添加Ba(CH3COO)2或與C6H12N4 (HMT)製備鈦酸鋇薄膜,未添加HMT所製備的以BTO稱之,有添加HMT所製備則以nBTO稱之。透過不同氧分壓之空氣、Ar、N2、Ar/5%H2、N2/5%H2與NH3氣氛,於不同溫度與不同持溫時間熱處理製備BaTiO3/TiO2異質結構薄膜。另以第一原理計算氮摻雜或形成氧空位對鈦酸鋇晶體、能帶結構與態密度的影響,本研究以兩種方法計算,取代型摻雜與虛擬晶體近似法(VCA)。
根據XRD分析結果,以較高氧分壓之空氣、Ar與N2於900℃~930℃持溫5小時熱處理鈦酸鋇薄膜,因底材TiN皆被氧化成TiO2,因此光電流密度極低。以NH3於700℃持溫5小時熱處理鈦酸鋇薄膜,底材TiN未氧化,維持BaTiO3/TiN薄膜,因此光電流密度也低。而經低氧分壓氣氛Ar/5%H2與N2/5%H2於不同溫度持溫5小時熱處理後的薄膜含有TiN、TiO2與Ba1.12(Ti8O16)/BaTiO3,經由FE-TEM選區繞射結果,成功製備出BaTiO3/Ba1.12(Ti8O16)/TiO2/TiN異質結構,因此光電流密度皆較熱處理前高,其中830℃~1000℃熱處理之薄膜光電流密度達1000 µA/cm2以上,皆較650℃~710℃熱處理之薄膜的光電流密度高出許多,可能是因為氧空位需要足夠的熱處理溫度與時間以形成所致,而氧空位的存在可提升光電化學反應。此外以Ar/5%H2與N2/5%H2於930℃持溫5小時熱處理nBTO薄膜皆具有大於2000 µA/cm2光電流密度,經由XPS分析知N2/5%H2熱處理後薄膜未有氮摻雜,因此可確定光電流提升原因非為含氮氣氛熱處理所致。
綜合以上實驗結果知本研究成功製備出BaTiO3/TiO2/TiN異質結構薄膜,在N2/5%H2於950℃持溫3小時熱處理nBTO,可得本研究最高的光電流密度6059±141 µA/cm2。
另由電腦模擬計算結果知,無論以取代型或VCA計算氮摻雜鈦酸鋇於低濃度氮摻雜(0 at%~5at%)時,能隙皆有隨氮摻雜量上升而下降的趨勢,其中以取代型氮摻雜計算與文獻較相似。鈦酸鋇晶體中形成氧空位,晶體體積隨氧空位濃度上升而變大;而能隙隨氧空位濃度上升而上升的趨勢與文獻相符合。
This research aims to prepare the heterostructure thin films to enhance the photoelectrochemical response of the material. Previous literature has primarily utilized hydrothermal or air sintering methods to create BaTiO3/TiO2 heterostructures, without any instances of employing a hydrothermal-galvanic couple method approach followed by a reducing atmosphere heat treatment. In this study, a hydrothermal-galvanic couple method was employed to fabricate BaTiO3 thin films in a solution by adding either Ba(CH3COOH)2 alone or together with C6H12N4 (HMT). The films prepared without HMT are referred to as BTO, while those prepared with HMT are labeled as nBTO. BaTiO3/TiO2 heterostructure thin films were fabricated through heat treatment at different temperatures and with varying holding times under various oxygen partial pressure atmospheres, including air, Ar, N2, Ar/5%H2, N2/5%H2, and NH3. Additionally, the influence of nitrogen doping or the formation of oxygen vacancies on the BaTiO3 crystal, band structure, and density of states was simulated using first-principles calculations. Two simulation methods were employed: substitutional doping and the virtual crystal approximation (VCA).
Based on the XRD analysis results, the BaTiO3 film underwent heat treatment within a temperature range of 900°C to 930°C for a duration of 5 h, under air, Ar, and N2 atmospheres characterized by relatively high oxygen partial pressures. During this process, the TiN underlayer was entirely oxidized to form TiO2, resulting in an extremely low photocurrent density. On the other hand, when the BaTiO3 film was heat-treated at 700°C for 5 h within an atmosphere characterized by an extremely low oxygen partial pressure of NH3, the substrate TiN remained unoxidized and did not transform into TiO2. This resulted in the formation of a BaTiO3/TiN film, which exhibited a low photocurrent density. Thin films contained TiN, TiO2, and Ba1.12(Ti8O16)/BaTiO3 after undergoing heat treatment under low oxygen partial pressure conditions (Ar/5%H2 and N2/5%H2) at various temperatures for 5 h. According to the FE-TEM selected area diffraction outcomes, a BaTiO3/Ba1.12(Ti8O16)/TiO2/TiN heterostructure was successfully synthesized. Consequently, the resulting photocurrent density was higher than that observed prior to heat treatment. Notably, the photocurrent density for films subjected to heat treatment between 830°C and 1000°C exceeded 1000 µA/cm2, significantly surpassing the values recorded for films treated at 650°C to 710°C. The reason behind this improvement may lie in the requirement for sufficient heat treatment temperature and duration to facilitate the formation of oxygen vacancies. The presence of oxygen vacancies further amplifies the photoelectrochemical reaction. Furthermore, nBTO thin films subjected to heat treatment using Ar/5%H2 and N2/5%H2 at 930°C for 5 h exhibited a photocurrent density exceeding 2000 µA/cm2. XPS analysis revealed the absence of nitrogen doping in films after N2/5%H2 heat treatment. Consequently, it can be confidently established that the augmented photocurrent density is not attributed to the nitrogen-rich atmosphere during heat treatment.
By integrating the aforementioned experimental findings, this study successfully synthesized heterostructured thin films of BaTiO3/TiO2/TiN. The application of heat treatment to nBTO at 950°C for 3 h under an N2/5%H2 atmosphere yielded the highest photocurrent density of 6059±141 µA/cm2 in this research.
Additionally, according to the results obtained from computer simulations, regardless of whether substitutional or VCA methods were employed to calculate nitrogen-doped BaTiO3 at low nitrogen doping concentrations (ranging from 0 at% to 5 at%), a consistent trend was observed: the bandgap decreased as the nitrogen doping level increased. Notably, the calculations involving substitutional nitrogen doping closely aligned with the literature findings. Within the BaTiO3 crystal, the formation of oxygen vacancies was observed. The crystal volume expanded as the concentration of oxygen vacancies increased. Simultaneously, the bandgap exhibited a trend of increasing as the concentration of oxygen vacancies rose, which is in accordance with existing literature.
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 2
第二章 理論背景與文獻回顧 3
2.1 理論背景 3
2.1.1 水熱-化學電池法 3
2.1.2 異質結構 4
2.2 文獻回顧 5
2.2.1 本實驗室以水熱-化學電池法製備鈣鈦礦薄膜 5
2.2.2 本實驗室製備鈣鈦礦薄膜並量測其光電流密度特性 10
2.2.3 鈦酸鋇/二氧化鈦異質結構 13
2.2.4 氮摻雜鈣鈦礦氧化物/金屬氧化物異質結構文獻 15
2.2.5 鈦酸鋇第一原理計算 16
第三章 研究方法 19
3.1 實驗流程 19
3.2 TiN薄膜製程 20
3.3 水熱-化學電池法製備鈦酸鋇薄膜 20
3.4 不同氣氛熱處理鈦酸鋇薄膜 21
3.5 分析儀器 22
3.5.1 場發射掃描式電子顯微鏡 22
3.5.2 X光繞射儀 22
3.5.3 紫外光/可見光/紅外光光譜儀 22
3.5.4 電化學分析儀 22
3.5.5 X光光電子能譜儀 23
3.5.6 多功能聚焦離子束與場發射穿透式電子顯微鏡 23
3.6 第一原理計算 24
第四章 結果 25
4.1 以水熱-化學電池法製備鈦酸鋇薄膜 25
4.1.1 電流-時間曲線與外觀 25
4.1.2 結晶相與顯微結構分析 26
4.1.3 成分分析 28
4.1.4 能隙 28
4.1.5 光電流密度 29
4.2 不同氣氛熱處理鈦酸鋇以製備鈦酸鋇/二氧化鈦異質結構 32
4.2.1 各氣氛氧分壓分析與外觀 32
4.2.2 結晶相分析 35
4.2.3 成分分析 42
4.2.4 能隙 45
4.2.5 光電流密度 46
4.3 第一原理計算氮摻雜與氧空位對鈦酸鋇晶體、能帶結構與態密度影響 46
4.3.1 鈦酸鋇收斂性測試 46
4.3.2 鈦酸鋇的晶體結構與能帶結構計算 49
4.3.2.1 氮摻雜鈦酸鋇之計算結果 50
4.3.2.2 形成氧空位對鈦酸鋇晶體之計算結果 55
4.3.2.3 氮摻雜與氧空位形成以符合電中性條件之計算結果符合電中性條件之計算結果 58
4.3.3 以VCA計算缺陷對鈦酸鋇的影響 63
第五章 討論 66
5.1 高光電流密度的確認 66
5.2 高光電流密度表現的因素 67
5.2.1 異質結構 67
5.2.2 還原氣氛處理 71
5.2.2.1 TiN不可完全氧化 75
5.2.2.2 氧空位的生成 77
5.2.3 優化光電流密度方法 79
5.3 第一原理計算 82
5.3.1 氮摻雜鈦酸鋇 82
5.3.2 添加氧空位於鈦酸鋇晶體 84
5.3.3 計算與計算的文獻以及實驗結果相比較 85
第六章 結論 89
參考文獻 91
[1] B.L. Jiang, Y.M. Wang, 5-Plasma Electrolytic Oxidation Treatment of Aluminum and Titanium Alloys. In H. Dong, Surface Engineering of Light Alloys, Woodhead Publishing, 2010, pp.110-154.
[2] K. Uchino, 3-Piezoelectric ceramics for transducers, In K. Nakamura, In Woodhead Publishing Series in Electronic and Optical Materials, Ultrasonic Transducers, Woodhead Publishing, 2012, pp.70-116.
[3] J. Chen, H. Deng, Y. Pan, D. Zheng, L. Sun, J. Tao, P. Yang, J. Chu, Band gap modulation and improved magnetism of double perovskite Sr2KMoO6 (K = Fe, Co, Ni, Mn) doped BaTiO3 ceramics, Ceram. Int. 48 (2022) 7629-7635.
[4] G. Panthi, M. Park, Approaches for enhancing the photocatalytic activities of barium titanate: A review, J. Energy Chem. 73 (2022)160-188.
[5] R.-X. Wang, Q. Zhu, W.-S. Wang, C.-M. Fan, A.-W. Xu, BaTiO3–graphene nanocomposites: synthesis and visible light photocatalytic activity, New J. Chem. 39 (2015) 4407-4413.
[6] X. Hu, J. Song, J. Luo, H. Zhang, Z. Sun, C. Li, S. Zheng, Q. Liu, Single-atomic Pt sites anchored on defective TiO2 nanosheets as a superior photocatalyst for hydrogen evolution, J. Energy Chem. 62 (2021) 1-10.
[7] J. Li, G. Zhang, S. Han, J. Cao, L. Duan, Tao Zeng, Enhanced solar absorption and visible-light photocatalytic and photoelectrochemical properties of aluminium-reduced BaTiO3 nanoparticles, Chem. Commun. 54 (2018) 723-726.
[8] Z. Zhao, Q. Ling, Z. Li, K. Yan, C. Ding, P. Chen, L. Yang, Z. Sun, M. Zhang, S-Scheme BaTiO3/TiO2 heterojunctions: Piezophotocatalytic degradation of norfloxacin, Sep. Purif. Technol. 308 (2023) 122928.
[9] S. Ghosh, S.J.A. Moniz, Recent Developments in Heterostructure-Based Catalysts for Water Splitting. In Visible Light-Active Photocatalysis, S. Ghosh (Ed.), 2018, pp.191-226.
[10] J. Wu, W. Wang, Y. Tian, C. Song, H. Qiu, H. Xue, Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO3/TiO2 nanofibers for degradation of organic pollutants, Nano Energy 77 (2020) 105122.
[11] R. Li, Q. Li, L. Zong, X. Wang, J. Yang, BaTiO3/TiO2 heterostructure nanotube arrays for improved photoelectrochemical and photocatalytic activity, Electrochimica Acta 91 (2013) 30–35.
[12] M. Plodinec, A. Šantić, J. Zavašnik, M. Čeh, A. Gajović, Giant persistent photoconductivity in BaTiO3/TiO2 heterostructures, Appl. Phys. Lett. 105 (2014) 152101.
[13] A. Somdee, Improved photovoltaic efficiency of dye sensitized solar cells by decorating TiO2 photoanode with barium titanate oxide, J. Alloys Compd. 777 (2019) 1251-1257.
[14] J. Wu, W. Wang, Y. Tian, C. Song, H. Qiu, H. Xue, Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO3/TiO2 nanofibers for degradation of organic pollutants, Nano Energy 77 (2020) 105122.
[15] K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology, Cambridge University Press, 2008, pp.7.
[16] C. Zoski, Handbook of Electrochemistry, Elsevier, 2006, pp.3-7.
[17] R. Job, Electrochemical Energy Storage: Physics and Chemistry of Batteries, Walter de Gruyter GmbH & Co KG, 2020, pp. 122-125.
[18] R. Richard, J. Law (Eds.), A Dictionary of Physics, 8th ed, Oxford University Press, United Kingdom, 2019.
[19] J.-G. Yu, X. Li, J.-X. Low, Semiconductor solar photocatalysts: fundamentals and applications, 1st ed. Wiley-VCH, 2022.
[20] 余錦智,以低溫水熱法及化學電池作用於TiN膜上製備鈦酸鋇膜之研究,國立中興大學材料科學與工程學系碩士學位論文(2005)。
[21] Y.-C. Chieh, C.-C. Yu, F.-H. Lu, Epitaxial growth of BaTiO3 films on TiN/Si substrates by a hydrothermal-galvanic couple method, Appl. Phys. Lett. 90 (2007) 032904-032906.
[22] 鄧煥平,以低溫水熱-化學電池法於鍍氮化鋯膜矽基材上製備鋯酸鋇膜之研究,國立中興大學材料科學與工程學系碩士學位論文(2007)。
[23] 趙玲夙,以低溫水熱-化學電池法於鍍鈦膜矽基材上製備具有生物活性之奈米NaHTi3O7薄膜研究,國立中興大學材料科學與工程學系碩士學位論文(2009)。
[24] P.-H. Chan, F.-H. Lu, Low-temperature hydrothermal–galvanic couple synthesis of BaTiO3 thin films on Ti-coated silicon substrates, Thin Solid Films 517 (2009) 4782–4785.
[25] P.-H. Chan, F.-H. Lu, Low-temperature hydrothermal synthesis and the growth kinetics of BaTiO3 films on TiN/Si, Ti/Si, and bulk-Ti substrates, J. Electrochem. Soc. 57 (2010) G130-G135.
[26] 蔡迪佑,以水熱-化學電池法於TiN膜上製備鈦酸鋇膜及其成長動力學分析,國立中興大學材料科學與工程學系碩士學位論文(2010)。
[27] 林佳君,以水熱-化學電池法於不同表面形貌及電阻率之TiN/Si上製備SrTiO3膜之研究,國立中興大學材料科學與工程學系碩士學位論文(2011)。
[28] 蔡右相,水熱-化學電池法中以低Sr離子濃度生成SrTiO3薄膜之研究,國立中興大學材料科學與工程學系碩士學位論文(2013)。
[29] 吳効泓,以水熱-化學電池法於ZrN/Si上製備BaZrO3薄膜及成長機制分析,國立中興大學材料科學與工程學系碩士學位論文(2015)。
[30] 詹薰述,以水熱-化學電池法於TiN/Si基材上製備BaxSr1-xTiO3薄膜之特性研究,國立中興大學材料科學與工程學系碩士學位論文(2015)。
[31] 黃亭瑞,以水熱-化學電池法於ZrN/Si雙電極製備BaZrO3薄膜並應用於光電流之研究,國立中興大學材料科學與工程學系碩士學位論文(2019)。
[32] 黃詩棋,以水熱‐化學電池法在雙TiN薄膜電極系統製備鈦酸鋇薄膜及其應用研究,國立中興大學材料科學與工程學系碩士學位論文(2020)。
[33] Y.-Z. Zheng, P.-H. Chan, F.-H. Lu, A facile synthesis of Al-doped BaTiO3 thin films by a hydrothermal-galvanic couple method on TiAlN film electrodes, Surf. Coat. Technol. 434 (2022) 128163.
[34] 周沛澐,水熱-化學電池法製備氮摻雜鈦酸鍶薄膜之特性分析並輔以第一原理計算,國立中興大學材料科學與工程學系碩士學位論文(2022)。
[35] 張廷嘉,以水熱-化學電池法於氮氧化鈦薄膜電極製備鈦酸鋇薄膜,國立中興大學材料科學與工程學系碩士學位論文(2020)。
[36] 李至宜,以水熱-化學電池法在TiN薄膜電極上製備不同優選方向之鈦酸鋇薄膜及應用研究,國立中興大學材料科學與工程學系碩士學位論文(2021)。
[37] 鄭羽蓁,以水熱-化學電池法於氮化物薄膜電極上製備鋁與氮摻雜鈦酸鋇薄膜及特性分析,國立中興大學材料科學與工程學系碩士學位論文(2021)。
[38] 張峻誠,以電漿電解氧化法於TiN電極製備氮摻雜之鈦酸鋇薄膜,國立中興大學材料科學與工程學系碩士學位論文(2022)。
[39] Q. Liu, D. Zhai, Z. Xiao, C. Tang, Q. Sun, C. R. Bowen, H. Luo, D. Zhang, Piezo-photoelectronic coupling effect of BaTiO3@TiO2 nanowires for highly concentrated dye degradation, Nano Energy 92 (2022) 106702.
[40] J.-H. Yan, Y.-R. Zhu, Y.-G. Tang, S.-Q. Zheng, Nitrogen-doped SrTiO3/TiO2 composite photocatalysts for hydrogen production under visible light irradiation, J. Alloys Compd. 472 (2009) 429-433.
[41] J.-H. Yan, L. Zhang, Y.-R. Zhu, Y.-G. Tang, H.-H. Yang, Preparation and photocatalytic hydrogen production of NiO(CoO)/N-SrTiO3 heterojunction complex catalyst under simulated sunlight irradiation, Journal of Inorganic Materials, 24 (2009) 666-670.
[42] O. Ruzimuradov, K. Sharipov, A. Yarbekov, K. Saidova, M. Hojamberdievb, R. M. Prasad, G. Cherkashinin, R. Riedel, A facile preparation of dual-phase nitrogen-doped TiO2–SrTiO3 macroporous monolithic photocatalyst for organic dye photodegradation under visible light, J. Eur. Ceram. Soc. 35 (2015) 1815-1821.
[43] J.-R. Huang, X. Tan, T. Yu, W.-L. Hu, L. Zhao, H. Liu, L. Zhang, Y.-L. Zou, N-doped TiO2 /SrTiO3 heterostructured nanotubes for high-efficiency photoelectrocatalytic properties under visible-light irradiation, ChemElectroChem 2 (2015) 1174-1181.
[44] O. Ruzimuradov, M. Hojamberdiev, C. Fasel, R. Riedel, Fabrication of lanthanum and nitrogen – co-doped SrTiO3 – TiO2 heterostructured macroporous monolithic materials for photocatalytic degradation of organic dyes under visible light, J. Alloys Compd. 669 (2017) 144-150.
[45] J. Kong, Z. Rui, H. Ji, Carbon nitride polymer sensitization and nitrogen doping of SrTiO3/TiO2 nanotube heterostructure toward high visible light photocatalytic performance, Ind. Eng. Chem. Res. 56 (2017) 9999-10008.
[46] H. Gu, G. Xing, H. Gu, Z. Chaia, X. Wang, A novel strategy to promote photo-oxidative and reductive abilities via the construction of a bipolar Bi2WO6/N-SrTiO3 material, RSC Adv. 7 (2017) 52218-52226
[47] L. Chen, L. Shi, J. Wu, Z. Tong, C. Huang, C. Li, B. Ou, C. Peng, L. Tian, J. Tang, N-SrTiO3 nanoparticle/BiOBr nanosheet as 0D/2D heterojunctions for enhanced visible light photocatalytic dye degradation, Mater. Sci. Eng. B 261 (2020) 114667.
[48] Z.-Q. Ma, H.-Pan, Z.-S. Wang, P.-K. Wong, Effects of non-metal dopants and defects on electronic properties of barium titanate as photocatalyst, Int. J. Hydrog. Energy 40 (2015) 4766-4776.
[49] F. Maldonado, A. Stashans, DFT study of Ag and La codoped BaTiO3, J Phys Chem Solids 102 (2017) 136-141.
[50] Z. Teng, J. Jiang, G. Chen, C. Ma, F. Zhang, The electronic structures and optical properties of B, C or N doped BaTiO3, AIP Advances 8 (2018) 095216.
[51] M. Wang, C. Wang, Y. Liu, X. Zhou, Hybrid density functional theory description of non-metal doping in perovskite BaTiO3 for visible-light photocatalysis, J Solid State Chem 280 (2019)121018.
[52] W. Cai, X. Ma, J. Chen, R. Shi, Y. Wang, Y. Yang, D. Jing, H. Yuan, J. Du, M. Que, Synergy of oxygen vacancy and piezoelectricity effect promotes the CO2 photoreduction by BaTiO3, Appl. Surf. Sci. 619 (2023) 156773.
[53] B.D. Cullity, S.R.Stock, Elements of X-Ray Diffraction, Prentice Hall, Pearson, 2001, pp.95&367-388.
[54] S. S. Kumbhar, M. A. Mahadik, P. K. Chougule, V. S. Mohite , Y. M. Hunge, K. Y. Rajpure, A. V. Moholkar , C. H. Bhosale, Structural and electrical properties of barium titanate (BaTiO3) thin films obtained by spray pyrolysis method, Materials Science-Poland 33 (2015) 852-861.
[55] P. Wang, C. Fan, Y. Wang, G. Ding, P. Yuan, A dual chelating sol–gel synthesis of BaTiO3 nanoparticles with effective photocatalytic activity for removing humic acid from water, Mater. Res. Bull. 48 (2013) 869-877.
[56] F. Peng, L. Cai, L. Huang, H. Yu, H. Wang, Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method, J Phys Chem Solids 69 (2008) 1657~1664.
[57] P. M. Nithya, L. G. Devi, Heavy atom perturbation by the incorporation of iodine ion into BaTiO3 lattice: Reduction of fluorescence and enhancement of rate of interfacial charge transfer process under the visible light irradiation, Surf. Interfaces 18 (2020) 100411.
[58] İ. C. Kaya, V. Kalem, H. Akyildiz, Hydrothermal synthesis of pseudocubic BaTiO3 nanoparticles using TiO2 nanofibers: Study on photocatalytic and dielectric properties, Int. J. Appl. Ceram. Technol. 16 (2019) 1557-1569.
[59] W.-S. Cho, Structural evolution and characterization of BaTiO3 nanoparticles synthesized from polymeric precursor, J Phys Chem Solids 59 (1998) 659-666.
[60] A. A. Yadav, Y. M. Hunge, V. L. Mathe, S. B. Kulkarni, Photocatalytic degradation of salicylic acid using BaTiO3 photocatalyst under ultraviolet light illumination, J. Mater. Sci. Mater. Electron. 29 (2018) 15069-15073.
[61] D.-H. Wang, L. Jia, X.-L. Wu , L.-Q. Lu, A.-W. Xu, One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity, 4 (2012) 576-584.
[62] F. Zou, Z. Jiang, X. Qin, Y. Zhao, L. Jiang, J. Zhi, T. Xiaoa, P. P. Edwards, Template-free synthesis of mesoporous N-doped SrTiO3 perovskite with high visible-light-driven photocatalytic activity, Chem. Commun. 48 (2012) 8514-8516.
[63] J. Liu, X. Li, H. Ho, M. Zhou, Facile synthesis of anatase–rutile diphase n-doped TiO2 nanoparticles with excellent visible light photocatalytic activity, Catalysts 10 (2020) 1126.
[64] H. Zhang, X. Chen, Z. Lin, L. Zhang, H. Cao, L. Yu, G. Zheng, Hybrid niobium and titanium nitride nanotube arrays implanted with nanosized amorphous rhenium–nickel: An advanced catalyst electrode for hydrogen evolution reactions, Int. J. Hydrog. Energy 45 (2020) 6461-6475.
[65] D. Shindo, T. Oikawa, Energy Dispersive X-ray Spectroscopy. In: Analytical Electron Microscopy for Materials Science. Springer, Tokyo, 2002.
[66] S.Yurdakal, C. Garlisi, L. Özcan, M. Bellardita, G. Palmisano, Chapter 4 - (Photo)catalyst Characterization Techniques: Adsorption Isotherms and BET, SEM, FTIR, UV–Vis, Photoluminescence, and Electrochemical Characterizations, Elsevier, 2019.
[67] P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on uv–vis spectra, J. Phys. Chem. Lett. 9 (2018) 23 6814-6817.
[68] K. W. Kirby, B. A. Wechsler, Phase relations in the barium titanate-titanium oxide system, J. Am. Ceram. Soc. 74 (1991) 1841-1847.
[69] S. Lee, C. A. Randall, Z.-K. Liu, Modified phase diagram for the barium oxide–titanium dioxide system for the ferroelectric barium titanate, J. Am. Ceram. Soc. 90 (2007) 2589-2594.
[70] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271.
[71] P.J. Niu, J.L. Yan, C.Y. Xu, First-principles study of nitrogen doping and oxygen vacancy in cubic PbTiO3, Comput. Mater. Sci. 98 (2015) 10-14.
[72] T. Kolodiazhnyi, A. Petric, Effect of PO2 on bulk and grain boundary resistance of n-type BaTiO3 at cryogenic temperatures, J. Am. Ceram. Soc. 86 (2004) 1551-2916.
[73] E. Erdem, P. Jakes, R.-A. Eichel, Formation of〖 (Ti_Ti^'-V_O^(••))〗^• defect dipoles in BaTiO3 ceramics heat-treated under reduced oxygen partial-pressure, Functional Materials Letters 3 (2010) 65-68.
[74] D. Hertkorn, M. Benkler, U. Gleißner, F. Büker, C. Megnin, C. Müller, T. Hanemann, H. Reinecke, Morphology and oxygen vacancy investigation of strontium titanate-based photo electrochemical cells, J. Mater. Sci. 50 (2015) 40-48.
[75] H. Tan, Z. Zhao, W. Zhu, E. N. Coker, B. Li, M. Zheng, W. Yu, H. Fan, Z. Sun, Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3, ACS Appl. Mater. Interfaces 6 (2014) 19184–19190.
[76] M.-H. Chan, F.-H. Lu, Air-based deposition of conductive nitride thin films by sputtering, J. Electrochem. Soc. 158 (2011) 75-80.
[77] C.A. Randall, P. Yousefian, Fundamentals and practical dielectric implications of stoichiometry and chemical design in a high-performance ferroelectric oxide: BaTiO3, J. Eur. Ceram. Soc. 42 (2022) 1445-1473.
[78] T. Bak, J. Nowotny, M. K. Nowotny, Defect disorder of titanium dioxide, J. Phys. Chem. B 110 (2006) 21560–21567.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊