[1] B.L. Jiang, Y.M. Wang, 5-Plasma Electrolytic Oxidation Treatment of Aluminum and Titanium Alloys. In H. Dong, Surface Engineering of Light Alloys, Woodhead Publishing, 2010, pp.110-154.
[2] K. Uchino, 3-Piezoelectric ceramics for transducers, In K. Nakamura, In Woodhead Publishing Series in Electronic and Optical Materials, Ultrasonic Transducers, Woodhead Publishing, 2012, pp.70-116.
[3] J. Chen, H. Deng, Y. Pan, D. Zheng, L. Sun, J. Tao, P. Yang, J. Chu, Band gap modulation and improved magnetism of double perovskite Sr2KMoO6 (K = Fe, Co, Ni, Mn) doped BaTiO3 ceramics, Ceram. Int. 48 (2022) 7629-7635.
[4] G. Panthi, M. Park, Approaches for enhancing the photocatalytic activities of barium titanate: A review, J. Energy Chem. 73 (2022)160-188.
[5] R.-X. Wang, Q. Zhu, W.-S. Wang, C.-M. Fan, A.-W. Xu, BaTiO3–graphene nanocomposites: synthesis and visible light photocatalytic activity, New J. Chem. 39 (2015) 4407-4413.
[6] X. Hu, J. Song, J. Luo, H. Zhang, Z. Sun, C. Li, S. Zheng, Q. Liu, Single-atomic Pt sites anchored on defective TiO2 nanosheets as a superior photocatalyst for hydrogen evolution, J. Energy Chem. 62 (2021) 1-10.
[7] J. Li, G. Zhang, S. Han, J. Cao, L. Duan, Tao Zeng, Enhanced solar absorption and visible-light photocatalytic and photoelectrochemical properties of aluminium-reduced BaTiO3 nanoparticles, Chem. Commun. 54 (2018) 723-726.
[8] Z. Zhao, Q. Ling, Z. Li, K. Yan, C. Ding, P. Chen, L. Yang, Z. Sun, M. Zhang, S-Scheme BaTiO3/TiO2 heterojunctions: Piezophotocatalytic degradation of norfloxacin, Sep. Purif. Technol. 308 (2023) 122928.
[9] S. Ghosh, S.J.A. Moniz, Recent Developments in Heterostructure-Based Catalysts for Water Splitting. In Visible Light-Active Photocatalysis, S. Ghosh (Ed.), 2018, pp.191-226.
[10] J. Wu, W. Wang, Y. Tian, C. Song, H. Qiu, H. Xue, Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO3/TiO2 nanofibers for degradation of organic pollutants, Nano Energy 77 (2020) 105122.
[11] R. Li, Q. Li, L. Zong, X. Wang, J. Yang, BaTiO3/TiO2 heterostructure nanotube arrays for improved photoelectrochemical and photocatalytic activity, Electrochimica Acta 91 (2013) 30–35.
[12] M. Plodinec, A. Šantić, J. Zavašnik, M. Čeh, A. Gajović, Giant persistent photoconductivity in BaTiO3/TiO2 heterostructures, Appl. Phys. Lett. 105 (2014) 152101.
[13] A. Somdee, Improved photovoltaic efficiency of dye sensitized solar cells by decorating TiO2 photoanode with barium titanate oxide, J. Alloys Compd. 777 (2019) 1251-1257.
[14] J. Wu, W. Wang, Y. Tian, C. Song, H. Qiu, H. Xue, Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO3/TiO2 nanofibers for degradation of organic pollutants, Nano Energy 77 (2020) 105122.
[15] K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology, Cambridge University Press, 2008, pp.7.
[16] C. Zoski, Handbook of Electrochemistry, Elsevier, 2006, pp.3-7.
[17] R. Job, Electrochemical Energy Storage: Physics and Chemistry of Batteries, Walter de Gruyter GmbH & Co KG, 2020, pp. 122-125.
[18] R. Richard, J. Law (Eds.), A Dictionary of Physics, 8th ed, Oxford University Press, United Kingdom, 2019.
[19] J.-G. Yu, X. Li, J.-X. Low, Semiconductor solar photocatalysts: fundamentals and applications, 1st ed. Wiley-VCH, 2022.
[20] 余錦智,以低溫水熱法及化學電池作用於TiN膜上製備鈦酸鋇膜之研究,國立中興大學材料科學與工程學系碩士學位論文(2005)。[21] Y.-C. Chieh, C.-C. Yu, F.-H. Lu, Epitaxial growth of BaTiO3 films on TiN/Si substrates by a hydrothermal-galvanic couple method, Appl. Phys. Lett. 90 (2007) 032904-032906.
[22] 鄧煥平,以低溫水熱-化學電池法於鍍氮化鋯膜矽基材上製備鋯酸鋇膜之研究,國立中興大學材料科學與工程學系碩士學位論文(2007)。[23] 趙玲夙,以低溫水熱-化學電池法於鍍鈦膜矽基材上製備具有生物活性之奈米NaHTi3O7薄膜研究,國立中興大學材料科學與工程學系碩士學位論文(2009)。[24] P.-H. Chan, F.-H. Lu, Low-temperature hydrothermal–galvanic couple synthesis of BaTiO3 thin films on Ti-coated silicon substrates, Thin Solid Films 517 (2009) 4782–4785.
[25] P.-H. Chan, F.-H. Lu, Low-temperature hydrothermal synthesis and the growth kinetics of BaTiO3 films on TiN/Si, Ti/Si, and bulk-Ti substrates, J. Electrochem. Soc. 57 (2010) G130-G135.
[26] 蔡迪佑,以水熱-化學電池法於TiN膜上製備鈦酸鋇膜及其成長動力學分析,國立中興大學材料科學與工程學系碩士學位論文(2010)。[27] 林佳君,以水熱-化學電池法於不同表面形貌及電阻率之TiN/Si上製備SrTiO3膜之研究,國立中興大學材料科學與工程學系碩士學位論文(2011)。[28] 蔡右相,水熱-化學電池法中以低Sr離子濃度生成SrTiO3薄膜之研究,國立中興大學材料科學與工程學系碩士學位論文(2013)。[29] 吳効泓,以水熱-化學電池法於ZrN/Si上製備BaZrO3薄膜及成長機制分析,國立中興大學材料科學與工程學系碩士學位論文(2015)。[30] 詹薰述,以水熱-化學電池法於TiN/Si基材上製備BaxSr1-xTiO3薄膜之特性研究,國立中興大學材料科學與工程學系碩士學位論文(2015)。[31] 黃亭瑞,以水熱-化學電池法於ZrN/Si雙電極製備BaZrO3薄膜並應用於光電流之研究,國立中興大學材料科學與工程學系碩士學位論文(2019)。[32] 黃詩棋,以水熱‐化學電池法在雙TiN薄膜電極系統製備鈦酸鋇薄膜及其應用研究,國立中興大學材料科學與工程學系碩士學位論文(2020)。[33] Y.-Z. Zheng, P.-H. Chan, F.-H. Lu, A facile synthesis of Al-doped BaTiO3 thin films by a hydrothermal-galvanic couple method on TiAlN film electrodes, Surf. Coat. Technol. 434 (2022) 128163.
[34] 周沛澐,水熱-化學電池法製備氮摻雜鈦酸鍶薄膜之特性分析並輔以第一原理計算,國立中興大學材料科學與工程學系碩士學位論文(2022)。[35] 張廷嘉,以水熱-化學電池法於氮氧化鈦薄膜電極製備鈦酸鋇薄膜,國立中興大學材料科學與工程學系碩士學位論文(2020)。[36] 李至宜,以水熱-化學電池法在TiN薄膜電極上製備不同優選方向之鈦酸鋇薄膜及應用研究,國立中興大學材料科學與工程學系碩士學位論文(2021)。[37] 鄭羽蓁,以水熱-化學電池法於氮化物薄膜電極上製備鋁與氮摻雜鈦酸鋇薄膜及特性分析,國立中興大學材料科學與工程學系碩士學位論文(2021)。[38] 張峻誠,以電漿電解氧化法於TiN電極製備氮摻雜之鈦酸鋇薄膜,國立中興大學材料科學與工程學系碩士學位論文(2022)。[39] Q. Liu, D. Zhai, Z. Xiao, C. Tang, Q. Sun, C. R. Bowen, H. Luo, D. Zhang, Piezo-photoelectronic coupling effect of BaTiO3@TiO2 nanowires for highly concentrated dye degradation, Nano Energy 92 (2022) 106702.
[40] J.-H. Yan, Y.-R. Zhu, Y.-G. Tang, S.-Q. Zheng, Nitrogen-doped SrTiO3/TiO2 composite photocatalysts for hydrogen production under visible light irradiation, J. Alloys Compd. 472 (2009) 429-433.
[41] J.-H. Yan, L. Zhang, Y.-R. Zhu, Y.-G. Tang, H.-H. Yang, Preparation and photocatalytic hydrogen production of NiO(CoO)/N-SrTiO3 heterojunction complex catalyst under simulated sunlight irradiation, Journal of Inorganic Materials, 24 (2009) 666-670.
[42] O. Ruzimuradov, K. Sharipov, A. Yarbekov, K. Saidova, M. Hojamberdievb, R. M. Prasad, G. Cherkashinin, R. Riedel, A facile preparation of dual-phase nitrogen-doped TiO2–SrTiO3 macroporous monolithic photocatalyst for organic dye photodegradation under visible light, J. Eur. Ceram. Soc. 35 (2015) 1815-1821.
[43] J.-R. Huang, X. Tan, T. Yu, W.-L. Hu, L. Zhao, H. Liu, L. Zhang, Y.-L. Zou, N-doped TiO2 /SrTiO3 heterostructured nanotubes for high-efficiency photoelectrocatalytic properties under visible-light irradiation, ChemElectroChem 2 (2015) 1174-1181.
[44] O. Ruzimuradov, M. Hojamberdiev, C. Fasel, R. Riedel, Fabrication of lanthanum and nitrogen – co-doped SrTiO3 – TiO2 heterostructured macroporous monolithic materials for photocatalytic degradation of organic dyes under visible light, J. Alloys Compd. 669 (2017) 144-150.
[45] J. Kong, Z. Rui, H. Ji, Carbon nitride polymer sensitization and nitrogen doping of SrTiO3/TiO2 nanotube heterostructure toward high visible light photocatalytic performance, Ind. Eng. Chem. Res. 56 (2017) 9999-10008.
[46] H. Gu, G. Xing, H. Gu, Z. Chaia, X. Wang, A novel strategy to promote photo-oxidative and reductive abilities via the construction of a bipolar Bi2WO6/N-SrTiO3 material, RSC Adv. 7 (2017) 52218-52226
[47] L. Chen, L. Shi, J. Wu, Z. Tong, C. Huang, C. Li, B. Ou, C. Peng, L. Tian, J. Tang, N-SrTiO3 nanoparticle/BiOBr nanosheet as 0D/2D heterojunctions for enhanced visible light photocatalytic dye degradation, Mater. Sci. Eng. B 261 (2020) 114667.
[48] Z.-Q. Ma, H.-Pan, Z.-S. Wang, P.-K. Wong, Effects of non-metal dopants and defects on electronic properties of barium titanate as photocatalyst, Int. J. Hydrog. Energy 40 (2015) 4766-4776.
[49] F. Maldonado, A. Stashans, DFT study of Ag and La codoped BaTiO3, J Phys Chem Solids 102 (2017) 136-141.
[50] Z. Teng, J. Jiang, G. Chen, C. Ma, F. Zhang, The electronic structures and optical properties of B, C or N doped BaTiO3, AIP Advances 8 (2018) 095216.
[51] M. Wang, C. Wang, Y. Liu, X. Zhou, Hybrid density functional theory description of non-metal doping in perovskite BaTiO3 for visible-light photocatalysis, J Solid State Chem 280 (2019)121018.
[52] W. Cai, X. Ma, J. Chen, R. Shi, Y. Wang, Y. Yang, D. Jing, H. Yuan, J. Du, M. Que, Synergy of oxygen vacancy and piezoelectricity effect promotes the CO2 photoreduction by BaTiO3, Appl. Surf. Sci. 619 (2023) 156773.
[53] B.D. Cullity, S.R.Stock, Elements of X-Ray Diffraction, Prentice Hall, Pearson, 2001, pp.95&367-388.
[54] S. S. Kumbhar, M. A. Mahadik, P. K. Chougule, V. S. Mohite , Y. M. Hunge, K. Y. Rajpure, A. V. Moholkar , C. H. Bhosale, Structural and electrical properties of barium titanate (BaTiO3) thin films obtained by spray pyrolysis method, Materials Science-Poland 33 (2015) 852-861.
[55] P. Wang, C. Fan, Y. Wang, G. Ding, P. Yuan, A dual chelating sol–gel synthesis of BaTiO3 nanoparticles with effective photocatalytic activity for removing humic acid from water, Mater. Res. Bull. 48 (2013) 869-877.
[56] F. Peng, L. Cai, L. Huang, H. Yu, H. Wang, Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method, J Phys Chem Solids 69 (2008) 1657~1664.
[57] P. M. Nithya, L. G. Devi, Heavy atom perturbation by the incorporation of iodine ion into BaTiO3 lattice: Reduction of fluorescence and enhancement of rate of interfacial charge transfer process under the visible light irradiation, Surf. Interfaces 18 (2020) 100411.
[58] İ. C. Kaya, V. Kalem, H. Akyildiz, Hydrothermal synthesis of pseudocubic BaTiO3 nanoparticles using TiO2 nanofibers: Study on photocatalytic and dielectric properties, Int. J. Appl. Ceram. Technol. 16 (2019) 1557-1569.
[59] W.-S. Cho, Structural evolution and characterization of BaTiO3 nanoparticles synthesized from polymeric precursor, J Phys Chem Solids 59 (1998) 659-666.
[60] A. A. Yadav, Y. M. Hunge, V. L. Mathe, S. B. Kulkarni, Photocatalytic degradation of salicylic acid using BaTiO3 photocatalyst under ultraviolet light illumination, J. Mater. Sci. Mater. Electron. 29 (2018) 15069-15073.
[61] D.-H. Wang, L. Jia, X.-L. Wu , L.-Q. Lu, A.-W. Xu, One-step hydrothermal synthesis of N-doped TiO2/C nanocomposites with high visible light photocatalytic activity, 4 (2012) 576-584.
[62] F. Zou, Z. Jiang, X. Qin, Y. Zhao, L. Jiang, J. Zhi, T. Xiaoa, P. P. Edwards, Template-free synthesis of mesoporous N-doped SrTiO3 perovskite with high visible-light-driven photocatalytic activity, Chem. Commun. 48 (2012) 8514-8516.
[63] J. Liu, X. Li, H. Ho, M. Zhou, Facile synthesis of anatase–rutile diphase n-doped TiO2 nanoparticles with excellent visible light photocatalytic activity, Catalysts 10 (2020) 1126.
[64] H. Zhang, X. Chen, Z. Lin, L. Zhang, H. Cao, L. Yu, G. Zheng, Hybrid niobium and titanium nitride nanotube arrays implanted with nanosized amorphous rhenium–nickel: An advanced catalyst electrode for hydrogen evolution reactions, Int. J. Hydrog. Energy 45 (2020) 6461-6475.
[65] D. Shindo, T. Oikawa, Energy Dispersive X-ray Spectroscopy. In: Analytical Electron Microscopy for Materials Science. Springer, Tokyo, 2002.
[66] S.Yurdakal, C. Garlisi, L. Özcan, M. Bellardita, G. Palmisano, Chapter 4 - (Photo)catalyst Characterization Techniques: Adsorption Isotherms and BET, SEM, FTIR, UV–Vis, Photoluminescence, and Electrochemical Characterizations, Elsevier, 2019.
[67] P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on uv–vis spectra, J. Phys. Chem. Lett. 9 (2018) 23 6814-6817.
[68] K. W. Kirby, B. A. Wechsler, Phase relations in the barium titanate-titanium oxide system, J. Am. Ceram. Soc. 74 (1991) 1841-1847.
[69] S. Lee, C. A. Randall, Z.-K. Liu, Modified phase diagram for the barium oxide–titanium dioxide system for the ferroelectric barium titanate, J. Am. Ceram. Soc. 90 (2007) 2589-2594.
[70] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293 (2001) 269-271.
[71] P.J. Niu, J.L. Yan, C.Y. Xu, First-principles study of nitrogen doping and oxygen vacancy in cubic PbTiO3, Comput. Mater. Sci. 98 (2015) 10-14.
[72] T. Kolodiazhnyi, A. Petric, Effect of PO2 on bulk and grain boundary resistance of n-type BaTiO3 at cryogenic temperatures, J. Am. Ceram. Soc. 86 (2004) 1551-2916.
[73] E. Erdem, P. Jakes, R.-A. Eichel, Formation of〖 (Ti_Ti^'-V_O^(••))〗^• defect dipoles in BaTiO3 ceramics heat-treated under reduced oxygen partial-pressure, Functional Materials Letters 3 (2010) 65-68.
[74] D. Hertkorn, M. Benkler, U. Gleißner, F. Büker, C. Megnin, C. Müller, T. Hanemann, H. Reinecke, Morphology and oxygen vacancy investigation of strontium titanate-based photo electrochemical cells, J. Mater. Sci. 50 (2015) 40-48.
[75] H. Tan, Z. Zhao, W. Zhu, E. N. Coker, B. Li, M. Zheng, W. Yu, H. Fan, Z. Sun, Oxygen vacancy enhanced photocatalytic activity of pervoskite SrTiO3, ACS Appl. Mater. Interfaces 6 (2014) 19184–19190.
[76] M.-H. Chan, F.-H. Lu, Air-based deposition of conductive nitride thin films by sputtering, J. Electrochem. Soc. 158 (2011) 75-80.
[77] C.A. Randall, P. Yousefian, Fundamentals and practical dielectric implications of stoichiometry and chemical design in a high-performance ferroelectric oxide: BaTiO3, J. Eur. Ceram. Soc. 42 (2022) 1445-1473.
[78] T. Bak, J. Nowotny, M. K. Nowotny, Defect disorder of titanium dioxide, J. Phys. Chem. B 110 (2006) 21560–21567.