跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/26 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭廷育
研究生(外文):Ting-Yu Guo
論文名稱:以5-L發酵槽培養 Xanthophyllomyces dendrorhous 製造具烹調肉風味暨色澤調味料之探討
論文名稱(外文):Study on production of seasoning with cooked meat flavor and color from Xanthophyllomyces dendrorhous cultivated by 5-L bioreactor
指導教授:陳錦樹陳錦樹引用關係
指導教授(外文):Chin-Shuh Chen
口試委員:蘇南維謝寶全楊志佳
口試日期:2023-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:108
中文關鍵詞:Xanthophyllomyces dendrorhous蝦紅素5-L發酵槽梅納反應脂質風味調味料
外文關鍵詞:Xanthophyllomyces dendrorhousastaxanthin5-L bioreactorMaillard reactionlipidflavor seasoning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:47
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人口增長與飲食文化之轉變,肉品出現供不應求,新一代之植物肉類替代品 (plant-based meat analogues, PBMA) 開發乃備受矚目。植物肉本體多以植物蛋白作為原料,並結合其它成分之組成,賦予產品具色、香、味等特性,其中香氣之面向,提供消費者經嗅聞後產生食慾之一重要因素。酵母萃取物富含核苷酸與胺基酸,添加於產品中,除有助鮮味之產生外,所含之醣類、核酸與多胜肽亦可作為風味生成之前驅物,並與適量還原糖及含硫化合物,經梅納反應作用,可生成肉風味之香氣。本研究在前人之成果為基礎下,續以富含蝦紅素之Xanthophyllomyces dendrorhous BCRC 22367為試驗菌株,配合菌體蛋白質預期可作為風味暨色澤生成之前驅物。經細胞破壁水解作用,釋出之核酸、胺基酸與小分子醣類,供製造具烹調肉風味暨色澤之調味料。菌株以5-L桌上型發酵槽培養,探討培養基較適碳源與氮源濃度之組成,以及攪拌轉速。結果顯示,以8% (w/v) 葡萄糖濃度與氮源濃度 [1.20% (w/v) 酵母萃取物及2.0% (w/v) 蛋白腖],於20℃, pH 6, 800 rpm及1 vvm之培養條件下,可獲得28.74 g/L菌量及8245.60 μg/L之類胡蘿蔔素;隨後輔以每48小時額外補充2.0% (w/v) 葡萄糖之批次饋料培養模式,菌體量更提高至34.12 g/L。酵母菌體經回收水解及減壓濃縮後,濃縮物添加還原糖與含硫化合物為2:1之比例下,經梅納反應作用後,有助於烹調肉風味之生成,惟蝦紅素因降解而失去色澤;另外透過甲硫胺酸之添加,並調整含硫化合物 (半胱胺酸:硫胺素:甲硫胺酸) 之配比,可增進梅納反應產物 (MRPs) 生成棕褐色之外觀,以及更多具肉風味之香氣分子,而添加不同種類脂質,更可增強揮發性香氣分子之生成。
綜合上述,以X. dendrorhous BCRC 22367之水解濃縮物為反應原料,添加適量之還原糖、含硫化合物與脂質進行梅納反應,具有生產烹調肉風味調味料之開發潛力。
The increasing global population and changing dietary habits have led to a higher demand for meat products, resulting in a supply-demand imbalance. Consequently, the development of the next generation of plant-based meat analogues (PBMAs) has gained significant attention. PBMAs are primarily made from plant proteins combined with other ingredients to provide similar characteristics in terms of color, aroma, and taste. A crucial factor in consumer acceptance is the aroma, which plays a significant role in stimulating appetite upon olfactory perception. Yeast extracts, rich in nucleotides and amino acids, not only contribute to the umami taste but also serve as precursors for flavor generation. When combined with suitable amounts of reducing sugars and sulfur-containing compounds, they undergo Maillard reactions to produce meat-like aromas. Based on previous research, this study utilized Xanthophyllomyces dendrorhous BCRC 22367, a strain rich in astaxanthin, as the experimental strain, with the expectation that its protein content could be served as a precursor for flavor and color generation. Through cell wall disruption and hydrolysis, nucleotides, amino acids, and small-molecule carbohydrates were released for the production of seasonings with cooking meat flavor and color. The strain was cultivated in a 5-L benchtop bioreactor, exploring the optimal composition of the culture medium in terms of carbon and nitrogen source concentrations, as well as agitation speed. The results showed that under the conditions of 8% (w/v) glucose concentration and nitrogen source concentrations [1.20% (w/v) yeast extract and 2.0% (w/v) peptone] at 20°C, pH 6, 800 rpm, and 1 vvm, a biomass of 28.74 g/L and 8245.60 μg/L of astaxanthin were obtained. Furthermore, employing a fed-batch feeding mode with an additional 2.0% (w/v) glucose supplementation every 48 hours further increased the biomass production to 34.12 g/L. After yeast cell recovery, hydrolysis, and vacuum concentration, the concentrated extract was added to reducing sugars and sulfur-containing compounds in a ratio of 2:1 for Maillard reactions, facilitating the generation of cooking meat flavor. However, the degradation of astaxanthin led to the loss of color. Subsequently, the addition of methionine and adjustment of the sulfur-containing compound ratio (cysteine: thiamine: methionine) enhanced the formation of Maillard reaction products (MRPs) with a brownish appearance and more meat-like aroma compounds. Moreover, the addition of different types of lipids further enhanced the production of volatile aroma compounds.
In summary, the concentrate of hydrolyzed X. dendrorhous BCRC 22367, supplemented with appropriate amounts of reducing sugars, sulfur-containing compounds, and lipids, holds potential for the development of cooking meat-flavored seasonings.
摘要 i
Abstract ii
目次 iv
圖目錄 viii
表目錄 xi
第一章 前言 1
第二章 文獻回顧 2
一、植物性肉類替代品 (plant-based meat analogues, PBMA) 2
(一) 植物肉源起及發展 2
(二) 植物肉之組成 4
(三) 烹調肉風味調味料 4
二、 酵母菌 (Yeast) 6
(一) 酵母菌的簡介 6
(二) 酵母菌之應用 8
(三) Xanthophyllomyces dendrorhous 10
三、 蝦紅素 (astaxanthin, AX) 11
(一) 蝦紅素之特性 11
(二) 蝦紅素之來源 11
(三) 蝦紅素之應用 14
四、 影響酵母生長因子之介紹 14
(一) 培養基組成之影響 14
(二) 培養條件之影響 17
(三) 細胞生長階段 18
(四) 培養方式之差異 19
五、 酵母萃取物之生成 22
六、 梅納反應 (Maillard reaction) 22
(一) 梅納反應之形成 22
(二) 梅納反應之影響因子 25
(三) 梅納反應之應用 28
第三章 材料與方法 29
一、實驗材料 29
(一) 實驗菌株 29
(二) 培養基 29
(三) 實驗藥劑 30
二、 硬體設備與軟體套件 30
(一) 硬體設備暨儀器 30
(二) 套裝軟體 31
三、 實驗架構 32
四、 實驗方法 33
(一) 菌株活化 33
(二) 菌株保存 33
(三) 菌粉製備 33
(四) 發酵槽較適培養條件探討 33
(五) 酵母菌生長曲線之測定 34
(六) 批次饋料條件之探討 35
(七) 酵母菌體破壁與胞內物質之水解 35
(八) 酵母水解物之前處理 (濃縮) 35
(九) 最適梅納反應之配料條件探討 36
(十) 分析方法 41
第四章 結果與討論 46
一、 發酵槽較適生產X. dendrorhous BCRC 22367之條件 46
(一) 較適碳源濃度之探討 46
(二) 較適氮源濃度之探討 51
(三) 較適攪拌速度之探討 51
(四) 較適培養條件之生長情況分析 55
(五) 較適批次饋料模式之探討 60
二、 較適以梅納反應生產烹調肉風味調味料之條件 65
(一) 較適還原糖與含硫化合物之比例 69
(二) 較適甲硫胺酸 (methionine) 參與反應之含量 75
(三) 較適添加於梅納反應之脂質種類 79
(四) 較適添加於梅納反應之脂質濃度 88
第五章 結論 93
一、 優化X. dendrorhous BCRC 22367之培養 93
(一) 較適培養基組成及培養條件 93
(二) 批次饋料之培養模式 93
二、 梅納反應產生烹調肉風味調味料之探討 93
反應配料之添加 93
第六章 未來展望 94
一、擴大X. dendrorhous BCRC 22367之培養 94
(一) 替代性培養基質 94
(二) 增強類胡蘿蔔素之生成量 94
二、烹調肉風味調味料改善 94
(一) 外觀之色澤 94
(二) 還原糖種類 95
(三) 胺基酸來源 95
(四) 脂質之添加 95
第七章 參考文獻 96
附錄 108
黃茵茵。2022。以Xanthophyllomyces dendrorhous為原料製造具烹調肉風味暨色澤之調味料。國立中興大學食品暨應用生物科技學系。碩士學位論文。
劉芷吟。2022。利用耐滲透壓酵母Zygosaccharomyces rouxii生產β-葡聚醣之研究。國立中興大學食品暨應用生物科技學系。碩士學位論文。
吳翊暐。2015。壓榨酵母利用甘蔗糖蜜為基質之菌株篩選、饋料批次培養及儲藏安定性。國立中興大學食品暨應用生物科技學系。碩士學位論文。
Perflavory Information System. (最後瀏覽日:2023.07.17) http://www.perflavory.com/search.html
Ahmad, M., Qureshi, S., Akbar, M. H., Siddiqui, S. A., Gani, A., Mushtaq, M., & Dhull, S. B. (2022). Plant-based meat alternatives: Compositional analysis, current development and challenges.
Alcorta, A., Porta, A., Tárrega, A., Alvarez, M. D., & Vaquero, M. P. (2021). Foods for plant-based diets: Challenges and innovations. Foods, 10(2), 293.
Alim, A., Song, H., Liu, Y., Zou, T., Zhang, Y., & Zhang, S. (2018). Flavour‐active compounds in thermally treated yeast extracts. Journal of the Science of Food and Agriculture, 98(10), 3774-3783.
Ambati, R. R., Siew Moi, P., Ravi, S., & Aswathanarayana, R. G. (2014). Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications–A review. Marine drugs, 12(1), 128-152.
Ananda, N., & Vadlani, P. V. (2011). Substrates influence stimulatory effect of mevalonic acid on carotenoid production in red yeasts. Cereal chemistry, 88(3), 310-314.
Ausich, R. L. (1997). Commercial opportunities for carotenoid production by biotechnology. Pure and Applied Chemistry, 69(10), 2169-2174.
Belasco, R., Edwards, T., Munoz, A. J., Rayo, V., & Buono, M. J. (2020). The effect of hydration on urine color objectively evaluated in CIELab color space. Frontiers in Nutrition, 7, 576974.
Bertrand, M. (2010). Carotenoid biosynthesis in diatoms. Photosynthesis research, 106(1-2), 89-102.
Boekhout, T., Amend, A. S., El Baidouri, F., Gabaldón, T., Geml, J., Mittelbach, M., & Yurkov, A. (2022). Trends in yeast diversity discovery. Fungal Diversity, 114(1), 491-537.
Cerny, C., & Davidek, T. (2003). Formation of aroma compounds from ribose and cysteine during the Maillard reaction. Journal of Agricultural and Food Chemistry, 51(9), 2714-2721.
Cerny, C. (2007). Origin of carbons in sulfur-containing aroma compounds from the Maillard reaction of xylose, cysteine and thiamine. LWT-Food Science and Technology, 40 (8), 1309-1315.
Chayen, N. E., Cianci, M., Grossmann, J. G., Habash, J., Helliwell, J. R., Nneji, G. A., & Zagalsky, P. F. (2003). Unravelling the structural chemistry of the colouration mechanism in lobster shell. Acta Crystallographica Section D: Biological Crystallography, 59 (12), 2072-2082.
Chen, E. S. (2023). Application of the fission yeast Schizosaccharomyces pombe in human nutrition. FEMS Yeast Research, 23.
Choi, J. E., & Chung, W. H. (2019). Synthetic lethal interaction between oxidative stress response and DNA damage repair in the budding yeast and its application to targeted anticancer therapy. Journal of Microbiology, 57, 9-17.
Contreras, G., Barahona, S., Sepúlveda, D., Baeza, M., Cifuentes, V., & Alcaino, J. (2015). Identification and analysis of metabolite production with biotechnological potential in Xanthophyllomyces dendrorhous isolates. World Journal of Microbiology and Biotechnology, 31, 517-526.
Dai, Z., Liu, Y., Guo, J., Huang, L., & Zhang, X. (2015). Yeast synthetic biology for high-value metabolites. FEMS Yeast Research, 15 (1), 1-11.
Dashko, S., Zhou, N., Compagno, C., & Piškur, J. (2014). Why, when, and how did yeast evolve alcoholic fermentation FEMS Yeast Research, 14(6), 826-832.
Dekkers, B. L., Boom, R. M., & van der Goot, A. J. (2018). Structuring processes for meat analogues. Trends in Food Science & Technology, 81, 25-36.
Domínguez-Bocanegra, A. R., & Torres-Muñoz, J. A. (2004). Astaxanthin hyperproduction by Phaffia rhodozyma (now Xanthophyllomyces dendrorhous) with raw coconut milk as sole source of energy. Applied Microbiology and Biotechnology, 66, 249-252.
Dzialo, M. C., Park, R., Steensels, J., Lievens, B., & Verstrepen, K. J. (2017). Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiology Reviews, 41 (Supp_1), S95-S128.
Farías-Álvarez, L. J., Gschaedler-Mathis, A., Sánchez-Ortiz, A. F., Femat, R., Cervantes-Martínez, J., Arellano-Plaza, M. & Herrera-López, E. J. (2018). Xanthophyllomyces dendrorhous physiological stages determination using combined measurements from dielectric and Raman spectroscopies, a cell counter system and fluorescence flow cytometry. Biochemical Engineering Journal, 136, 1-8.
Flores-Cotera, L. B., Chávez-Cabrera, C., Martínez-Cárdenas, A., Sánchez, S., & García-Flores, O. U. (2021). Deciphering the mechanism by which the yeast Phaffia rhodozyma responds adaptively to environmental, nutritional, and genetic cues. Journal of Industrial Microbiology and Biotechnology, 48(9-10), kuab048.
Garcia-Ochoa, F., & Gomez, E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnology Advances, 27 (2), 153-176.
Gervasi, T., Pellizzeri, V., Benameur, Q., Gervasi, C., Santini, A., Cicero, N., & Dugo, G. (2018). Valorization of raw materials from agricultural industry for astaxanthin and β-carotene production by Xanthophyllomyces dendrorhous. Natural Product Research, 32 (13), 1554-1561.
Golubev, W. I. (1995). Perfect state of Rhodomyces dendrorhous (Phaffia rhodozyma). Yeast, 11 (2), 101-110.
Gonzales, A. P., Naranjo, G. B., Leiva, G. E., & Malec, L. S. (2010). Maillard reaction kinetics in milk powder: Effect of water activity at mild temperatures. International Dairy Journal, 20 (1), 40-45.
Goto, S., Kogure, K., Abe, K., Kimata, Y., Kitahama, K., Yamashita, E., & Terada, H. (2001). Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin. Biochimica et Biophysica acta (BBA)-Biomembranes, 1512(2), 251-258.
Granvogl, M., Beksan, E., & Schieberle, P. (2012). New insights into the formation of aroma-active Strecker aldehydes from 3-oxazolines as transient intermediates. Journal of Agricultural and Food Chemistry, 60 (25), 6312-6322.
Guan, X., Zhang, J., Xu, N., Cai, C., Lu, Y., Liu, Y., & Wang, Y. (2022). Optimization of culture medium and scale-up production of astaxanthin using corn steep liquor as substrate by response surface methodology. Preparative Biochemistry & Biotechnology, 1-10.
Gunde-Cimerman, N., Plemenitaš, A., & Buzzini, P. (2014). Changes in lipids composition and fluidity of yeast plasma membrane as response to cold. Cold-adapted Yeasts: Biodiversity, Adaptation Strategies and Biotechnological Significance, 225-242.
Guo, X., Li, X., & Xiao, D. (2010, June). Optimization of culture conditions for production of astaxanthin by Phaffia rhodozyma. In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (pp. 1-4). IEEE.
Hagman, A. (2013). Evolution of Yeast Respiro-Fermentative Lifestyle and the Underlying Mechanisms Behind Aerobic Fermentation. Lund University.
Hansmann, J., Groeber, F., Kahlig, A., Kleinhans, C., & Walles, H. (2013). Bioreactors in tissue engineering-principles, applications and commercial constraints. Biotechnology Journal, 8 (3), 298-307.
Harith, Z. T., de Andrade Lima, M., Charalampopoulos, D., & Chatzifragkou, A. (2020). Optimised production and extraction of astaxanthin from the yeast Xanthophyllomyces dendrorhous. Microorganisms, 8 (3), 430.
He, J., Evans, N. M., Liu, H., & Shao, S. (2020). A review of research on plant‐based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Comprehensive Reviews in Food Science and Food Safety, 19 (5), 2639-2656.
Heidrun Karlic, Franz Varga. (2019). Mevalonate Pathway, in Encyclopedia of Cancer (Third Edition)
Huang, M., Liu, P., Song, S., Zhang, X., Hayat, K., Xia, S., & Gu, F. (2011). Contribution of sulfur‐containing compounds to the colour‐inhibiting effect and improved antioxidant activity of Maillard reaction products of soybean protein hydrolysates. Journal of the Science of Food and Agriculture, 91 (4), 710-720.
Iwama, R., & Ohsumi, Y. (2019). Analysis of autophagy activated during changes in carbon source availability in yeast cells. Journal of Biological Chemistry, 294 (14), 5590-5603.
Jach, M. E., Serefko, A., Ziaja, M., & Kieliszek, M. (2022). Yeast protein as an easily accessible food source. Metabolites, 12 (1), 63.
Jiang, G. L., Zhou, L. Y., Wang, Y. T., & Zhu, M. J. (2017). Astaxanthin from Jerusalem artichoke: Production by fed-batch fermentation using Phaffia rhodozyma and application in cosmetics. Process Biochemistry, 63, 16-25.
Joshi, V. K., & Kumar, S. (2015). Meat Analogues: Plant based alternatives to meat products-A review. International Journal of Food and Fermentation Technology, 5 (2), 107-119.
Jung, K. W., Kim, D. H., Kim, S. H., & Shin, H. S. (2011). Bioreactor design for continuous dark fermentative hydrogen production. Bioresource Technology, 102 (18), 8612-8620.
Kale, P., Mishra, A., & Annapure, U. S. (2022). Development of vegan meat flavour: A review on sources and techniques. Future Foods, 100149.
Karim, A., Gerliani, N., & Aïder, M. (2020). Kluyveromyces marxianus: An emerging yeast cell factory for applications in food and biotechnology. International Journal of Food Microbiology, 333, 108818.
Klug, L., & Daum, G. (2014). Yeast lipid metabolism at a glance. FEMS yeast research, 14 (3), 369-388.
Kluyver, A. J., & Perquin, L. H. C. (1933). Methodology in the research of mold metabolism. Biochemische Zeitschrift, 266, 68-81.
Kurtzman, C. P., Fell, J. W., & Boekhout, T. (Eds.). (2011). The yeasts: a taxonomic study. Elsevier.
Kyriakopoulou, K., Dekkers, B., & van der Goot, A. J. (2019). Plant-based meat analogues. In Sustainable meat production and processing (pp. 103-126). Academic Press.
Laroque, D., Inisan, C., Berger, C., Vouland, É., Dufossé, L., & Guérard, F. (2008). Kinetic study on the Maillard reaction. Consideration of sugar reactivity. Food Chemistry, 111(4), 1032-1042.
Li, T., Chen, X. B., Chen, J. C., Wu, Q., & Chen, G. Q. (2014). Open and continuous fermentation: products, conditions and bioprocess economy. Biotechnology Journal, 9 (12), 1503-1511.
Libkind, D., Ruffini, A., van Broock, M., Alves, L., & Sampaio, J. P. (2007). Biogeography, host specificity, and molecular phylogeny of the basidiomycetous yeast Phaffia rhodozyma and its sexual form, Xanthophyllomyces dendrorhous. Applied and Environmental Microbiology, 73 (4), 1120-1125.
Libkind, D., Moliné, M., & Colabella, F. (2018). Isolation and selection of new astaxanthin-producing strains of Phaffia rhodozyma. Microbial Carotenoids: Methods and Protocols, 297-310.
Lin, M., Liu, X., Xu, Q., Song, H., Li, P., & Yao, J. (2014). Aroma‐active components of yeast extract pastes with a basic and characteristic meaty flavour. Journal of the Science of Food and Agriculture, 94 (5), 882-889.
Liszkowska, W., & Berlowska, J. (2021). Yeast fermentation at low temperatures: Adaptation to changing environmental conditions and formation of volatile compounds. Molecules, 26 (4), 1035.
Liu, J. F., Xia, J. J., Nie, K. L., Wang, F., & Deng, L. (2019). Outline of the biosynthesis and regulation of ergosterol in yeast. World Journal of Microbiology and Biotechnology, 35, 1-8.
Liu, Y. S., Wu, J. Y., & Ho, K. P. (2006). Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Biochemical Engineering Journal, 27(3), 331-335.
Lotfy, S. N., Saad, R., El-Massrey, K. F., & Fadel, H. H. (2021). Effects of pH on headspace volatiles and properties of Maillard reaction products derived from enzymatically hydrolyzed quinoa protein-xylose model system. LWT, 145, 111328.
Lu Jiang-hong, Cui Chun & Zhao Mou-ming (2011). Preparation of non-meat sources meaty flavor essence from yeast extract by Maillard reaction and fuzzy evaluation. Food and Fermentation Industries. vol. 37 Issue (01): 57~62.
Luna-Flores, C. H., Ramírez-Cordova, J. J., Pelayo-Ortiz, C., Femat, R., & Herrera-López, E. J. (2010). Batch and fed-batch modeling of carotenoids production by Xanthophyllomyces dendrorhous using Yucca fillifera date juice as substrate. Biochemical Engineering Journal, 53 (1), 131-136.
Luna-Flores, C. H., Wang, A., von Hellens, J., & Speight, R. E. (2022). Towards commercial levels of astaxanthin production in Phaffia rhodozyma. Journal of Biotechnology, 350, 42-54.
Ma, G., He, S., Liu, S., Zhang, Z., Zhang, T., Wang, L., & Sun, H. (2022). Application of Maillard Reaction Products Derived Only from Enzymatically Hydrolyzed Sesame Meal to Enhance the Flavor and Oxidative Stability of Sesame Oil. Molecules, 27 (24), 8857.
Mal'a, P., Baranová, M., Marcinčáková, D., & Nagy, J. (2010). Organoleptic evaluation of poultry meat products with wheat protein–seitan, coloured by microbial natural pigment. Assam University Journal of Science and Technology, 5 (1), 1-5.
Miller, M. W., YONEYAMA, M., & SONEDA, M. (1976). Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). International Journal of Systematic and Evolutionary Microbiology, 26 (2), 286-291.
Moon, S. Y., Cliff, M. A., & Li-Chan, E. C. (2006). Odour-active components of simulated beef flavour analysed by solid phase microextraction and gas chromatography-mass spectrometry and–olfactometry. Food Research International, 39 (3), 294-308.
Mussagy, C. U., Winterburn, J., Santos-Ebinuma, V. C., & Pereira, J. F. B. (2019). Production and extraction of carotenoids produced by microorganisms. Applied Microbiology and Biotechnology, 103, 1095-1114.
Ni, H., Chen, Q. H., Ruan, H., Yang, Y. F., Li, L. J., Wu, G. B., & He, G. Q. (2007). Studies on optimization of nitrogen sources for astaxanthin production by Phaffia rhodozyma. Journal of Zhejiang University SCIENCE B, 8, 365-370.
Ni, H., Hong, Q., Xiao, A., Li, L., Cai, H., & Su, W. (2011). Characterization and evaluation of an astaxanthin over-producing Phaffia rhodozyma. Sheng wu Gong Cheng xue bao. Chinese Journal of Biotechnology, 27 (7), 1065-1075.
Ninčević Grassino, A., Rimac Brnčić, S., Badanjak Sabolović, M., Šic Žlabur, J., Marović, R., & Brnčić, M. (2023). Carotenoid Content and Profiles of Pumpkin Products and By-Products. Molecules, 28 (2), 858.
Nutakor, C., Kanwugu, O. N., Kovaleva, E. G., & Glukhareva, T. V. (2022). Enhancing astaxanthin yield in Phaffia rhodozyma: current trends and potential of phytohormones. Applied Microbiology and Biotechnology, 106 (9-10), 3531-3538.
Outram, V., Lalander, C. A., Lee, J. G., Davies, E. T., & Harvey, A. P. (2017). Applied in situ product recovery in ABE fermentation. Biotechnology Progress, 33 (3), 563-579.
Palacios-Morales, C., Aguayo-Vallejo, J. P., Trujillo-Roldán, M. A., Zenit, R., Ascanio, G., & Córdova-Aguilar, M. S. (2016). The flow inside shaking flasks and its implication for mycelial cultures. Chemical Engineering Science, 152, 163-171.
Ramı́rez, J., Gutierrez, H., & Gschaedler, A. (2001). Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. Journal of Biotechnology, 88 (3), 259-268.
Raspor, P., & Zupan, J. (2006). Yeasts in extreme environments (pp. 371-417). Springer Berlin Heidelberg.
Pastor, M. M., Proft, M., & Pascual-Ahuir, A. (2009). Mitochondrial function is an inducible determinant of osmotic stress adaptation in yeast. Journal of biological chemistry, 284 (44), 30307-30317.
Patel, G., Khobragade, T. P., Avaghade, S. R., Patil, M. D., Nile, S. H., Kai, G., & Banerjee, U. C. (2020). Optimization of media and culture conditions for the production of tacrolimus by Streptomyces tsukubaensis in shake flask and fermenter level. Biocatalysis and Agricultural Biotechnology, 29, 101803.
Philip, P., Kern, D., Goldmanns, J., Seiler, F., Schulte, A., Habicher, T., & Büchs, J. (2018). Parallel substrate supply and pH stabilization for optimal screening of E. coli with the membrane-based fed-batch shake flask. Microbial Cell Factories, 17 (1), 1-17.
Rubio, N. R., Xiang, N., & Kaplan, D. L. (2020). Plant-based and cell-based approaches to meat production. Nature Communications, 11 (1), 6276.
Russell, I. (2003). Understanding yeast fundamentals. The alcohol textbook, 4, 531-537.
Salazar-López, N. J., Barco-Mendoza, G. A., Zuñiga-Martínez, B. S., Domínguez-Avila, J. A., Robles-Sánchez, R. M., Ochoa, M. A. V., & González-Aguilar, G. A. (2022). Single-Cell Protein Production as a Strategy to Reincorporate Food Waste and Agro By-Products Back into the Processing Chain. Bioengineering, 9 (11), 623.
Sasanam, S., Rungsardthong, V., Thumthanaruk, B., Wijuntamook, S., Rattananupap, V., Vatanyoopaisarn, S., & Mussatto, S. I. (2022). Production of process flavorings from methionine, thiamine with D‐xylose or dextrose by direct extrusion: Physical properties and volatile profiles. Journal of Food Science, 87(3), 895-910.
Shakoor, A., Zhang, C., Xie, J., & Yang, X. (2022). Maillard reaction chemistry in formation of critical intermediates and flavour compounds and their antioxidant properties. Food Chemistry, 133416.
Shurson, G. C. (2018). Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Animal feed science and technology, 235, 60-76.
Sicard, D., & Legras, J. L. (2011). Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex. Comptes rendus biologies, 334 (3), 229-236.
Stachowiak, B., & Szulc, P. (2021). Astaxanthin for the food industry. Molecules, 26(9), 2666.
Stanford, C. B., & Bunn, H. T. (Eds.). (2001). Meat-eating and human evolution. Oxford University Press.
Steinfeld, H., Gerber, P., Wassenaar, T. D., Castel, V., Rosales, M., Rosales, M., & de Haan, C. (2006). Livestock's long shadow: environmental issues and options. Food & Agriculture Org.
Sun, A., Wu, W., Soladoye, O. P., Aluko, R. E., Bak, K. H., Fu, Y., & Zhang, Y. (2022). Maillard reaction of food-derived peptides as a potential route to generate meat flavor compounds: A review. Food Research International, 151, 110823.
Takahashi, M., Honzawa, T., Tominaga, R., & Aoyagi, H. (2020). Analysis of the influence of flame sterilization included in sampling operations on shake-flask cultures of microorganisms. Scientific Reports, 10 (1), 1-10.
Takahashi, M., Kato, T., & Aoyagi, H. (2023). Development of a feed-forward control system for medium in shake-flask culture. Biochemical Engineering Journal, 196, 108939.
Tao, Z., Yuan, H., Liu, M., Liu, Q., Zhang, S., Liu, H. & Wang, T. (2022). Yeast extract: characteristics, production, applications and future perspectives. Journal of Microbiology and Biotechnology, 33 (2), 1-16.
Thiry, M., & Cingolani, D. (2002). Optimizing scale-up fermentation processes. TRENDS in Biotechnology, 20(3), 103-105.
Tian, H., Zhan, P., Li, W., Zhang, X., He, X., Ma, Y. & Zhang, D. (2014). Contribution to the aroma characteristics of mutton process flavor from oxidized suet evaluated by descriptive sensory analysis, gas chromatography, and electronic nose through partial least squares regression. European Journal of Lipid Science and Technology, 116 (11), 1522-1533.
Tomé, D. (2021). Yeast extracts: Nutritional and flavoring food ingredients. ACS Food Science & Technology, 1 (4), 487-494.
Tran, T., Grandvalet, C., Verdier, F., Martin, A., Alexandre, H., & Tourdot-Maréchal, R. (2020). Microbial dynamics between yeasts and acetic acid bacteria in kombucha: impacts on the chemical composition of the beverage. Foods, 9 (7), 963.
Uwineza, P. A., & Waśkiewicz, A. (2020). Recent advances in supercritical fluid extraction of natural bioactive compounds from natural plant materials. Molecules, 25 (17), 3847.
Van Boekel, M. A. J. S. (2006). Formation of flavour compounds in the Maillard reaction. Biotechnology advances, 24 (2), 230-233.
Veloso, I. I., Rodrigues, K. C., Esperança, M. N., Batista, G., Cruz, A. J., & Badino, A. C. (2023). A more accurate modeling for fed-batch ethanol fermentation with high cell density. Biochemical Engineering Journal, 193, 108855.
Villegas-Méndez, M. Á., Papadaki, A., Pateraki, C., Balagurusamy, N., Montañez, J., Koutinas, A. A., & Morales-Oyervides, L. (2021). Fed-batch bioprocess development for astaxanthin production by Xanthophyllomyces dendrorhous based on the utilization of Prosopis sp. pods extract. Biochemical Engineering Journal, 166, 107844.
Wehrs, M., Tanjore, D., Eng, T., Lievense, J., Pray, T. R., & Mukhopadhyay, A. (2019). Engineering robust production microbes for large-scale cultivation. Trends in microbiology, 27 (6), 524-537.
Xu, Y., Chen, Q., Lei, S., Wu, P., Fan, G., Xu, X., & Pan, S. (2011). Effects of lard on the formation of volatiles from the Maillard reaction of cysteine with xylose. Journal of the Science of Food and Agriculture, 91 (12), 2241-2246.
Yamane, Y., Higashida, K., Nakashimada, Y., Kakizono, T., & Nishio, N. (1997). Influence of oxygen and glucose on primary metabolism and astaxanthin production by Phaffia rhodozyma in batch and fed-batch cultures: kinetic and stoichiometric analysis. Applied and Environmental Microbiology, 63 (11), 4471-4478.
Ye, Y., Ye, S., Wanyan, Z., Ping, H., Xu, Z., He, S. & Wei, Z. (2022). Producing beef flavors in hydrolyzed soybean meal-based Maillard reaction products participated with beef tallow hydrolysates. Food Chemistry, 378, 132119.
Zabed, H., Faruq, G., Sahu, J. N., Azirun, M. S., Hashim, R., & Nasrulhaq Boyce, A. (2014). Bioethanol production from fermentable sugar juice. The scientific world journal, 2014.
Zhang, J., Li, Q. R., Zhang, M. H., You, Y., Wang, Y., & Wang, Y. H. (2019). Enhancement of carotenoid biosynthesis in Phaffia rhodozyma PR106 under stress conditions. Bioscience, Biotechnology, and Biochemistry, 83 (12), 2375-2385.
Zhang, Z., He, S., Zhang, L., Li, X., Jin, R., Liu, Q., & Sun, H. (2022). The potential application of vegetable oils in the D-xylose and L-cysteine Maillard reaction system for meaty aroma production. Food Research International, 155, 111081.
Zhao, J., Wang, T., Xie, J., Xiao, Q., Du, W., Wang, Y., & Wang, S. (2019). Meat flavor generation from different composition patterns of initial Maillard stage intermediates formed in heated cysteine-xylose-glycine reaction systems. Food Chemistry, 274, 79-88.
Zioga, E., Tøstesen, M., Madsen, S. K., Shetty, R., & Bang-Berthelsen, C. H. (2022). Bringing plant-based Cli-meat closer to original meat experience: insights in flavor. Future Foods, 5, 100138.
Zou, T., Kang, L., Yang, C., Song, H., & Liu, Y. (2019). Flavour precursor peptide from an enzymatic beef hydrolysate Maillard reaction-II: Mechanism of the synthesis of flavour compounds from a sulphur-containing peptide through a Maillard reaction. LWT, 110, 8-18.
電子全文 電子全文(網際網路公開日期:20260814)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊