跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 02:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊淑瑜
研究生(外文):Shu-Yu Chuang
論文名稱:探討菊糖多酚複合物之製備條件及理化性質
論文名稱(外文):Investigation of preparation conditions and physicochemical properties of inulin-polyphenol complexes
指導教授:周志輝
指導教授(外文):Chi-Fai Chau
口試委員:許輔邱采新
口試委員(外文):Fuu SheuTsai-Hsin CHIU
口試日期:2023-07-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:64
中文關鍵詞:菊糖多酚化合物自由基介導接合反應理化性質
外文關鍵詞:inulinphenolic compoundsfree radical mediated grafting methodphysicochemical property
相關次數:
  • 被引用被引用:0
  • 點閱點閱:8
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用過氧化氫及抗壞血酸形成氧化還原電子對誘導自由基接合反應,藉由調整實驗參數將菊糖與多酚化合物結合,形成短鏈菊糖-沒食子酸複合物、短鏈菊糖-茶多酚複合物、長鏈菊糖-沒食子酸複合物、長鏈菊糖-茶多酚複合物,並進一步探討複合物之理化特性及應用潛力。
第一部分先將短鏈菊糖結合兩種多酚類物質分別為沒食子酸(GA)及茶多酚(TP),並設定實驗結合條件包含:氧化還原起始劑(H2O2/AA)添加量、H2O2/AA之H2O2濃度、H2O2/AA反應時間及多酚溶液反應時間。在製備短鏈菊糖-多酚複合物時,H2O2/AA之添加量、H2O2濃度及反應時間皆影響菊糖-多酚複合物之總酚含量,在H2O2/AA添加量增加及H2O2濃度提高時,菊糖-多酚複合物總酚含量隨之提高。當H2O2/AA反應時間超過15分鐘後,菊糖-多酚複合物之總酚含量下降9.4-14.9%;多酚溶液加入反應系統後接合反應在30分鐘完成,延長反應時間對於總酚含量無顯著影響。
第二部分,在確定實驗條件後接著探討4種菊糖-多酚複合物之理化性質。抗氧化實驗結果顯示,以長鏈菊糖-TP複合物之抗氧化能力最佳;在體外酵素抑制實驗中,菊糖-TP複合物酵素抑制能力較佳。在菊糖-多酚複合物之外觀及CIELAB顏色分析,短鏈及長鏈菊糖之間有明顯外觀上之不同,經CIELAB色彩分析,結果顯示菊糖-TP複合物顏色明顯(p < 0.05)偏橘;微生物分析實驗,添加菊糖-多酚複合物於培養液中,其生長結果與控制組相近,無法達到有效之影響。
綜合上述,透過研究不同參數條件對菊糖和多酚物質結合之影響,並比較其理化性質,發現菊糖與多酚類物質之結合效果受到多酚溶液反應時間、H2O2/AA之添加量、濃度及反應時間之影響。此研究結果可作為未來以自由基介導接合反應之相關實驗提供參考。
In the study, radical polymerization of the radical initiator was induced by ascorbic acid and hydrogen peroxide. By adjusting experimental parameters, inulin was conjugated with polyphenols to form short-chain inulin-gallic acid complexes, short-chain inulin-tea polyphenol complexes, long-chain inulin-gallic acid complexes, and long-chain inulin-tea polyphenol complexes. In addition, the physicochemical properties and potential applications of these conjugates were evaluated.
In the first part, the optimal production conditions for short-chain inulin conjugated with gallic acids (GA) and tea polyphenol (TP) were determined. Appropriate binding conditions were established, including the amount of the radical initiator (H2O2/AA), hydrogen peroxide concentration of the H2O2/AA, reaction time of the H2O2/AA, and reaction time of the polyphenol solution. In the preparation of short-chain inulin-polyphenol complexes, the amount of H2O2/AA, H2O2 concentration, and H2O2/AA reaction time all affected the total phenolic content of the inulin-polyphenol complexes. With an increase in the amount of H2O2/AA and higher H2O2 concentration, the total phenolic content of the inulin-polyphenol complexes also increased. However, when the reaction time of H2O2/AA exceeded 15 minutes, the total phenolic content of the inulin-polyphenol complexes decreased by 9.4-14.9%. The addition of the polyphenol solution to the reaction system and subsequent reaction completion within 30 minutes had no effect on the total phenolic content.
In the second part, after determining the experimental conditions, the physicochemical properties of four different inulin-polyphenol complexes were evaluated. In terms of antioxidant activity long-chain inulin-tea polyphenol complexes exhibited the highest antioxidant capacity. In the in vitro enzyme inhibition assays against α-amylase and pancreatic lipase, the inulin-TP complexes showed higher inhibition capacity than the inulin-GA complexes. In terms of appearance and CIELAB color analysis of the inulin-polyphenol complexes, different appearance between short-chain inulin and long-chain inulin were observed. According to the CIELAB color analysis, the results showed that the color of the inulin-TP complex is significantly (p < 0.05) orange. Microbial analysis experiments showed that the growth results of the culture with inulin-polyphenol complexes were similar to the control group with no significant differences.
In summary, the present study compared the influence of different parameter conditions on the conjugation of inulin and polyphenols with their physicochemical properties, it was found that the conjugation efficiency between inulin and polyphenols was affected by the reaction time of the polyphenol solution, the amount and concentration of the H2O2/AA, and the reaction time. These research results might serve as a reference for future experiments involving free radical-mediated grafting reactions.
摘要 i
Abstract iii
目錄 vi
圖次 ix
表次 x
1. 前言 1
1.1. 膳食纖維 1
1.1.1. 膳食纖維定義及分類 1
1.1.2. 膳食纖維之理化性質及生理活性 2
1.1.3. 膳食纖維之市場需求及食品應用 4
1.1.4. 水溶性膳食纖維-菊糖 4
1.2. 多酚化合物 6
1.2.1. 多酚化合物之分類 6
1.2.2.多酚化合物之代謝及生理活性 7
1.3. 膳食纖維與多酚化合物之交互作用 9
1.3.1. 吸附作用 9
1.3.2. 化學偶合法 10
1.3.3. 酵素催化聚合反應 10
1.3.4. 自由基介導接合反應 11
2. 研究目的 13
3. 材料與方法 14
3.1. 實驗架構 14
3.2. 實驗材料 16
3.2.1.菊糖 16
3.2.2.多酚化合物 16
3.3. 探討菊糖-多酚複合物之最適製備條件 16
3.4. 抗氧化實驗 17
3.4.1. 總酚含量測定 17
3.4.2. DPPH 自由基清除能力 17
3.5. 體外酵素抑制實驗 18
3.5.1. 體外澱粉酶活性抑制實驗 18
3.5.2. 體外胰脂肪酶活性抑制實驗 19
3.6. 實體顯微鏡觀察 20
3.7. 色澤分析 20
3.8. 微生物分析 21
3.8.1. Lactobacillus spp.生長測定 21
3.8.2. Escherichia coli 生長測定 21
3.9. 統計分析 22
4. 結果與討論 23
4.1. 探討不同條件下菊糖複合物之結合效果 23
4.1.1. 氧化還原起始劑在不同添加量對菊糖-多酚複合物之影響 23
4.1.2. 不同濃度之氧化還原起始劑對菊糖-多酚複合物之影響 26
4.1.3. 氧化還原起始劑在不同時間條件下對菊糖-多酚複合物之影響 26
4.1.4. 多酚化合物在不同反應時間下對菊糖-多酚複合物之影響 28
4.2. 不同菊糖-多酚複合物其總酚含量 31
4.3. DPPH 自由基清除能力 31
4.4. 體外澱粉酶活性抑制實驗 33
4.5. 菊糖-多酚複合物對體外胰脂肪酶活性之影響 38
4.6. 菊糖-多酚複合物之外觀及色澤 40
4.7. 微生物分析 44
4.7.1. Lactobacillus spp.生長測定 44
4.7.2. Escherichia coli 生長測定 44
5. 結論 49
6. 參考文獻 51
衛生福利部(2022)。國民營養健康狀況變遷調查報告2017-2020年。
衛生福利部(2022)。「國人膳食營養素參考攝取量」第八版。
Akram, W., Garud, N., & Joshi, R. (2019). Role of inulin as prebiotics on inflammatory bowel disease. Drug Discoveries & Therapeutics, 13, 1-8.
Alves-Santos, A. M., Sugizaki, C. S. A., Lima, G. C., & Naves, M. M. V. (2020). Prebiotic effect of dietary polyphenols: A systematic review. Journal of Functional Foods, 74, 104169.
Anderson, J. W., Baird, P., Davis, R. H., Jr, Ferreri, S., Knudtson, M., Koraym, A., Waters, V., & Williams, C. L. (2009). Health benefits of dietary fiber. Nutrition Reviews, 67, 188-205.
Apolinário, A. C., de Lima Damasceno, B. P. G., de Macêdo Beltrão, N. E., Pessoa, A., Converti, A., & da Silva, J. A. (2014). Inulin-type fructans: a review on different aspects of biochemical and pharmaceutical technology. Carbohydrate Polymers, 101, 368-378.
Arizmendi-Cotero, D., Gómez-Espinosa, R. M., García, O. D., Gómez-Vidales, V., & Dominguez-Lopez, A. (2016). Electron paramagnetic resonance study of hydrogen peroxide/ascorbic acid ratio as initiator redox pair in the inulin-gallic acid molecular grafting reaction. Carbohydrate Polymer, 136, 350-357.
Bach, V., Clausen, M. R., & Edelenbos, M. (2015). Production of Jerusalem artichoke (Helianthus tuberosus L.) and impact on inulin and phenolic compounds. In V. R. Preedy (Ed.), Processing and Impact of Active Components in Food (p. 97-102). Elsevier, Academic Press.
Balasundram, N., Sundram, K., & Samman, S. (2006). Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chemistry, 99, 191-203.
Ben Lagha, A., Haas, B., & Grenier, D. (2017). Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum. Scientific Reports, 7, 44815.
Bouarab Chibane, L., Degraeve, P., Ferhout, H., Bouajila, J., & Oulahal, N. (2019). Plant antimicrobial polyphenols as potential natural food preservatives. Journal of the Science of Food and Agriculture, 99, 1457-1474.
Buchholz, T., Chen, C., Zhang, X. Y., & Melzig, M. F.(2016). Pancreatic lipase and α-amylase inhibitory activities of plants used in Traditional Chinese Medicine (TCM). Die Pharmazie-An International Journal of Pharmaceutical Sciences, 71, 420-424.
Buchholz, T., & Melzig, M. F. (2015). Polyphenolic Compounds as Pancreatic Lipase Inhibitors. Planta Medica, 81, 771-783.
Cirillo, G., Kraemer, K., Fuessel, S., Puoci, F., Curcio, M., Spizzirri, U. G., Altimari, I., & Iemma, F. (2010). Biological Activity of a Gallic Acid-Gelatin Conjugate. Biomacromolecules, 11, 3309-3315.
Curcio, M., Puoci, F., Iemma, F., Parisi, O. I., Cirillo, G., Spizzirri, U. G., & Picci, N. (2009). Covalent insertion of antioxidant molecules on chitosan by a free radical grafting procedure. Journal Agricultural Food Chemistry, 57, 5933-5938.
da Silva, J. M., Klososki, S. J., Silva, R., Raices, R. S. L., Silva, M. C., Freitas, M. Q., Barão, C. E., & Pimentel, T. C. (2020). Passion fruit-flavored ice cream processed with water-soluble extract of rice by-product: What is the impact of the addition of different prebiotic components? LWT-Food Science and Technology, 128, 109472.
Dai, F. J., & Chau, C. F. (2017). Classification and regulatory perspectives of dietary fiber. Journal of Food and Drug Analysis, 25, 37-42.
de Menezes, E. W., Giuntini, E. B., Dan, M. C. T., Sardá, F. A. H., & Lajolo, F. M. (2013). Codex dietary fibre definition-Justification for inclusion of carbohydrates from 3 to 9 degrees of polymerisation. Food Chemistry, 140, 581-585.
Den Hond, E., Geypens, B., & Ghoos, Y. (2000). Effect of high performance chicory inulin on constipation. Nutrition Research, 20, 731-736.
Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124, 411-421.
Esparza, I., Salinas, Í., Santamaría, C., García-Mina, J. M., & Fernández, J. M. (2005). Electrochemical and theoretical complexation studies for Zn and Cu with individual polyphenols. Analytica Chimica Acta, 543, 267-274.
Forester, S. C., & Lambert, J. D. (2011). The role of antioxidant versus pro-oxidant effects of green tea polyphenols in cancer prevention. Molecular Nutrition & Food Research, 55, 844-854.
Gong, L., Feng, D., Wang, T., Ren, Y., Liu, Y., & Wang, J. (2020). Inhibitors of α-amylase and α-glucosidase: Potential linkage for whole cereal foods on prevention of hyperglycemia. Food Science & Nutrition, 8, 6320-6337.
Goupy, P., Dufour, C., Loonis, M., & Dangles, O. (2003). Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical. Journal of Agricultural Food Chemistry, 51, 615-622.
Gueimonde, M., Delgado, S., Mayo, B., Ruas-Madiedo, P., Margolles, A., & de los Reyes-Gavilán, C. G. (2004). Viability and diversity of probiotic Lactobacillus and Bifidobacterium populations included in commercial fermented milks. Food Research International, 37, 839-850.
Guo, Q., Xiao, X., Lu, L., Ai, L., Xu, M., Liu, Y., & Goff, H. D. (2022). Polyphenol-Polysaccharide Complex: Preparation, Characterization, and Potential Utilization in Food and Health. Annual Review of Food Science and Technology, 13, 59-87.
Howarth, N. C., Saltzman, E., & Roberts, S. B. (2001). Dietary fiber and weight regulation. Nutrition Reviews, 59, 129-139.
Hu, Y., Chen, D., Zheng, P., Yu, J., He, J., Mao, X., & Yu, B. (2019). The bidirectional interactions between resveratrol and gut microbiota: an insight into oxidative stress and inflammatory bowel disease therapy. BioMed Research International, 2019, 5403761.
Hughes, R. L., Alvarado, D. A., Swanson, K. S., & Holscher, H. D. (2022). The prebiotic potential of inulin-type fructans: a systematic review. Advances in Nutrition, 13, 492-529.
Kalyani Nair, K., Kharb, S., & Thompkinson, D. K. (2010). Inulin dietary fiber with functional and health attributes-A review. Food Reviews International, 26, 189-203.
Kim, S., Lee, H., Kim, J., Oliveira, F., Souto, P., Kim, H., & Nakamatsu, J. (2018). Laccase-mediated grafting of polyphenols onto cationized cotton fibers to impart UV protection and antioxidant activities. Journal of Applied Polymer Science, 135, 45801.
Kitagawa, M., & Tokiwa, Y. (2006). Polymerization of vinyl sugar ester using ascorbic acid and hydrogen peroxide as a redox reagent. Carbohydrate Polymers, 64, 218-223.
Lattimer, J. M., & Haub, M. D. (2010). Effects of dietary fiber and its components on metabolic health. Nutrients, 2, 1266-1289.
Lee, H. C., Jenner, A. M., Low, C. S., & Lee, Y. K. (2006). Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Researchin Microbiology, 157, 876-884.
Lewandowska, U., Szewczyk, K., Hrabec, E., Janecka, A., & Gorlach, S. (2013). Overview of metabolism and bioavailability enhancement of polyphenols. Journal of Agricultural Food Chemistry, 61, 12183-12199.
Lippolis, T., Cofano, M., Caponio, G. R., De Nunzio, V., & Notarnicola, M. (2023). Bioaccessibility and bioavailability of diet polyphenols and their modulation of gut microbiota. International Journal of Molecular Sciences, 24, 3813.
Liu, J., Pu, H., Chen, C., Liu, Y., Bai, R., Kan, J., & Jin, C. (2018). Reaction mechanisms and structural and physicochemical properties of caffeic acid grafted chitosan synthesized in ascorbic acid and hydroxyl peroxide redox system. Journal of Agricultural Food Chemistry, 66, 279-289.
Liu, J., Wang, X., Yong, H., Kan, J., & Jin, C. (2018). Recent advances in flavonoid-grafted polysaccharides: Synthesis, structural characterization, bioactivities and potential applications. International Journal of Biological Macromolecules, 116, 1011-1025.
Lunagariya, N. A., Patel, N. K., Jagtap, S. C., & Bhutani, K. K. (2014). Inhibitors of pancreatic lipase: state of the art and clinical perspectives. Excli Journal, 13, 897-921.
Macagnan, F. T., da Silva, L. P., & Hecktheuer, L. H. (2016). Dietary fibre: The scientific search for an ideal definition and methodology of analysis, and its physiological importance as a carrier of bioactive compounds. Food Research International, 85, 144-154.
Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79, 727-747.
Mensink, M. A., Frijlink, H. W., van der Voort Maarschalk, K., & Hinrichs, W. L. (2015). Inulin, a flexible oligosaccharide I: Review of its physicochemical characteristics. Carbohydrate Polymers, 130, 405-419.
Mishra, K., Ojha, H., & Chaudhury, N. K. (2012). Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chemistry, 130, 1036-1043.
Mittal, A., Singh, A., Zhang, B., Visessanguan, W., & Benjakul, S. (2022). Chitooligosaccharide conjugates prepared using several phenolic compounds via ascorbic acid/H2O2 free radical grafting: characteristics, antioxidant, antidiabetic, and antimicrobial activities. Foods, 11, 920.
Mohamed, G. A., Ibrahim, S. R. M., Elkhayat, E. S., & El Dine, R. S. (2014). Natural anti-obesity agents. Bulletin of Faculty of Pharmacy, Cairo University, 52, 269-284.
Müller, M., Canfora, E. E., & Blaak, E. E. (2018). Gastrointestinal transit time, glucose homeostasis and metabolic health: modulation by dietary fibers. Nutrients, 10, 275.
Nakai, M., Fukui, Y., Asami, S., Toyoda-Ono, Y., Iwashita, T., Shibata, H., Mitsunaga, T., Hashimoto, F., & Kiso, Y. (2005). Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. Journal of Agricultural and Food Chemistry, 53, 4593-4598.
Oluwagunwa, O. A., Alashi, A. M., & Aluko, R. E. (2021). Inhibition of the in vitro activities of α-amylase and pancreatic lipase by aqueous extracts of Amaranthus viridis, Solanum macrocarpon and Telfairia occidentalis Leaves. Frontiers in Nutrition, 8, 772903.
Phan, A. D., Netzel, G., Wang, D., Flanagan, B. M., D'Arcy, B. R., & Gidley, M. J. (2015). Binding of dietary polyphenols to cellulose: structural and nutritional aspects. Food Chemistry, 171, 388-396.
Prokopidis, K., Giannos, P., Ispoglou, T., Witard, O. C., & Isanejad, M. (2022). Dietary fiber intake is associated with cognitive function in older adults: data from the national health and nutrition examination survey. The American Journal of Medicine, 135, e257-e262.
Quiros-Sauceda, A. E., Palafox-Carlos, H., Sayago-Ayerdi, S. G., Ayala-Zavala, J. F., Bello-Perez, L. A., Alvarez-Parrilla, E., de la Rosa, L. A., Gonzalez-Cordova, A. F., & Gonzalez-Aguilar, G. A. (2014). Dietary fiber and phenolic compounds as functional ingredients: interaction and possible effect after ingestion. Food & Function, 5, 1063-1072.
Ren, Y., Yu, D., Wu, J., Mao, S., Chen, P., Chen, S., Gao, Q., Ye, X., & Tian, J. (2023). Preparation and physicochemical properties characterization of hesperetin-grafted pectin conjugate. International Journal of Biological Macromolecules, 243, 124887.
Roberfroid, M. B. (2007). Inulin-Type Fructans: Functional Food Ingredients. The Journal of Nutrition, 137, 2493S-2502S.
Sant’Anna, V., Gurak, P. D., Marczak, L. D. F., & Tessaro, I. C. (2013). Tracking bioactive compounds with colour changes in foods – A review. Dyes and Pigments, 98, 601-608.
Saura-Calixto, F. (2011). Dietary fiber as a carrier of dietary antioxidants: an essential physiological function. Journal of Agricultural Food Chemistry, 59, 43-49.
Scalbert, A., Morand, C., Manach, C., & Rémésy, C. (2002). Absorption and metabolism of polyphenols in the gut and impact on health. Biomedicine & Pharmacotherapy, 56, 276-282.
Scalbert, A., & Williamson, G. (2000). Dietary Intake and Bioavailability of Polyphenols. The Journal of Nutrition, 130, 2073S-2085S.
Shivakoti, R., Biggs, M. L., Djoussé, L., Durda, P. J., Kizer, J. R., Psaty, B., Reiner, A. P., Tracy, R. P., Siscovick, D., & Mukamal, K. J. (2022). Intake and sources of dietary fiber, inflammation, and cardiovascular disease in older us adults. JAMA Network Open, 5, e225012.
Shokri, Z., Seidi, F., Karami, S., Li, C., Saeb, M. R., & Xiao, H. (2021). Laccase immobilization onto natural polysaccharides for biosensing and biodegradation. Carbohydrate Polymers, 262, 117963.
Sieminska-Kuczer, A., Szymanska-Chargot, M., & Zdunek, A. (2022). Recent advances in interactions between polyphenols and plant cell wall polysaccharides as studied using an adsorption technique. Food Chemistry, 373, 131487.
Slagman, S., Zuilhof, H., & Franssen, M. C. R. (2018). Laccase-mediated grafting on biopolymers and synthetic polymers: a critical review. Chembiochem, 19, 288-311.
Slavin, J. (2013). Fiber and prebiotics: mechanisms and health benefits. Nutrients, 5, 1417-1435.
Sourabh, A., Kanwar, S. S., Sud, R. G., Ghabru, A., & Sharma, O. P. (2013). Influence of phenolic compounds of Kangra tea [Camellia sinensis(L) O Kuntze] on bacterial pathogens and indigenous bacterial probiotics of Western Himalayas. Brazilian Journal of Microbiology, 44, 709-715.
Spizzirri, U. G., Parisi, O. I., Iemma, F., Cirillo, G., Puoci, F., Curcio, M., & Picci, N. (2010). Antioxidant–polysaccharide conjugates for food application by eco-friendly grafting procedure. Carbohydrate Polymers, 79, 333-340.
Sun, L., Gidley, M. J., & Warren, F. J. (2017). The mechanism of interactions. between tea polyphenols and porcine pancreatic alpha-amylase: Analysis by inhibition kinetics, fluorescence quenching, differential scanning calorimetry and isothermal titration calorimetry. Molecular Nutrition & Food Research, 61, 1700324.
Sun, L., Warren, F. J., & Gidley, M. J. (2019). Natural products for glycaemic control: Polyphenols as inhibitors of alpha-amylase. Trends in Food Science & Technology, 91, 262-273.
Sun, M. F., Jiang, C. L., Kong, Y. S., Luo, J. L., Yin, P., & Guo, G. Y. (2022). Recent advances in analytical methods for determination of polyphenols in tea: A comprehensive review. Foods, 11, 1425.
Świader, K., & Florowska, A. (2022). The sensory quality and the physical properties of functional green tea-infused yoghurt with inulin. Foods, 11, 566.
Tan, Y., Chang, S. K. C., & Zhang, Y. (2017). Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chemistry, 214, 259-268.
Tawfick, M. M., Xie, H., Zhao, C., Shao, P., & Farag, M. A. (2022). Inulin fructans in diet: Role in gut homeostasis, immunity, health outcomes and potential therapeutics. International Journal of Biological Macromolecules, 208, 948-961.
Thakur, A., Sharma, V., & Thakur, A. (2019). An overview of anti-nutritional factors in food. International Journal of Chemical Studies 7, 2472-2479.
Truong, V. L., & Jeong, W. S. (2021). Cellular defensive mechanisms of tea polyphenols: Structure-activity relationship. International Journal of Molecular Sciences, 22, 9109.
Upadhyay, A., Upadhyaya, I., Kollanoor-Johny, A., & Venkitanarayanan, K. (2014). Combating pathogenic microorganisms using plant-derived antimicrobials: a minireview of the mechanistic basis. BioMed Research International, 2014, 761741.
Villaño, D., Fernández-Pachón, M. S., Moyá, M. L., Troncoso, A. M., & García-Parrilla, M. C. (2007). Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta, 71, 230-235.
Wu, I. C., Chang, H. Y., Hsu, C. C., Chiu, Y. F., Yu, S. H., Tsai, Y. F., Shen, S. C., Kuo, K. N., Chen, C. Y., Liu, K., Lee, M. M., & Hsiung, C. A. (2013). Association between dietary fiber intake and physical performance in older adults: a nationwide study in Taiwan. Plos One, 8, e80209.
Yang, X., & Kong, F. (2016). Effects of tea polyphenols and different teas on pancreatic α-amylase activity in vitro. LWT - Food Science and Technology, 66, 232-238.
Zhang, Q., Zhang, J., Zhang, J., Xu, D., Li, Y., Liu, Y., Zhang, X., Zhang, R., Wu, Z., & Weng, P. (2021). Antimicrobial effect of tea polyphenols against foodborne pathogens: A Review. Journal of Food Protection, 84, 1801-1808.
Zhao, D., & Shah, N. P. (2016). Lactic acid bacterial fermentation modified phenolic composition in tea extracts and enhanced their antioxidant activity and cellular uptake of phenolic compounds following in vitro digestion. Journal of Functional Foods, 20, 182-194.
Zhu, F. (2018). Interactions between cell wall polysaccharides and polyphenols. Critical Reviews Food Science and Nutrition, 58, 1808-1831.
電子全文 電子全文(網際網路公開日期:20280808)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top