|
[1] 石蕙菱, 全球氫氣生產方式的發展與趨勢,產業技術評析, 經濟部技術處, 2021. [2] A. Abánades, E. Ruiz, E. Ferruelo, F. Hernández, A. Cabanillas, J. Martínez-Val, J. Rubio, C. López, R. Gavela, G. Barrera, Experimental analysis of direct thermal methane cracking, International journal of hydrogen energy, 36 (2011) 12877-12886. [3] A. Abánades, R.K. Rathnam, T. Geißler, A. Heinzel, K. Mehravaran, G. Müller, M. Plevan, C. Rubbia, D. Salmieri, L. Stoppel, Development of methane decarbonisation based on liquid metal technology for CO2-free production of hydrogen, International journal of hydrogen energy, 41 (2016) 8159-8167. [4] R. Baker, Catalytic growth of carbon filaments, Carbon, 27 (1989) 315-323. [5] M.L. Toebes, J.H. Bitter, A.J. Van Dillen, K.P. de Jong, Impact of the structure and reactivity of nickel particles on the catalytic growth of carbon nanofibers, Catalysis today, 76 (2002) 33-42. [6] L.S. Lobo, Nucleation and growth of carbon nanotubes and nanofibers: Mechanism and catalytic geometry control, Carbon, 114 (2017) 411-417. [7] L. Zhou, Y. Guo, K. Hideo, Unsupported nickel catalysts for methane catalytic decomposition into pure hydrogen, AIChE Journal, 60 (2014) 2907-2917. [8] I. Abdullahi, N. Sakulchaicharoen, J.E. Herrera, A mechanistic study on the growth of multi-walled carbon nanotubes by methane decomposition over nickel–alumina catalyst, Diamond and Related Materials, 23 (2012) 76-82. [9] S. Takenaka, S. Kobayashi, H. Ogihara, K. Otsuka, Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber, Journal of Catalysis, 217 (2003) 79-87. [10] U. Sikander, M.F. Samsudin, S. Sufian, K. KuShaari, C.F. Kait, S.R. Naqvi, W.-H. Chen, Tailored hydrotalcite-based Mg-Ni-Al catalyst for hydrogen production via methane decomposition: Effect of nickel concentration and spinel-like structures, International Journal of Hydrogen Energy, 44 (2019) 14424-14433. [11] A.A. Ibrahim, A.H. Fakeeha, A.S. Al-Fatesh, A.E. Abasaeed, W.U. Khan, Methane decomposition over iron catalyst for hydrogen production, International Journal of Hydrogen Energy, 40 (2015) 7593-7600. [12] S. Takenaka, M. Serizawa, K. Otsuka, Formation of filamentous carbons over supported Fe catalysts through methane decomposition, Journal of Catalysis, 222 (2004) 520-531. [13] A.H. Fakeeha, A.A. Ibrahim, W.U. Khan, K. Seshan, R.L. Al Otaibi, A.S. Al-Fatesh, Hydrogen production via catalytic methane decomposition over alumina supported iron catalyst, Arabian Journal of Chemistry, 11 (2018) 405-414. [14] A. Monzón, N. Latorre, T. Ubieto, C. Royo, E. Romeo, J. Villacampa, L. Dussault, J.-C. Dupin, C. Guimon, M. Montioux, Improvement of activity and stability of Ni–Mg–Al catalysts by Cu addition during hydrogen production by catalytic decomposition of methane, Catalysis Today, 116 (2006) 264-270. [15] A.E. Awadallah, A.A. Aboul-Enein, M.A. Deyab, M.A. Azab, A.M. Haggar, Impact of Cr doping on the performance of Ni/Al2O3 catalyst through methane decomposition into COx-free hydrogen and carbon nanomaterials, Chemical Engineering Research and Design, 186 (2022) 701-712. [16] W. Wang, H. Wang, Y. Yang, S. Jiang, Ni–SiO2 and Ni–Fe–SiO2 catalysts for methane decomposition to prepare hydrogen and carbon filaments, International Journal of Hydrogen Energy, 37 (2012) 9058-9066. [17] A.S. Al-Fatesh, A.H. Fakeeha, A. Ibrahim, W.U. Khan, H. Atia, R. Eckelt, K. Seshan, B. Chowdhury, Decomposition of methane over alumina supported Fe and Ni–Fe bimetallic catalyst: Effect of preparation procedure and calcination temperature, Journal of Saudi Chemical Society, 22 (2018) 239-247. [18] A.I. Alharthi, Nickel-iron catalyst for decomposition of methane to hydrogen and filamentous carbon: Effect of calcination and reaction temperatures, Alexandria Engineering Journal, 67 (2023) 129-141. [19] R. Moliner, Y. Echegoyen, I. Suelves, M. Lázaro, J. Palacios, Ni–Mg and Ni–Cu–Mg catalysts for simultaneous production of hydrogen and carbon nanofibers: The effect of calcination temperature, International Journal of Hydrogen Energy, 33 (2008) 1719-1728. [20] M. Pudukudy, A. Kadier, Z. Yaakob, M.S. Takriff, Non-oxidative thermocatalytic decomposition of methane into COx free hydrogen and nanocarbon over unsupported porous NiO and Fe2O3 catalysts, international journal of hydrogen energy, 41 (2016) 18509-18521. [21] L. Zhou, L.R. Enakonda, M. Harb, Y. Saih, A. Aguilar-Tapia, S. Ould-Chikh, J.-l. Hazemann, J. Li, N. Wei, D. Gary, Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials, Applied catalysis B: environmental, 208 (2017) 44-59. [22] 鄒博丞, 鐵基載氧體應用於甲烷化學迴路重組產製合成氣之實驗探討, in: 機械工程學系所, 國立中興大學, 台中市, 2022, pp. 123. [23] N. Muradov, F. Smith, T. Ali, Catalytic activity of carbons for methane decomposition reaction, Catalysis Today, 102 (2005) 225-233. [24] M.H. Kim, E.K. Lee, J.H. Jun, S.J. Kong, G.Y. Han, B.K. Lee, T.-J. Lee, K.J. Yoon, Hydrogen production by catalytic decomposition of methane over activated carbons: kinetic study, International journal of hydrogen energy, 29 (2004) 187-193. [25] R. Moliner, I. Suelves, M. Lázaro, O. Moreno, Thermocatalytic decomposition of methane over activated carbons: influence of textural properties and surface chemistry, International Journal of Hydrogen Energy, 30 (2005) 293-300. [26] F. Liu, G. Xuan, L. Ai, Q. Liu, L. Yang, Key factors that affect catalytic activity of activated carbon-based catalyst in chemical looping methane decomposition for H2 production, Fuel Processing Technology, 215 (2021) 106745. [27] S. Patel, S. Kundu, P. Halder, M.H. Marzbali, K. Chiang, A. Surapaneni, K. Shah, Production of hydrogen by catalytic methane decomposition using biochar and activated char produced from biosolids pyrolysis, International Journal of Hydrogen Energy, 45 (2020) 29978-29992. [28] Y. Wang, Y. Zhang, S. Zhao, J. Zhu, L. Jin, H. Hu, Preparation of bimetallic catalysts Ni-Co and Ni-Fe supported on activated carbon for methane decomposition, Carbon Resources Conversion, 3 (2020) 190-197. [29] F. Cazaña, N. Latorre, P. Tarifa, C.J. Royo, V. Sebastián, E. Romeo, M. Centeno, A. Monzón, Performance of AISI 316L-stainless steel foams towards the formation of graphene related nanomaterials by catalytic decomposition of methane at high temperature, Catalysis Today, 383 (2022) 236-246. [30] J. Xiong, X. Dong, Y. Dong, X. Hao, S. Hampshire, Dual-production of nickel foam supported carbon nanotubes and hydrogen by methane catalytic decomposition, international journal of hydrogen energy, 37 (2012) 12307-12316. [31] D. Ping, C. Wang, X. Dong, Y. Dong, Co-production of hydrogen and carbon nanotubes on nickel foam via methane catalytic decomposition, Applied Surface Science, 369 (2016) 299-307. [32] Z. Ren, J. Zhang, Y. Bai, J. Wang, H. Chen, Q. Hao, X. Ma, Unsupported nickel catalyst prepared from nickel foam for methane decomposition and recycling the carbon deposited spent catalyst, International Journal of Hydrogen Energy, 46 (2021) 21853-21865. [33] 廖家萱, 改性生物炭用於廢食用油轉酯化和裂解反應之性能探討, in: 機械工程學系所, 國立中興大學, 台中市, 2021, pp. 90. [34] A.C. Lua, H.Y. Wang, Decomposition of methane over unsupported porous nickel and alloy catalyst, Applied Catalysis B: Environmental, 132 (2013) 469-478. [35] N. Bayat, M. Rezaei, F. Meshkani, Methane decomposition over Ni–Fe/Al2O3 catalysts for production of COx-free hydrogen and carbon nanofiber, International journal of hydrogen energy, 41 (2016) 1574-1584. [36] A. Iulianelli, P. Ribeirinha, A. Mendes, A. Basile, Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review, Renewable and Sustainable Energy Reviews, 29 (2014) 355-368. [37] A.M. Ranjekar, G.D. Yadav, Dry reforming of methane for syngas production: A review and assessment of catalyst development and efficacy, Journal of the Indian Chemical Society, 98 (2021) 100002. [38] H.F. Abbas, W.W. Daud, Deactivation of palm shell-based activated carbon catalyst used for hydrogen production by thermocatalytic decomposition of methane, International journal of hydrogen energy, 34 (2009) 6231-6241.
|