跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 07:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昱成
研究生(外文):Yu-Cheng Lin
論文名稱:具隨形夾持功能之氣動軟機械手的設計與控制
論文名稱(外文):Design and Control of Pneumatic Soft Manipulator with Adaptive Gripping Function
指導教授:李聯旺李聯旺引用關係
指導教授(外文):Lian-Wang Lee
口試委員:李慶鴻盧建余李宜勳
口試日期:2023-07-21
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:132
中文關鍵詞:氣動軟機械手臂氣動伺服系統滑模擴張狀態觀測器降階線性擴張狀態觀測器滑動模式控制隨形抓取夾持器
外文關鍵詞:Pneumatic soft manipulatorPneumatic servo systemSliding mode extended state observerReduced-order linear extended state observerSliding mode controlShape following grabber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:46
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文根據仿生概念設計研製具隨形夾持功能之氣動軟機械手,旨在改善剛性夾持器對形狀不規則、易損毀或破碎物件夾持能力不足,及剛性機械手臂結構複雜、自由度與空間適應性不佳的問題,並加以利用於具備多種尺寸的非結構化之產品線上,為了達到多尺寸之產品線的夾持靈活性設計以3D列印製做具備鰭條效應的隨形夾持器(Shape Following Grabber, SFG),並搭配撓性連桿、無桿氣壓缸與單軸機器人進行設計的氣動軟機械手臂(Pneumatic Soft Manipulator, PSM)以氣體的可壓縮性及撓性連桿的彈性提升整體人機協作的安全性。為解決PSM高度非線性與時變特性的控制問題並簡化實際控制系統實現的困難度,PSM採用分散式控制分別對每一個子系統設計滑模擴張狀態觀測器(Sliding Mode Extended State Observer, SMESO)即時估測系統狀態與內外部不確定性,提出基於滑模擴張狀態觀測器之滑動模式控制器(Sliding Mode Extended State Observer-Based Sliding Mode Controller, SMESO-SMC),並以Lyapunov理論完成穩定性證明。在系統製做與實驗部分,本研究除了依據所提出之設計方案完成整體系統的研製外,並將SMESO-SMC實際應用於PSM的末端點軌跡追蹤控制,相較於降階線性擴張狀態觀測器之滑動模式控制器(Reduced-Order Linear Extended State Observer-Based Sliding Mode Controller, LESO-SMC)的實驗結果,PSM在SMESO-SMC補償下其末端點軌跡追蹤的平均誤差與均方根誤差均可減少約20% ~ 30%。此外,SFG透過不同形狀物件與不同姿態的負重夾持實驗,結果顯示SFG在13公分的張爪直徑範圍內可以夾持最高1400公克重的各種不同形狀物件,其對不同形狀物件的夾持能力遠優於市面上現有的剛性夾爪。
This thesis presents the design and development of a pneumatic soft manipulator with adaptive grasping capability based on the biomimetic concept. The aim is to improve the limitations of rigid grippers in terms of insufficient grasping capability for irregularly shaped, fragile, or easily breakable objects, in multiple grasping target situation, as well as the issues associated with complex structure, limited degrees of freedom, and poor spatial adaptability of rigid robotic arms. The system includes a 3D-printed shape following grabber (SFG) with fin effect and a pneumatic soft manipulator (PSM) designed with flexible linkages, rodless cylinders, and a single-axis robot , and utilizes the compressibility of gas and the elasticity of flexible linkage to improve the safety of overall human-robot collaboration. To address the highly nonlinear and time-varying characteristics of PSM and simplify the implementation of control systems, a decentralized control approach is adopted. Sliding mode extended state observers (SMESO) are designed for each subsystem to estimate real-time system states and uncertainties. Based on the SMESO, a sliding mode controller, namely the sliding mode extended state observer-based sliding mode controller (SMESO-SMC), is proposed and its stability is proven using Lyapunov theory. In the system fabrication and experimentation, the proposed design scheme is implemented, and the SMESO-SMC is applied to the trajectory tracking control of the PSM end effector. Compared to the experimental results of the reduced-order linear extended state observer-based sliding mode controller (LESO-SMC), the SMESO-SMC reduces the average error and root mean square error of PSM end effector trajectory tracking by approximately 20% ~ 30%. Additionally, the SFG is tested for load-bearing capability with various shapes and orientations of objects. The results show that the SFG can grip different-shaped objects within a claw diameter range of 13 cm, with a maximum load-bearing capacity of 1200 grams. Its grasping capability for objects of different shapes far exceeds that of existing rigid grippers on the market.
摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 隨形夾持器 2
1.2.2 軟機械手臂 7
1.2.3 滑動模式狀態觀測器 12
1.3 研究目的與貢獻 15
1.4 論文架構 15
第二章 機構設計與系統架構 17
2.1 隨形夾持器之設計與分析 17
2.2 氣動軟機械臂之設計與分析 25
2.3 實驗系統建立 28
2.3.1 氣動伺服系統 30
2.3.2 垂直移載系統 31
2.3.3 嵌入式控制系統 32
2.4 實驗系統架構 34
第三章 運動學模型 35
3.1 軟機械臂運動學分析 35
3.1.1 正向運動學 36
3.1.2 逆向運動學 42
3.2 工作空間與運動學軌跡驗證 45
3.2.1 整體工作空間 46
3.2.2 平面圓形軌跡 49
3.2.3 平面太極軌跡 52
3.2.4 立體螺旋球軌跡 55
3.2.5 夾持模擬軌跡 58
3.2.6 末端點定位誤差 62
第四章 系統數學模型建立 64
4.1 氣動伺服系統數學模型 64
第五章 控制器設計 69
5.1 滑動模式控制器理論 69
5.1.1 滑動模式觀測器設計 70
5.1.2 基於滑動模式觀測器之滑動模式控制設計 72
第六章 實驗與結果 75
6.1 隨形夾持器性能驗證 76
6.1.1 柔順性夾持驗證 76
6.1.2 夾持器負重驗證 79
6.2 氣動軟機械臂運動控制 81
6.2.1 單軸五階軌跡追蹤 81
6.2.2 末端點圓形軌跡追蹤 86
6.2.3 末端點太極軌跡追蹤 92
6.2.4 末端點螺旋球軌跡追蹤 98
6.3 具隨形夾持功能之氣動軟機械臂功能測試 104
6.3.1 強健性能分析 104
6.3.2 實體取放實驗 117
第七章 結論與未來展望 124
7.1 結論 124
7.2 未來展望 125
參考文獻 126
[1]X. Dong, D. Axinte, D. Palmer, et al., “Development of a slender continuum robotic system for on-wing inspection/repair of gas turbine engines,” Robotics and computer-integrated manufacturing, vol. 44, pp. 218-229, 2017.
[2]T. da Veiga, J. H. Chandler, P. Lloyd, et al., “Challenges of continuum robots in clinical context: a review,” Progress in Biomedical Engineering, vol. 2, no. 3, pp. 1-30, 2020.
[3]S. Zaidi, M. Maselli, C. Laschi, et al., “Actuation technologies for soft robot grippers and manipulators: A review.” Current Robotics Reports, vol. 2, no. 3, pp. 355-369, 2021.
[4]J. Hughes, U. Culha, F. Giardina, et al., “Soft manipulators and grippers: a review,” Frontiers in Robotics and AI, vol. 3, no. 69, pp. 1-12, 2016.
[5]S. Li, G. Hao, “Current trends and prospects in compliant continuum robots: A survey,” Actuators. MDPI, vol. 10, no. 7, pp. 145, 2021.
[6]J. Shintake, V. Cacucciolo, D. Floreano, “Soft robotic grippers,” Advanced materials, vol. 30, no. 29, pp. 1-33, 2018.
[7]G. Bai, “Adaptive and reconfigurable robotic gripper hands with a meso-scale gripping range,” PhD Thesis, Heriot-Watt University, 2018.
[8]C. P. Peng, L. Seurre, É. Cattan, et al., “Toward an electroactive polymer-based soft microgripper,” IEEE Access, vol. 9, pp. 32188-32195, 2021.
[9]F. Iievski, A. D. Mazzeo, R. F. Shepherd et al., “Soft Robotics for Chemists,” Angewandte Chemie, vol. 123, no.8, pp. 1930-1935, 2011.
[10]F. Yang, Q. Ruan, Y. Man, et al., “Design and optimize of a novel segmented soft pneumatic actuator,” IEEE Access, vol. 8, pp. 122304-122313, 2020.
[11]Y. Cui, X. J. Liu, X. Dong, et al., “Enhancing the Universality of a Pneumatic Gripper via Continuously Adjustable Initial Grasp Postures,” IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1604-1618, 2021.
[12]P. Glick, S. A. Suresh, D. Ruffatto et al., “A Soft Robotic Gripper With Gecko-Inspired Adhesive,” IEEE Robotics and Automation Letters.” vol. 3, no. 2, pp. 903-910, 2018.
[13]C. Tawk, R. Mutlu, G. Alici, “A 3D Printed Modular Soft Gripper Integrated With Metamaterials for Conformal Grasping,” Frontiers in Robotics and AI, vol. 8, pp. 1-13, 2022.
[14]Festo. DHAS系列datasheet.:
https://www.festo.com/tw/zh/
[15]Y. Yang, K. Jin, H. Zhu, et al., “A 3D-printed fin ray effect inspired soft robotic gripper with force feedback,” Micromachines, vol.12, no.10, pp. 1-14, 2021.
[16]W. Xu, H. Zhang, H. Yuan et al., “A Compliant Adaptive Gripper and Its Intrinsic Force Sensing Method,” IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1584-1603, 2021.
[17]J. H. Shin, J. G. Park, D. I. Kim et al., “A Universal Soft Gripper with the Optimized Fin Ray Finger,” International Journal of Precision Engineering and Manufacturing-Green Technology, vol. 8, pp. 889-899, 2021.
[18]J. Zhang, Q. Fang, P. Xiang, et al., “A survey on design, actuation, modeling, and control of continuum robot,” Cyborg and Bionic Systems, vol. 2022, pp. 1-13, 2022.
[19]G. Qin, A. Ji, Y. Cheng, et al., “A snake-inspired layer-driven continuum robot,” Soft Robotics, vol. 9, no. 4, pp. 788-797, 2022.
[20]R. Matsuda, U. K. Mavinkurve, A. Kanada, et al., “A Woodpecker’s Tongue-Inspired, Bendable and Extendable Robot Manipulator With Structural Stiffness,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3334-3341, 2022.
[21]I. A. Seleem, H. El-Hussieny, S. F. M. Assal, et al., “Development and stability analysis of an imitation learning-based pose planning approach for multi-section continuum robot,” IEEE Access, vol. 8, pp. 99366-99379, 2020.
[22]Y. Liu, Y. Yang, Y. Peng, et al., “A Light Soft Manipulator With Continuously Controllable Stiffness Actuated by a Thin McKibben Pneumatic Artificial Muscle,” IEEE/ASME Transactions on Mechatronics, vol. 25, no. 4, pp. 1944-1952, 2020.
[23]Y. Li, T. Ren, Y. Chen, M. Z. Q. Chen, “A variable stiffness soft continuum robot based on pre-charged air, particle jamming, and origami,” IEEE International Conference on Robotics and Automation. pp. 5869-5875, 2020.
[24]Z. Mitros, S. M. H. Sadati, R. Henry, et al., “From theoretical work to clinical translation: Progress in concentric tube robots,” Annual Review of Control Robotics and Autonomous Systems, vol. 5, pp. 335-359, 2022.
[25]M. U. Farooq, B. Xu, S. Y. Ko. “A concentric tube-based 4-DOF puncturing needle with a novel miniaturized actuation system for vitrectomy,” Biomedical engineering online, vol. 18, no. 1, pp. 1-16, 2019.
[26]Z. Xing, F. Wang, Y. Ji, D. McCoul, et al., “A structure for fast stiffness-variation and omnidirectional-steering continuum manipulator,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 755-762, 2020.
[27]V. Utkin, “Variable structure systems with sliding modes,” IEEE Transactions on Automatic control, vol. 22, no. 2, pp. 212-222, 1977.
[28]K. D. Young, V. I. Utkin, U. Ozguner, “A control engineer's guide to sliding mode control,” IEEE transactions on control systems technology, vol. 7, no.3, pp. 328-342, 1999.
[29]Komurcugil, Hasan, et al. “Sliding mode control: Overview of its applications in power converters.” IEEE Industrial Electronics Magazine, vol. 15, no. 1, pp. 40-49, 2020.
[30]Y. T. Liu, T. T. Kung, K. M. Chang, et al., “Observer-based adaptive sliding mode control for pneumatic servo system,” Precision Engineering, vol. 37, no. 3, pp. 522-530, 2013.
[31]C. Ren, X. Li, X. Yang, et al., “Extended state observer-based sliding mode control of an omnidirectional mobile robot with friction compensation,” IEEE Transactions on Industrial Electronics, vol. 66, no. 12, pp. 9480-9489, 2019.
[32]C. M. Ho, D. T. Tran, K. K. Ahn, “Adaptive sliding mode control based nonlinear disturbance observer for active suspension with pneumatic spring,” Journal of sound and vibration, vol. 509, pp. 116241, 2021.
[33]S. K. Spurgeon, “Sliding mode observers: a survey,” International Journal of Systems Science, vol. 39, no. 8, pp. 751-764, 2008.
[34]J. J. E. Slotine, J. K. Hedrick, E. A. Misawa, et al., “On sliding observers for nonlinear systems,” Journal of Dynamic Systems Measurement and Control, vol. 109, no. 3, pp. 245-252, 1987.
[35]J. L. Chang, “Applying sliding mode technique to design extended state observer for nonlinear systems,” Asian Journal of Control, vol. 24, no. 5, pp. 2127-2139, 2022.
[36]V. C. Nguyen, A. T. Vo, H. J. Kang, “A non-singular fast terminal sliding mode control based on third-order sliding mode observer for a class of second-order uncertain nonlinear systems and its application to robot manipulators,” IEEE Access, vol. 8, pp. 78109-78120, 2020.
[37]Washington 蘋果尺寸分類表. Available:
https://waapple.org/zh-TW/standards/
[38]S. Michel, C. Jordi, L. Wahl, et al., “Biomimetics in airship design.” 19th International Conference on Adaptive Structures and Technologies. , pp. 1-21, 2008.
[39]O. Pfaff, S. Simeonov, I. Cirovic, et al., “Application of fin ray effect approach for production process automation.” Annals of DAAAM & Proceedings, vol. 22, no. 1, pp. 1247-1249, 2011.
[40]D. Rus, M. T. Tolley, “Design, fabrication and control of soft robots.” Nature, vol. 521, no. 7553, pp. 467-475, 2015.
[41]C. I. Basson, G. Bright, “Geometric conformity study of a fin ray gripper utilizing active haptic control,” IEEE 15th International Conference on Control and Automation, pp. 713-718, 2019.
[42]EOS. P110系列datasheet.:
https://www.eos.info/en
[43]張岳憲,仿生連續體機械臂之設計與控制,碩士論文,國立中興大學機械工程學系,台中市,2022。
[44]王皓,柔性連續體機械臂大變形性能的研究,博士論文,北京工業大學機械工程學系,北京市,2020。
[45]CHELIC. PRU(F)系列datasheet. Available:
https://www.chelic.com/website/tw/index.html
[46]FESTO. MPYE系列datasheet. Available:
https://www.festo.com.
[47]Novotechnik. TLH Series datasheet. Available:
https://www.novotechnik.com/linear-side-actuated/
[48]FESTO. ADN系列datasheet. Available:
https://www.festo.com/tw/zh/a/536205/?q=ADN-12~:festoSortOrderScored
[49]CHELIC. SK系列datasheet. Available:
https://www.chelic.com/zh-TW/products_Info/ProductDetail/2/SK/SK%205-1-0-1-110V-K-NC-M4
[50]TBI MOTION. KP系列datasheet. Available:
https://www.tbimotion.com.tw/company-profile/company-profile-01
[51]DIMA MOTOR. MS268H系列datasheet. Available:
https://www.dimamotor.com.tw/index.php?route=product/category&path=218
[52]DIMA MOTOR. DS23DD系列datasheet. Available:
https://www.dimamotor.com.tw/index.php?route=product/category&path=220
[53]SESAME. PGLH系列datasheet. Available:
https://www.sesamemotor.com/product_list/gearboxes-inline&page=2
[54]NI. NI-9074. Available:
https://www.ni.com/zh-tw/support/model.crio-9074.html
[55]NI. NI-9263. Available:
https://www.ni.com/zh-tw/support/model.ni-9263.html
[56]NI. NI-9401. Available:
https://www.ni.com/zh-tw/support/model.ni-9401.html
[57]NI. NI-9229. Available:
https://www.ni.com/zh-tw/support/model.ni-9229.html
[58]王韋翔、彭晧洋、鄭吉廷,具自適應性夾爪之仿生連續體機械手臂,專題成果,國立中興大學機械工程學系,台中市,2023。
[59]H. Wang, K. Ma, S. Wu et al., “Robust tracking control of unknown models for space in-cabin robots with a pneumatic continuum arm,” Complex & Intelligent Systems, pp. 1-17, 2023.
[60]N. Tan, M. Huang, P. Yu, et al., “Neural-dynamics-enabled Jacobian inversion for model-based kinematic control of multi-section continuum manipulators,” Applied Soft Computing, vol. 103, pp. 1-15, 2021.
[61]蔡函志,連續型機器人之視覺伺服與順應性運動控制設計,碩士論文,國立交通大學電控工程學系,新竹市,2017。
[62]MATLAB. Help center atan2. Available:
https://www.mathworks.com/help/matlab/ref/atan2.html
[63]鄧強強,氣動位置伺服控制系統自抗擾控制參數整定方法研究,碩士論文,西安理工大學控制理論與控制工程,西安市,2018。
[64]葉俊朋,基於FPGA之氣動水平三軸平移式並聯機械臂控制系統開發,碩士論文,輔仁大學電機工程學系,新北市,2019。
[65]H. P. Ren, C. Huang, “Experimental Tracking Control for Pneumatic System,” IECON 2013-39th Annual Conference of the IEEE Industrial Electronics Society, pp. 4126-4130, 2013.
[66]H. P. Ren, C. Huang, “Adaptive Backstepping Control of Pneumatic Servo System,” IEEE International Symposium on Industrial Electronics, pp. 1-6, 2013.
[67]J. Wang, J. Pu, P. Moore, “A Practical Control Strategy for Servo-Pneumatic Actuator Systems,” Control Engineering Practice, vol. 7, no. 12, pp. 1483-1488, 1999.
[68]Y. Yang, L. Zhao, X. Fan, et al., “Active Disturbance Rejection Trajectory Tracking Control for Pneumatic Servo System Based on Backstepping Approach,” 2015 34th Chinese Control Conference, pp. 4308-4312, 2015.
[69]L. Zhao, Y. Yang, Y. Xia, et al., “Active Disturbance Rejection Position Control for a Magnetic Rodless Pneumatic Cylinder,” IEEE Transactions on Industrial Electronics, vol. 62, no. 9, pp. 5838-5846, 2015.
[70]韓京清,一類不確定物件的擴張狀態觀測器,控制與決策,第10卷,第1期,第85-88頁,1995。
[71]C. Ren, Y. Ding, L. Hu, et al., “Active disturbance rejection control of Euler–Lagrange systems exploiting internal damping.” IEEE Transactions on Cybernetics, vol. 52, no. 6, pp. 4334-4345, 2020.
[72]劉金琨,滑模變結構控制 MATLAB 仿真,清華大學出版社有限公司,2005。
[73]Z. Gaol, “Scaling and bandwidth-parameterization based controller tuning,” Proceedings of the American control conference, vol. 6, pp. 4989-4996, 2003.
[74]林秉軒,基於降階線性擴張狀態觀測器之滑動模式控制在氣壓伺服並聯機械臂之應用,碩士論文,國立中興大學機械工程學系,台中市,2020。
[75]W. Crooks, S. Rozen-Levy, B. Trimmer, et al., “Passive gripper inspired by Manduca sexta and the Fin Ray® Effect,” International Journal of Advanced Robotic Systems, vol. 14, no. 4, pp. 1-7, 2017.
電子全文 電子全文(網際網路公開日期:20270826)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊