跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/16 09:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖元佑
研究生(外文):Yuan-You Liao
論文名稱:利用田口法於寶特瓶射出拉伸吹塑製程之底部變形研究
論文名稱(外文):Study of Bottom Deformation of Plastic Bottles by Injection Stretch Blow Molding Process Using Taguchi Method
指導教授:施錫富
指導教授(外文):Hsi-Fu Shih
口試委員:邱一田春林戴慶良
口試日期:2023-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:78
中文關鍵詞:聚對苯二甲酸乙二醇酯寶特瓶拉伸吹塑三維雷射量測田口法
外文關鍵詞:polyethylene terephthalatePET bottlestretch blow moldingthree-dimensional laser measurementTaguchi method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
聚對苯二甲酸乙二醇酯(polyethylene terephthalate, PET)塑膠瓶(俗稱寶特瓶)的製程中需要經過塑膠射出成型製成瓶胚後,再進行拉伸吹塑製成瓶子。瓶胚因生產條件的限制,須使用直徑變化大的點澆口導致應力集中,塑流方向在過澆口進入模穴後立刻往垂直方向轉彎,導致收縮方向不一致,並且在製成瓶子時,瓶底邊緣屬於拉伸最多的部位,瓶底中心會產生最大的厚薄變化。以上原因使寶特瓶在底部的位置會有較大的不可預期之變形,寶特瓶的底部必須能夠在兩個製程的雙重影響下滿足其功能需求。在成型條件無法避免的情況下,增加底部的瓶體厚度、設計補強肋、與增加材料強度,都是增加底部剛性來抵抗變形的選擇。然而即便改善方法眾多,但仍沒有量化的數據可以判斷或預測其底部變形量。
本研究提出容積與造型相異的28個不同寶特瓶設計之實驗架構,並將模具的模穴完全依照瓶子造型加工,依照一致的製程條件與檢驗標準製作出瓶樣後,藉由三維雷射量測寶特瓶底部的變形結果,並與模型比對得到最大變形量。獲得最大變形量之後,基於快速有效的原則,選擇田口法(Taguchi method)進行分析。並因為製程參數有較多調整範圍的限制,採用該方法分析寶特瓶瓶胚與瓶子的設計參數對於其在拉伸吹塑製程後底部變形量的影響。因考量瓶樣之間個體差異較大,嘗試以最大變形量除以瓶子總外徑、瓶子總高度、與容積,換算成變形比例後再以田口法分析,最後發現除以容積換算變形比例的分析結果能夠最有效判斷設計參數對底部變形量之影響。
為了驗證田口法得到的分析結果,以最大變形量除以容積換算變形比例的分析結果為設計參數,重新設計出驗證用的瓶胚與瓶子。使用一樣的製作條件、檢驗標準、與測量方法得到最大變形量,最後反向驗證田口法的分析結果為正確。再比對分析結果後,發現設計參數中只要5項符合最佳參數區間,就有機會獲得最小變形量0.1mm。
The manufacturing process of polyethylene terephthalate (PET) plastic bottles, so called PET bottles, involves plastic injection molding to produce preforms, which are then subjected to stretch blow molding to create the final bottles. Due to production limitations, preforms often use gating systems with varying diameters, leading to stress concentration. The plastic flow direction takes an immediate turn in a vertical direction after entering the mold cavity from the gate, causing inconsistent shrinkage directions. During the bottle-forming process, the bottle bottom's edge experiences the most stretching, resulting in significant thickness variations, particularly at the center. Consequently, PET bottles commonly exhibit considerable unexpected deformations at the bottom due to these factors. The bottom of PET bottles must fulfill functional requirements while enduring the dual impacts of both manufacturing processes. When forming conditions is unavoidable, increasing the bottle body's thickness at the bottom, introducing reinforcing ribs, and enhancing material strength are strategies employed to enhance bottom rigidity and resist deformation. Despite numerous improvement methods, there's still a lack of quantifiable data to predict or assess the extent of bottom deformation.
This study presents an experimental configuration involving 28 distinct PET bottle designs with varying volumes and shapes. The molds for these bottles were manufactured to exactly match each bottle's shape. Following consistent processing conditions and inspection standards, the bottle samples were produced. Three-dimensional laser measurements were employed to assess deformations at the bottle bottoms, and the results were compared against the models to determine the maximum deformation. Once the maximum deformation was obtained, the Taguchi method was chosen for analysis due to its rapid and effective principles. Given the constraints of numerous adjustable process parameters, this method was utilized to investigate the influence of design parameters for both preforms and final bottles on the bottom deformation after the stretch blow molding process. Considering significant individual differences among bottle samples, an attempt was made to normalize the maximum deformation by dividing it by the total diameter, total height, and volume of each bottle. This normalized deformation ratio was then subjected to Taguchi analysis, leading to the discovery that using the volume-normalized deformation ratio provided the most effective means of assessing the impact of design parameters on bottom deformation.
To validate the results obtained using the Taguchi method, the analysis results based on the maximum deformation divided by the volume-normalized deformation ratio were utilized as design parameters. New preform and bottle designs were created for the validation study. Using the same manufacturing conditions, inspection standards, and measurement methods, the maximum deformation was determined for these new designs. This process served to confirm the accuracy of the Taguchi analysis results. Upon comparing the analysis outcomes, it was observed that if five design parameters fell within the optimal parameter range, the potential existed to achieve a minimum deformation of 0.1mm.
摘要 i
Abstract ii
目次 iv
圖目次 vi
表目次 ix
第1章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 2
1-3 文獻探討 4
1-3-1 PET材料特性與拉伸吹塑成型相關 4
1-3-2 田口法相關 8
1-3-3 三維雷射量測相關 9
1-4 論文架構 11
第2章 相關理論 12
2-1 PET材料性質 12
2-2 高分子材料的結晶性 13
2-3 寶特瓶製程介紹 14
2-4 田口式品質工程 16
2-4-1 影響因子 17
2-4-2 品質損失與訊號雜訊比 18
2-4-3 直交表 20
2-5 三維雷射量測 21
2-5-1 被動式與主動式量測 22
2-5-2 飛行時間計算法 22
2-5-3 三角量測法 23
2-5-4 結構光法 25
第3章 研究方法、瓶樣設計與製作 27
3-1 研究設計 27
3-2 實驗設備簡介 28
3-3 瓶樣設計與製作 30
3-3-1 部位名稱介紹 30
3-3-2 瓶樣選用條件 31
3-3-3 瓶樣模具製作 32
3-3-4 瓶樣生產 34
第4章 田口法實驗與驗證 39
4-1 控制因子定義 39
4-2 直交表選用 44
4-3 響應結果的量測與誤差 47
4-4 田口法實驗結果 53
4-4-1 訊躁比計算 53
4-4-2 因子顯著性排名 58
4-5 田口法驗證實驗 64
4-5-1 參數設計 64
4-5-2 實驗結果與對照 67
第5章 結論與未來展望 72
5-1 結論 72
5-2 未來展望 73
參考文獻 74
[1] G. Kate, K. Mia, B. Nasreddine, D. Frederic and S. Mario, “Packaging Materials and Processing for Food, Pharmaceuticals and Cosmetics”, ISTE Ltd, pp. 63-70, 2021
[2] 徐武軍, “高分子材料導論”, 五南圖書出版, 2012
[3] M. J. Gordon, “Total Quality Process Control for Injection Molding(2nd Edition)”, A John Wiley & Sons, pp. 467-498, 2017
[4] 羅壬成, “模流分析與射出成型控制參數的優化”, 國立陽明交通大學精密與自動化工程研究所 碩士論文, 2006
[5] 邱永福, “塑膠射出成型內縮變形改善之研究”, 國立陽明交通大學精密與自動化工程研究所 碩士論文, 2011
[6] A. Lontos and A. Gregoriou, “A Numerical Investigation of The Effect of Preform Length for the Fabrication of 1.5Lt PET Bottle Through The Injection Stretch Blow Molding Process”, MATEC Web of Conferences, vol. 188, 2018
[7] 劉鈺瑩, “塑膠模具結構”, 崧博出版, 2019
[8] S. Monteix, F. Schmidt, Y. L. Maoult, R. B. Yedder, R. W. Diraddo and D. Larocheb, “Experimental Study and Numerical Simulation of Preform or Sheet Exposed to Infrared Radiative Heating”, Journal of Materials Processing Technology, vol. 119, no. 1-3, pp. 90-97, 2001
[9] G. Schoukens, P. Samyn, S. Maddens and T. V. Audenaerde, “Shrinkage Behavior After the Heat Setting of Biaxially Stretched Poly(ethylene 2,6-naphthalate) Films and Bottles”, Journal of Applied Polymer Science, vol. 87, no. 9, pp. 1462-1473, 2003
[10] M. Bordival, F. Schmidt, Y. L. Maoult, and V. Velay, “Optimization of Preform Temperature Distribution for The Stretch-Blow Molding of PET Bottles: Infrared Heating and Blowing Modeling”, Polymer Engineering and Science, vol. 49, no. 4, pp. 783-793, 2009
[11] G. H. Menary, C. W. Tan, E. M. A. Harkin-Jones, C. G. Armstrong and P. J. Martin, “Biaxial Deformation and Experimental Study of PET at Conditions Applicable to Stretch Blow Molding”, Polymer Engineering and Science, vol. 52, no. 3, pp. 671-688, 2012
[12] B. Demirel and F. Daver, “Effects of Preform Deformation Behavior on The Properties of The Poly(ethylene terephthalate) Bottles”, Journal of Applied Polymer Science, vol. 126, no. 4, 2012
[13] B. Demirel and F. Daver, “Experimental Study of Preform Reheat Temperature in Two-Stage Injection Stretch Blow Molding”, Polymer Engineering and Science, vol. 53, no. 4, pp. 868-873, 2013
[14] 廖國書, “PET寶特瓶外觀設計對頂壓應力與位移之研究”, 國立虎尾科技大學機械與機電工程研究所 碩士論文, 2014
[15] S. S. Xavier, E. Z. Alex and H. A. Marcelo, “Processing of Ultra-High Molecular Weight Polyethylene/Graphite Composites by Ultrasonic Injection Moulding: Taguchi Optimization”, Ultrasonics-Sonochemistry, vol. 44, pp. 350-358, 2018
[16] G. Dai, Q. Zhang and G. Jin, “A Model Developed for Predicting Uniformity of Kyphoplasty Balloon Wall Thickness Based on The Orthogonal Test”, Advances in Materials Science and Engineering, vol. 2020, 2020
[17] E. A. Berihun and T. M. Bogale, “Parameter Optimization of PET Plastic Preform Bottles in Injection Molding Process Using Grey-Based Taguchi Method”, Advances in Materials Science and Engineering, vol. 2022, 2022
[18] S. Barabas and A. Florescu, “Reduction of Cracks in Marble Appeared at Hydro-Abrasive Jet Cutting Using Taguchi Method”, MDPI Journal , vol. 15,no. 2, 2022
[19] S. Bahadori, T. Immins and T. W. Wainwright, “Volumetric Assessment of Lower Limb Oedema Using 3D Laser Scanning Technique: A Systematic Review”, Journal of Medical Engineering and Technology, vol. 46, no. 1, pp. 40-45, 2022
[20] G. Tzortzinis, C. Ai, S. F. Breña and S. Gerasimidis, “Using 3D Laser Scanning for Estimating The Capacity of Corroded Steel Bridge Girders: Experiments, Computations and Analytical Solutions”, Engineering Structures, vol.265, no. 15, 2022
[21] M.S. Khandpur, P. Minetola, V. Stiuso, S. Rifuggiato, L. Fontana, E. Lannunziata, A. Giubilini and L. Iuliano, “An Approach to Evaluate The Wear of Customized Manufacturing Fixtures Through The Analysis of 3D Scan Data”, Materials Today: Proceedings, vol. 86, 2023
[22] L. C. Sawyer, D. T. Grubb and G. F. Meyers. “Polymer Microscopy”, Springer-science+Business Media B.V., pp. 250-263, 2008
[23] M. Thielen, K. Hartwig and P. Gust, “Blasformen von Kunststoffhohlkörpern”, Carl Hanser Verlag, pp. 28-36, 2006
[24] C. E. Carraher and R. B. Seymour, “Seymour/Carraher’s Polymer Chemistry(6th Edition)”, CRC Press, pp. 43-45, 2003
[25] ScrewPlus, “http://www.caemolding.org/newsevents/e-paper/caenews/ae027/data/cmw001-01/index.html”, 2023.04.18
[26] 唯勝, “https://www.fs-compressor.com.tw/pet_air_compressor.htm”, 2023.04.18
[27] 原祥, “https://www.youngshang.com.tw/zh-TW/news/2020-news-001.html”, 2023.04.18
[28] A. G. Thakur, T. E. Rao, M. S. Mukhedkar and V. M. Nandedkar, “Application of Taguchi Method for Resistance Spot Welding of Galvanized Steel”, Journal of Engineering and Applied Sciences, vol. 5, no. 11, pp. 22-26, 2010
[29] S. Maghsoodloo, G. Ozdemir, V. Jordan and C. H. Huang, “Strengths and Limitations of Taguchi’s Contributions to Quality, Manufacturing, and Process Engineering”, Journal of Manufacturing Systems, vol. 23, no. 2, 2004
[30] K. L. Tsui, “An Overview of Taguchi Method and Newly Developed Statistical Methods for Robust Design”, IIE Transactions, pp. 44–57, 1992
[31] 黃易寒, “利用田口法優化高介電係數鋁氧化鉿薄膜特性”, 國立臺灣師範大學應用電子科技研究所 碩士論文, 2012
[32] 黃炫凱, “應用立體式3D掃描建構數位全口假牙之研究”, 國立台灣科技大學色彩與照明科技研究所 碩士論文, 2008
[33] James Lequeux, “François Arago: A 19th Century French Humanist and Pioneer in Astrophysics”, Springer International Publishing, pp. 296-300, 2015
[34] M. Born, E. Wolf and A. B. Bhatia, “Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light”, Cambridge University Press, pp. 334-370, 2000
[35] T. H. Maiman, “The Laser Inventor: Memoirs of Theodore H. Maiman”, Springer International Publishing, pp. 149-171, 2017
[36] H. Shang,C. Liu and R. Wang, “Measurement methods of 3D shape of large-scale complex surfaces based on computer vision: A review”, Measurement, vol 197, no. 30, 2022
[37] S. Zhang, W. Chen and Z. Guo, “Study on The Spatial Regularity of Rammed Pits of The Ming Great Wall Using 3D Scanning Technique and Random Forest Algorithm”, Journal of Cultural Heritage, vol. 62, pp. 230-241, 2023
[38] A. N. Perez, K. F. Sharif, E. Guelfi, S. Li, A. Miller, K. Prasad, R. J. Sinard, J. S. Lewis and M. C. Topf, “Ex vivo 3D Scanning and Specimen Mapping in Anatomic Pathology”, Journal of Pathology Informatics, vol. 14, 2023
[39] Y. C. Chen and D. T. Griffith, “Experimental and Numerical Full-Field Displacement and Strain Characterization of Wind Turbine Blade Using A 3D Scanning Laser Doppler Vibrometer”, Optics & Laser Technology, vol 158, Part A, 2023
[40] 陳世茂, “3D掃描與控制設備研究”, 國立勤益科技大學資訊工程研究所 碩士論文, 2017
[41] K. Santos, W. Oliveira, E. Villani and A. Dttmann, “3D Scanning Method for Robotized Inspection of Industrial Sealed Parts”, Computers in Industry, vol. 147, no. C, 2023
[42] C. C. Lau and S. M. Chou, “Structured Light 3D Imaging and Its Encoding Technology”, Taiwan Instrument Research Institute, Instruments Today, vol. 219, pp.25-37, 2019
[43] 吳瑞一, “三維雷射掃描技術應用之研究-3D物件建模與變形模擬為例”, 逢甲大學土地管理研究所 碩士論文, 2004
[44] 粘惎非, “反射標與距離檢定對三維雷射掃瞄儀精度影響評估—以MensiGS200為例”, 國立交通大學 土木工程研究所 碩士論文, 2005
[45] 3D Mart, “https://3dmart.com.tw/en/shop/magnaflux-3d-scanning-powder-skd-s2”, 2022.11.05
[46] Mitutoyo, “https://www.mitutoyo.com.tw/index.jsp”, 2022.12.06
[47] 儀寶電子, “http://www.ipe-com.com.tw/other/exacto.htm”, 2022.12.06
[48] Indometer, “https://indometer.co.id/CheckLine-FH-4100”, 2023.03.15
[49] Chumpower, “https://www.chumpower.com/tw/index.html”, 2023.03.15
電子全文 電子全文(網際網路公開日期:20260801)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊