跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 15:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱永森
研究生(外文):Yong-Sen Qiu
論文名稱:木虌果種子發芽、儲藏及扦插繁殖之研究
論文名稱(外文):Study on the Seed Germination, Storage and Cutting Propagation of Gac (Momordica cochinchinensis)
指導教授:黃三光黃三光引用關係
指導教授(外文):San-Gwang Hwang
口試委員:林慧玲夏奇鈮
口試委員(外文):Huey-Ling LinChi-Ni Hsia
口試日期:2023-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:60
中文關鍵詞:木虌果種子發芽扦插繁殖
外文關鍵詞:gacseed germinationcutting propagation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:80
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討影響木虌果種子發芽與扦插繁殖之相關因子,藉以提高木虌果之繁殖率。木虌果種子經過乾燥處理將種子含水量降至12%、9%、6%,吸水後種子含水量可恢復至種子乾燥前之含水量,12%、9%及6%種子對木虌果種子發芽率無顯著影響,但含水量6%種子的發芽率有下降趨勢。未經種皮處理(CK)之木虌果種子之發芽率約為28%,去除種皮處理(RC)可提升發芽率近2倍,達55.6%。木虌果種子以4℃儲藏5個月仍能維持與未經儲藏對照組(新鮮與乾燥)種子相當之發芽率,但25℃儲藏5個月處理組的發芽率相較於對照組則顯著降低;去除種臍能提升對照組(乾燥種子)、經4℃及25℃儲藏種子的發芽率10-20%。播種前將種子浸泡KNO3 24小時後對木虌果種子發芽率無顯著提升效果,反之去除種子種皮後浸泡GA3及kinetin之處理組有最佳之出土率71.1-82.2%與發芽率86.7%。濕冷層積4週處理能顯著提升木虌果種子發芽率達64.4%,不同濕冷層積處理時間(2、4及6週)亦皆能顯著提升木虌果種子發芽率,但以六週處理最高。種子分析結果顯示經濕冷層積處理之種子呼吸率較對照組有顯著提升,且種子胚與種皮內總酚類化合物皆顯著降低。探討木虌果半木質化與非木質化之插穗對扦插繁殖之影響,結果顯示半木質化與非木質化插穗之存活率、發根率無顯著差異,但半木質化插穗之根鮮重、乾重分別較非木質化插穗增加80%與60%,總根數增加4倍;插穗營養元素濃度分析結果顯示,氮、鈣、硼之濃度均以半木質化插穗顯著高於非木質化插穗。另一方面,使用不同採樣區間(成熟度)插穗的存活率及發根率並無顯著差異,但在發根能力方面,則以第四區間之插穗於根鮮重、乾重、總根數均顯著優於第一區間之插穗,扦插前之插穗重量及插穗莖徑隨著採樣枝條之區間(即成熟度)增加而遞增,不同區間有顯著差異;插穗化學成分分析顯示第四區間插穗之全可溶性糖及澱粉濃度均顯著高於第一區間插穗,可溶性蛋白及游離胺基酸等發根輔助物質則以第一區間插穗顯著優於其餘區間,各個區間之總酚類化合物含量並無顯著差異;營養元素分析結果顯示第一區間之氮、磷及鉀濃度顯著高於其餘區間,但鈣濃度隨著採樣區間增加而遞增。綜上所述,木虌果種子可透過濕冷層積處理來促進種子之發芽,扦插繁殖材料則建議採用成熟度較高之插穗可得較佳之繁殖效果,並可利用莖徑、穗重或插穗之木質化程度作為判斷適用插穗之依據。
This study investigated the seed treatments to improve seed germination and the factors affecting cutting propagation in gac (Momordica cochinchinensis). Seed moisture content was dried to 12%, 9% and 6%, the moisture content of these dried seeds may restore to the original value before drying. Seed moisture content of 12%, 9% or 6% exerted no significant effect on seed germination, however, a decreasing trend of seed germination was observed at seeds with 6% moisture content. The final germination rate of seeds without seed coat removal (CK) was about 28%, treatment with seed coat removal (RC) had nearly two times of the final germination rate relative to that of the CK. Germination rate of seeds stored at 4oC for 5 months (4oC) was maintained at the similar level compared to that of the control seeds [either dried (CK-D) or fresh (CK-F) seeds] without storage treatment. The final germination rate of seeds stored at 25oC for 5 months (25 oC) was significantly decreased compared to the control seeds (CK-D or CK-F). Treatment with hilum removal (Cliping) may increase the final germination rate of seeds in CK-D, 4oC and 25oC treatment groups by 10-20%. Treatment with KNO3 had no significant effect on seed germination. In contrast, soaking seeds with GA3 and kinetin after seed coat removal had the best seed emergence rate with a value of 71.1~82.2% and final germination rate with a value of 86.7%. Cold stratification for 4 weeks may significantly increase the final germination rate to a value of 62.2%, different cold stratification treatment times (2, 4, or 6 weeks) may all enhance seed germination rate. Results from seed analysis indicated that the respiration rate was significantly increased but total phenolic content in seed embryo and seed coat was significantly decreased in cold stratification-treated groups compared to that of the control group. The efficiency of cutting propagation was compared between semi-hardwood and softwood cuttings, our results showed that there is no significant difference in survival rate and rooting rate between semi-hardwood and softwood cuttings, however, root fresh weight and root dry weight were increased by 80% and 60%, respectively, total root number was increased 4 times in semi-hardwood cutting as compared to softwood cutting. Results from nutrient element analysis of cuttings revealed that concentrations of nitrogen, calcium and boron which are important for cutting propagation are all higher in semi-hardwood cutting relative to softwood cutting. On the other hand, there was no significant difference in survival rate and rooting rate among cuttings derived from different sections of a branch, however, root fresh weight, root dry weight, and total root number observed in the cutting derived from the 4th section were significantly higher than those from the 1st section. Cutting weight and diameter before cultivation were increased as the section number (representing degree of maturity) of the cutting increased and there was significant difference among cuttings derived from various sections. Analysis of chemical components in the cutting indicated that total soluble sugar and starch concentrations in the cutting derived from the 4th section were significantly higher than those from the 1st section, furthermore, total protein and free amino acid contents which are beneficial for root formation were the highest in the cutting derived from the 1st section. There was no significant difference in total phenolic contents among cuttings derived from various sections. Results from nutrient element analysis displayed that nitrogen, phosphorous and potassium concentrations were the highest in the cutting derived from the 1st section, however, calcium concentration were increased as the section number increased. Taken together, seed germination of gac may be improved by cold stratification, higher efficiency of cutting propagation in gac may be achieved by using cuttings with higher degree of maturity, moreover, diameter, weight, and degree of lignification of the cutting may be served as the indicators for collection of suitable cutting materials.
摘要 i
Abstract ii
目次 iv
表目次 v
圖目次 vi
壹、 前言 1
貳、 前人研究 2
一、作物概述 2
二、種子休眠 2
1.種殼休眠 3
2.胚休眠 4
三、作物扦插繁殖 5
1.內生因子 5
2.外在因子 6
3.扦插前處理 6
參、材料方法 8
試驗一:乾燥處理、種皮處理及儲藏溫度對木虌果種子發芽之影響 8
試驗二:播種前處理對木虌果種子發芽之影響 9
試驗三: 半木質化插穗與未木質化插穗對木虌果扦插繁殖之影響 10
試驗四: 插穗採樣部位對木虌果扦插繁殖之影響 14
肆、結果 16
試驗一:乾燥處理、種皮處理及儲藏溫度對木虌果種子發芽之影響 16
試驗二:播種前處理對木虌果種子發芽之影響 16
試驗三: 半木質化插穗與未木質化插穗對木虌果扦插繁殖之影響 18
試驗四: 插穗採樣部位對木虌果扦插繁殖之影響 19
伍、討論 46
試驗一:乾燥處理、種皮處理及儲藏溫度對木虌果種子發芽之影響 46
試驗二:播種前處理對木虌果種子發芽之影響 47
試驗三: 半木質化插穗與未木質化插穗對木虌果扦插繁殖之影響 49
試驗四: 插穗採樣部位對木虌果扦插繁殖之影響 49
陸、結論 51
柒、參考文獻 52
1.何麗敏. 2004. 改善苦瓜種子發芽之研究. 國立中興大學園藝系碩士學位論文. 台中.
2.林金和、林重宏、林信山. 桃半成熟枝扦插繁殖. 1989. 中國園藝 35:132-13.
3.林信山. 1991. 東方梨之扦插與接插繁殖. 臺中區農業改良場特刊 23:219-236.
4.林重宏、王麗華、陳美燕、林金和. 桃嫩(芽)梢扦插繁殖. 1990. 中國園藝 36:29-34.
5.張明聰、廖松淵. 1994. 番木瓜扦插繁殖及生長結實特性之研究. 1994. 中國園藝 40:11-28.
6.許冠旻. 2020. 種子乾燥速率和含水量對苦瓜種子活力之影響. 國立中興大學園藝系碩士學位論文. 台中.
7.郭華仁. 2015. 種子的休眠. 種子學. 臺大出版中心. pp. 123-161.
8.陳惠菁、張育森. 1999. 插穗直徑、發根劑以及扦插時期對九重葛插穗生長之影響. 中國園藝 45:417-426.
9.陳嘉雯. 2016. 葫蘆科莖葉處理對蔬菜栽培可利用性之研究. 國立中興大學園藝系碩士學位論文. 台中.
10.萬蜀淵. 1994. 園藝植物繁殖學. 中國農業出版社. 北京, 中國.
11.葉祉廷. 2016. 木鱉子繁殖方法與果實生長發育、呼吸型式及抗氧化力之研究.國立中興大學園藝系碩士學位論文. 台中.
12.鄧山河. 2007. 土肉桂扦插繁殖技術研發. 植物種苗9:54-60.
13.賴允慧. 2004. 扶桑花扦插繁殖技術之研究. 國立台灣大學園藝學研究所碩士論文. 臺北.
14.薛銘童、游滄洲、陳盈方、陳信言. 2015. 木虌果栽培管理.臺東區農技報導 38:1-3.
15.韓家定. 2021. 翼豆發芽時吸水與硬實現象之研究. 國立中興大學園藝系碩士學位論文. 台中.
16.蘇炳鐸. 2008. 香樁扦插繁殖之研究. 臺東區農業改良場研究彙報. 17:1-8.
17.Adhikari, B., P. R. Dhital, S. Ranabhat, and H. Poudel. 2021. Effect of seed hydro-priming durations on germination and seedling growth of bitter gourd (Momordica charantia). Plos one. 16:e0255258.
18.Ali, F., G. Qanmber, F. Li, and Z. Wang. 2022. Updated role of ABA in seed maturation, dormancy, and germination. J. Adv. Res. 35:199-214.
19.Al-Salem, M. M. and N. S. Karam. 2001. Auxin, wounding, and propagation medium affect rooting response of stem cuttings of Arbutus andrachne. HortScience 36:976-978.
20.Aoki, H., N. T. M. Kieu, N. Kuze, K. Tomisaka, and N. V. Chuyen. 2002. Carotenoid pigments in gac fruit (Momordica cochinchinensis Spreng). Biosci. Biotechnol. Biochem. 66:2479-2482.
21.Armin, M., M. Asgharipour, and M. Razavi-Omrani. 2010. The effect of seed priming on germination and seedling growth of watermelon (Citrullus lanatus). Adv. Environ. Biol. 4:501-505.
22.Bailly, C. 2019. The signalling role of ROS in the regulation of seed germination and dormancy. Biochem. J. 476:3019-3032.
23.Baskin, J. M., C. C. Baskin, and X. Li. 2000. Taxonomy, anatomy and evolution of physical dormancy in seeds. Plant Species Biol. 15:139-152.
24.Baskin, C. C. and J. M. Baskin. 2014. Seeds ecology biogeography and evolution of dormancy and germination. Elsevier Academic Press. San Diego. USA.
25.Baskin, C. C. and J. M. Baskin. 2022. Mimicking the natural thermal environments experienced by seeds to break physiological dormancy to enhance seed testing and seedling production. Seed Sci. Technol. 50:21-29.
26.Bellamine, J., C. Penel, H. Greppin, and T. Gaspar. 1998. Confirmation of the role of auxin and calcium in the late phases of adventitious root formation. Plant Growth Regul. 26:191-194.
27.Berthon, J. Y., R. Maldiney, B. Sotta, T. Gaspar, and N. Boyer. 1989. Endogenous levels of plant hormones during the course of adventitious rooting in cuttings of Sequoiadendron giganteum (Lindl.) in vitro. Biochem. Physiol. Pflanz. 184:405-412.
28.Bhumsaidon, A. and M. Chamchong. 2016. Variation of lycopene and beta-carotene contents after harvesting of gac fruit and its prediction. Agric. Nat. Resour. 50:257-263.
29.Borisjuk, L. and H. Rolletschek. 2009. The oxygen status of the developing seed. New Phytol. 182:17-30.
30.Chaodumrikul, S., P. Kaewsorn, P. Chulaka, and W. Chanprasert. 2016. Breaking seed dormancy in smooth loofah (Luffa cylindrica (L.) M. Roem.) using scarification and dry heat treatment. Agric. Nat. Resour. 50:85-88.
31.Chen, B. X., Y. X. Peng, J. D. Gao, Q. Zhang, Q. J. Liu, H. Fu, and J. Liu. 2019. Coumarin-induced delay of rice seed germination is mediated by suppression of abscisic acid catabolism and reactive oxygen species production. Front. Plant Sci. 828.
32.Chen, B. X., Y. X. Peng, X. Q. Yang, and J. Liu. 2021. Delayed germination of Brassica parachinensis seeds by coumarin involves decreased GA4 production and a consequent reduction of ROS accumulation. Seed Sci. Res. 31:224-235.
33.Chin, H. F., B. Krishnapillay, and P. C. Stanwood. 1989. Seed moisture: recalcitrant vs. orthodox seeds. Seed moisture. 14:15-22.
34.Choi, G. E., B. Ghimire, H. Lee, M. J. Jeong, H. J. Kim, J. J. Ku, K.M. Lee, S.W. Son, C.H. Lee, J. I. Park, and G. U. Suh. 2016. Scarification and stratification protocols for breaking dormancy of Rubus (Rosaceae) species in Korea. Seed Sci. Technol. 44:239-252.
35.Cossa, N. H. D. S., E. R. Carvalho, H. O. dos Santos, R. M. de Oliveira Pires, J. M. E. Lima, and L. F. de Souza. 2021. Breaking the dormancy of Momordica balsamina L. seeds by resorting to pre-treatments. Revista de Ciências Agrárias. 44:146-154.
36.Coumans, M., D. Come, and T. Gaspar. 1976. Stabilized dormancy in sugarbeet fruits. I. Seed coats as a physicochemical barrier to oxygen. Bot. Gaz. 137:274-278.
37.da Costa, C. T., M. R. de Almeida, C. M. Ruedell, J. Schwambach, F. S. Maraschin, and G. Fett-Neto. 2013. When stress and development go hand in hand: main hormonal controls of adventitious rooting in cuttings. Front. Plant Sci. 4:133.
38.Das, P., U. C. Basak, and A. B. Das. 1997. Metabolic changes during rooting in pre-girdled stem cuttings and air-layers of Heritiera. Bot. Bull. Acad. Sin. 38.
39.de Klerk, G. J., W. Van-Der-Krieken, and J. C. de Jong. 1999. Review the formation of adventitious roots: new concepts, new possibilities. In Vitro Cell. Dev. Biol. Plant 35:189-199.
40.de Klerk, G. J., H. Guan, P. Huisman, and S. Marinova. 2011. Effects of phenolic compounds on adventitious root formation and oxidative decarboxylation of applied indoleacetic acid in Malus ‘Jork 9’. Plant Growth Regul. 63:175-185.
41.Debska, K., U. Krasuska, K. Budnicka, R. Bogatek, and A. Gniazdowska. 2013. Dormancy removal of apple seeds by cold stratification is associated with fluctuation in H2O2, NO production and protein carbonylation level. J. Plant Physiol. 170:480-488.
42.Denaxa, N. K., S. N. Vemmos, and P. A. Roussos. 2021. Shoot girdling improves rooting performance of kalamata olive cuttings by upregulating carbohydrates, polyamines and phenolic compounds. Agric. 11:71
43.Druege, U., A. Hilo, J. M. Pérez-Pérez, Y. Klopotek, M. Acosta, F. Shahinnia, S. Zerche, P. Franken, and M. R. Hajirezaei. 2019. Molecular and physiological control of adventitious rooting in cuttings: phytohormone action meets resource allocation. Ann. Bot. 123:929-949.
44.Du, J., R. K.Yuan, R. X. Hu, H. L. Zhang, Y. T. Qi, and W. N. Zhang. 2022. Biodiesel production from Momordica cochinchinensis (Lour.) Spreng seed oil. Fuel 314:123047.
45.Ebone, L. A., A. Caverzan, and G. Chavarria. 2019. Physiologic alterations in orthodox seeds due to deterioration processes. Plant Physiol. Biochem. 145:34-42.
46.Edelstein, M., F. Corbineau, J. Kigel, and H. Nerson. 1995. Seed coat structure and oxygen availability control low temperature germination of melon (Cucumis melo) seeds. Physiol. Plant. 93:451-456.
47.El-Keblawy, A., H. A. Shabana, T. Navarro, and S. Soliman. 2017. Effect of maturation time on dormancy and germination of Citrullus colocynthis (Cucurbitaceae) seeds from the Arabian hyper-arid deserts. BMC Plant Bio. 17:1-10.
48.Falasca, G., D. Zaghi, M. Possenti, and M. M. Altamura. 2004. Adventitious root formation in Arabidopsis thaliana thin cell layers. Plant Cell Rep. 23:17-25.
49.Fogaca, C. M., and A. G. Fett-Neto. 2005. Role of auxin and its modulators in the adventitious rooting of Eucalyptus species differing in recalcitrance. Plant Growth Regul. 45:1-10.
50.Geneve, R. L., C. C. Baskin, J. M. Baskin, K. G. Jayasuriya, and N. S. Gama-Arachchige. 2018. Functional morpho-anatomy of water-gap complexes in physically dormant seed. Seed Sci. Res. 28:186-191.
51.Grange, S., D. I. Leskovar, L. M. Pike, and B. G. Cobb. 2003. Seedcoat structure and oxygen-enhanced environments affect germination of triploid watermelon. J. Am. Soc. Hortic. 128:253-259.
52.Guan, L., A. S. Murphy, W. A. Peer, L. Gan, Y. Li, and Z. M. Cheng. 2015. Physiological and molecular regulation of adventitious root formation. Crit. Rev. Plant Sci. 34:506-521.
53.Guan, L., Y. Li, K. Huang, and Z. M. M. Cheng. 2020. Auxin regulation and MdPIN expression during adventitious root initiation in apple cuttings. Hortic. Res. 7:143.
54.Hamidon, A., R. M. Shan, R. M. Razali, and S. Lob. 2020. Effect of different types and concentration of rooting hormones on Momordica cochinensis (Gac Fruit) root vine cuttings. Malays. Appl. Biol. 49:127-132.
55.Hartmann, H. T., and D. E. Kester.1975. Plant propagation: principles and practice. Prentice-Hall. New Jersey, USA.
56.Hatwal, S., A. Badoni, V. Chamoli, A. Dangwal, A. Negi, and C. Kumar. 2022. Effect of hot water and H2SO4 on physical dormancy in the seeds of sponge gourd. Int. J. Agric. Environ. Biotechnol. 15:153-156.
57.Hu, C. H., P. Q. Wang, P. P. Zhang, X. M. Nie, B. B. Li, L. Tai, and K. M. Chen. 2020. NADPH oxidases: The vital performers and center hubs during plant growth and signaling. Cells 9:437.
58.Husen, A., and M. Pal. 2007. Metabolic changes during adventitious root primordium development in Tectona grandis Linn. f.(teak) cuttings as affected by age of donor plants and auxin (IBA and NAA) treatment. New For. 33:309-323.
59.Husen, A. 2011. Rejuvenation and adventitious rooting in coppice-shoot cuttings of Tectona grandis as affected by stock-plant etiolation. Am. J. Plant Sci. 2:370-374.
60.Hyde, E. O. C. 1954. The function of the hilum in some Papilionaceae in relation to the ripening of the seed and the permeability of the testa. Ann. Bot. 18:241-256.
61.Ishida, B. K., C. Turner, M. H. Chapman, and T. A. McKeon. 2004. Fatty acid and carotenoid composition of gac (Momordica cochinchinensis Spreng) fruit. J. Agric. Food Chem. 52:274-279.
62.Jones, L. A. 1971. Germination regulation in Sicyos angulatus L. Philosophy PhD dissertation. Purdue University, West Lafayette, Indiana.
63.Kildisheva, O. A., K. W. Dixon, F. A. Silveira, T. Chapman, A. Di-Sacco, A. Mondoni, and A. T. Cross. 2020. Dormancy and germination: making every seed count in restoration. Restor. Ecol. 28:256-265.
64.Kim, M., C. Shim, J. Lee, and C. Wangchuk. 2022. Hot water treatment as seed disinfection techniques for organic and eco-friendly environmental agricultural crop cultivation. Agric. 12:1081.
65.Kollöffel, C. 1967. Respiration rate and mitochondrial activity in the cotyledons of Pisum sativum L. during germination. Acta Bot. Neerl. 16:111-122.
66.Kubola, J. and S. Siriamornpun. 2011. phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril and seed) of Thai gac (Momordica cochinchinensis Spreng). Food Chem. 127:1138-1145.
67.Lenoir, C., F. Corbineau, and D. Côme. 1986. Barley (Hordeum vulgare) seed dormancy as related to glumella characteristics. Physiol. Plant. 68:301-307.
68.Li, W., Y. Niu, Y. Zheng, and Z. Wang. 2022. Advances in the understanding of reactive oxygen species-dependent regulation on seed dormancy, germination, and deterioration in crops. Front. Plant Sci. 13:826809.
69.Lin, R. H., K. Y. Chen, C. L. Chen, J. J. Chen, and J. M. Sung. 2005. Slow post-hydration drying improves initial quality but reduces longevity of primed bitter gourd seeds. Sci. Hortic. 106:114-124.
70.Liptay, A. and P. Schopfer. 1983. Effect of water stress, seed coat restraint, and abscisic acid upon different germination capabilities of two tomato lines at low temperature. Plant Physiol. 73:935-938.
71.Liszkay, A., E. van-der-Zalm, and P. Schopfer. 2004. Production of reactive oxygen intermediates (O2−, H2O2, and OH) by maize roots and their role in wall loosening and elongation growth. Plant Physiol. 136:3114-3123.
72.Lush, W. M. and L. T. Evans. 1980. The seed coats of cowpeas and other grain legumes:structure in relation to function. Field Crops Res. 3:267-286.
73.Mahajan, S. S. and R. N. Kumawat. 2013. Study of seed dormancy in colocynth (Citrullus colocynthis L.) with after-ripening of fruits, seed extraction procedures and period of seed storage. Natl. Acad. Sci. Lett. 36:373-378.
74.Majumdar, A. and R. K. Kar. 2021. Seed germination:explicit crosstalk between hormones and ROS. p. 67-90. In D. K. Gupta and F. J. Corpas. (eds.). Hormones and Plant Response. Springer, Dordrecht, NL.
75.Marbach, I. and A. M. Mayer. 1974. Permeability of seed coats to water as related to drying conditions and metabolism of phenolics. Plant Physiol. 54:817-820.
76.Mehanna, H. T. and G. C. Martin. 1985. Effect of seed coat on peach seed germination. Sci. Hortic. 25:247-254.
77.Miransari, M. and D. L. Smith. 2014. Plant hormones and seed germination. Environ. Exp. Bot. 99:110-121.
78.Mishra, B. S., M. Sharma, and A. Laxmi. 2022. Role of sugar and auxin crosstalk in plant growth and development. Physiol. Plant. 174:e13546.
79.Müller-Maatsch, J., J. Sprenger, J. Hempel, F. Kreiser, R. Carle, and R. M. Schweiggert. 2017. Carotenoids from gac fruit aril (Momordica cochinchinensis [Lour.] Spreng.) are more bioaccessible than those from carrot root and tomato fruit. Food Res. Int. 99:928-935.
80.Muzaffar, S., B. Ali, and N. A. Wani. 2012. Effect of catechol, gallic acid and pyrogallic acid on the germination, seedling growth and the level of endogenous phenolics in cucumber (Cucumis sativus L.). Inter. J. Life Sci. Biotechnol. Pharma. Res. 1:50-55.
81.Nhung, D. T. T., P. N. Bung, N. T. Ha, and T. K. Phong. 2010. Changes in lycopene and beta carotene contents in aril and oil of gac fruit during storage. Food Chem. 121:326-331.
82.Osterc, G., M. Štefančič, and F. Štampar. 2009. Juvenile stockplant material enhances root development through higher endogenous auxin level. Acta Physiol. Plant. 31:899-903.
83.Palmieri, S. and F. Giovinazzi. 1982. Ascorbic acid as negative effector of the peroxidase‐catalyzed degradation of indole‐3‐acetic acid. Physiol. Plant. 56:1-5.
84.Pandey, S. K. and A. Bisen. 2010. Effect of mechanical treatments on rooting in cuttings of guava, lemon and pomegranate. J. Hortic. For. 2:95-98.
85.Pandey, S., C. Devi, A. Kak, Y. J. Khan, and V. Gupta. 2013. Breaking seed dormancy in sweet gourd (Momordica cochinchinensis). Seed Sci. Technol. 41:133-136.
86.Parks, S. E., C. T. Murray, D. L. Gale, B. Al-Khawaldeh, and L. J. Spohr. 2013. Propagation and production of Gac (Momordica cochinchinensis Spreng.), a greenhouse case study. Exp. Agric. 49:234-243.
87.Parvin, P., M. Khezri, I. Tavasolian, and H. Hosseini. 2015. The effect of gibberellic acid and chilling stratification on seed germination of eastern black walnut (Juglans nigra L.). J. Nuts. 6:67-76.
88.Pesis, E. and T. J. Ng. 1986. The effect of seed coat removal on germination and respiration of muskmelon seeds. Seed Sci. Technol. 14:117-125.
89.Qu, X., J. M. Baskin, and C. C. Baskin. 2010. Whole‐seed development in Sicyos angulatus (Cucurbitaceae, Sicyeae) and a comparison with the development of water‐impermeable seeds in five other families. Plant Species Biol. 25:185-192.
90.Qu, X., J. M. Baskin, and C. C. Baskin. 2012. Combinational dormancy in seeds of Sicyos angulatus (Cucurbitaceae, tribe Sicyeae). Plant Species Biol. 27:119-123.
91.Rapaka, V. K., B. Bessler, M. Schreiner, and U. Druege. 2005. Interplay between initial carbohydrate availability, current photosynthesis, and adventitious root formation in Pelargonium cuttings. Plant Sci. 168:1547-1560.
92.Richards, M. R. and L. A. Rupp. 2012. Etiolation improves rooting of bigtooth maple cuttings. HortTechnology. 22:305-310.
93.Seo, S. H., M. W. Park, M. H. Chang, I. U. Jang, S. I. Shim, Y. W. Na, and S. H. Kim. 2012. Effects of sulfuric acid treatment on germination of water impermeable seeds in hamabo mallow (Hibiscus hamabo Siebold and Zucc.). Korean J. Intl. Agri. 24:316-324.
94.Singh, K. L., A. Chaudhuri, and R. K. Kar. 2015. Role of peroxidase activity and Ca 2+ in axis growth during seed germination. Planta, 242: 997-1007.
95.Smýkal, P., V. Vernoud, M. W. Blair, A. Soukup, and R. D. Thompson. 2014. The role of the testa during development and in establishment of dormancy of the legume seed. Front. Plant Sci. 5:351.
96.Solberg, S. Ø., F. Yndgaard, C. Andreasen, R. Von Bothmer, I. G. Loskutov, and Å. Asdal. 2020. Long-term storage and longevity of orthodox seeds: a systematic review. Front. Plant Sci. 11:1007.
97.Staub, J. E., T. C. Wehner, and G. E. Tolla. 1989. The effects of chemical seed treatments on horticultural characteristics in cucumber (Cucumis sativus L.). Sci. Hortic. 38:1-10.
98.Su, L., Q. Lan, H. W. Pritchard, H. Xue, and X. Wang. 2016. Reactive oxygen species induced by cold stratification promote germination of Hedysarum scoparium seeds. Plant Physiol. Biochem. 109:406-415.
99.Thimann, K. V. 1937. On the nature of inhibitions caused by auxin. Am. J. Bot. 24:407-412.
100.Tran, X. T., S. E. Parks, P. D. Roach, and M. H. Nguyen. 2020. Improved propagation methods for gac (Momordica cochinchinensis Spreng.). Exp. Agric. 56:132-141.
101.Walters, C., P. Berjak, N. Pammenter, K. Kennedy, and P. Raven. 2013. Preservation of recalcitrant seeds. Sci. 339:915-916.
102.Welbaum, G. E. 1999. Cucurbit seed development and production. HortTechnology 9:341-348.
103.Xiao, Z. A., Y. Zhang, M. Liu, C. Zhan, X. Yang, T. Nvsvrot, Z. Yan, and N. Wang. 2020. Coexpression analysis of a large-scale transcriptome identified a calmodulin-like protein regulating the development of adventitious roots in poplar. Tree Physiol. 40:1405-1419.
104.Yang, B., J. Cheng, J. Wang, Y. Cheng, Y. He, H. Zhang, and Z. Wang. 2019. Physiological characteristics of cold stratification on seed dormancy release in rice. Plant Growth Regul. 89:131-141.
105.Yang, L. E., D. L. Peng, Z. M. Li, L. Huang, J. Yang, and H. Sun. 2020. Cold stratification, temperature, light, GA3, and KNO3 effects on seed germination of Primula beesiana from Yunnan, China. Plant Divers. 42:168-173.
106.Zhang, Y., B. Chen, Z. Xu, Z. Shi, S. Chen, X. Huang, J. Chen, and X. Wang. 2014. Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination. J. Exp. Bot. 65:3189-3200.
107.Zhang, Y., K. Zhang, Y. Ji, and J. Tao. 2020. Physical dormancy and soil seed bank dynamics in seeds of Melilotus albus (Fabaceae). Flora. 266:151600.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top