跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/10 07:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李浚緣
研究生(外文):Jun-Yuan Lee
論文名稱:基於毫米波的車載網路之數據廣播的效能改善
論文名稱(外文):Performance Improvement of Data Broadcasting for mmWave-based VANET
指導教授:王丕中
指導教授(外文):Pi-Chung Wang
口試委員:張燕光詹家泰王讚彬
口試委員(外文):YAN-GUANG ZHANGJIA-TAI JHANZAN-BIN WANG
口試日期:2023-07-07
學位類別:碩士
校院名稱:國立中興大學
系所名稱:資訊工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:47
中文關鍵詞:車載網路毫米波傳輸GPS定位誤差封包抵達率通訊阻隔
外文關鍵詞:vehicular networksmmWave broadcastingGPS positioning errorspacket delivery ratecommunication blockages
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於自駕車的興起,越來越多人使用5G通訊技術來應用在車載網路上,相較於過去常用的專用短程通信(DSRC),它的低頻寬限制已經無法滿足網路中大量封包的需求,其中毫米波就是其中一種5G技術的應用,它是一種高頻率的無線電波,可以在短距離內快速的傳輸大量的數據,這種波段在車載網路和車輛的廣播等領域獲得了越來越廣泛的應用。然而毫米波存在著空氣中高衰弱和低繞射的問題,加上毫米波是定向傳輸,可能會有因對準不夠準確而傳輸失敗等問題,在本篇論文當中,我們提出了雙根的毫米波數據廣播分發,並結合了車對基礎設施(V2I)以及車對車(V2V)通訊,V2I的部分為基站先透過選根的演算法,在車輛拓樸當中選擇適合的兩個車輛做為根車輛,接著在V2V的部分則是藉由根車輛,傳輸封包給其他子車輛,透過雙根同時傳輸,可以大幅減少傳輸跳數及增加封包傳輸率,我們考慮車輛GPS定位誤差並提出了有效解決的方案來恢復因為通訊阻隔的毫米波傳輸。結果表明,我們的方案和其他不同的方法中相比,在各項效能指標上有大幅度的效能增加。
In recent years, the growing popularity of self-driving cars has led to an increased adoption of 5G communication technology in vehicular networks. In comparison to the previously widely used Dedicated Short-Range Communications (DSRC), which is no longer able to meet the requirements for handling a large number of packets in the network, 5G technology offers greater potential. One of the applications of 5G technology is mmWave, which operates at high frequencies and enables fast transmission of large amounts of data over short distances. The mmWave technology has found increasing use in vehicular networks and in vehicle broadcasting applications [39][40]. However, mmWave faces challenges such as high attenuation and low diffraction. Additionally, mmWave operates using directional transmission, which can result in transmission failures due to misalignment issues. In this paper, we propose a dual-root mmWave data broadcasting method that combines both Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communications. In the V2I portion, a root selection algorithm is employed at the base station to select two suitable vehicles as root vehicles within the vehicle topology. In the V2V portion, using the chosen root vehicles to transmit packets to other vehicles. By utilizing dual-root transmission, this method significantly reduces the number of the hop count and increases the packet dissemination rate. We also address the issue of vehicle GPS positioning errors and present an effective solution to recover mmWave transmission in the presence of communication obstacles. The results demonstrate considerable performance improvements across various performance metrics when compared to other approaches.
摘要 i
Abstract ii
Contents iii
List of Figures v
List of Tables vi
1. Introduction 1
2. Related work 4
2.1 Beam alignment 4
2.2 V2V transmission 4
2.3 Unicast and Multicasts 5
2.4 Broadcasting method 6
3. System model 7
3.1 V2I and V2V broadcasting network architecture 7
3.2 Antenna Models 9
3.3 Beam Alignment 10
3.4 LOS Link Identification 11
3.5 Channel Model 12
3.6 Transmission Rate 12
4. Problem Formulation 14
5. Proposed Scheme 17
5.1 Build routing table 17
5.2 Two roots - minimum hops 19
5.3 Two roots - vehicle with most children 20
5.4 Two roots - intersection 21
5.5 Sweep and recovery 24
6. Simulation Results 30
6.1 Simulation setup 30
6.2 Compared Schemes 33
6.3 Experiment Results 34
7. Conclusion 42
Reference 44
[1]Lee, Yeongrok, Ju-Hyung Lee, and Young-Chai Ko. "Beamforming optimization for IRS-assisted mmWave V2I communication systems via reinforcement learning." IEEE Access 10 (2022): 60521-60533.
[2]He, Ruisi, et al. "Propagation channels of 5G millimeter-wave vehicle-to-vehicle communications: Recent advances and future challenges." IEEE vehicular technology magazine 15.1 (2019): 16-26.
[3]Lv, Jie, Xinxin He, and Tao Luo. "Blockage avoidance based sensor data dissemination in multi-hop mmwave vehicular networks." IEEE Transactions on Vehicular Technology 70.9 (2021): 8898-8911.
[4]Su, Lan, et al. "Content distribution based on joint v2i and v2v scheduling in mmwave vehicular networks." IEEE Transactions on Vehicular Technology 71.3 (2022): 3201-3213.
[5]Chen, Xiaosha, et al. "A millimeter wave-based sensor data broadcasting scheme for vehicular communications." IEEE Access 7 (2019): 149387-149397.
[6]Wang, Lei, et al. "Multi-agent reinforcement learning-based cooperative beam selection in mmwave vehicular networks." 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS). IEEE, 2021.
[7]Silard, Matthieu, et al. "Frequency Reuse in IAB-based 5G Networks using Graph Coloring Methods." 2022 Global Information Infrastructure and Networking Symposium (GIIS). IEEE, 2022.
[8]Laha, Moyukh, and Raja Datta. "A budgeted maximum coverage based mmwave enabled 5g rsus placement in urban vehicular networks." 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS). IEEE, 2021.
[9]Fazliu, Zana Limani, Francesco Malandrino, and Carla-Fabiana Chiasserini. "mmWave in vehicular networks: Leveraging traffic signals for beam design." 2019 IEEE 20th International Symposium on" A World of Wireless, Mobile and Multimedia Networks"(WoWMoM). IEEE, 2019.
[10]Koca, Mertkan, Gokhan Gurbilek, and Sinem Coleri. "mmWave channel model for intra-vehicular wireless sensor networks." Ad Hoc Networks 135 (2022): 102932.
[11]Ju, Ying, et al. "DRL-based Beam Allocation in Relay-aided Multi-user MmWave Vehicular Networks." IEEE INFOCOM 2022-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 2022.
[12]Li, Yongzhen, et al. "An Opportunistic Routing Protocol Based on Position Information for Beam Alignment in Millimeter Wave Vehicular Communications." ICC 2022-IEEE International Conference on Communications. IEEE, 2022.
[13]Deng, Yafeng, et al. "Implementing distributed TDMA using relative distance in vehicular networks." IEEE Transactions on Vehicular Technology 69.7 (2020): 7295-7305.
[14]Zhang, Yingqi, et al. "Broadband dual-polarized differential-fed filtering antenna array for 5G millimeter-wave applications." IEEE Transactions on Antennas and Propagation 70.3 (2021): 1989-1998.
[15]Havinga, Thijs, Suzan Bayhan, and Geert Heijenk. "Optimal Geocast Scheduling under Multicasts and Relaying in mmWave Vehicular Networks." 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE, 2022.
[16]Nusenu, Shaddrack Yaw, Shao Huaizong, and Pan Ye. "Power Allocation and Equivalent Transmit FDA Beamspace for 5G mmWave NOMA Networks: Meta-Heuristic Optimization Approach." IEEE Transactions on Vehicular Technology 71.9 (2022): 9635-9646.
[17]He, Chenyuan, et al. "Sub-6 GHz V2X-Assisted Synchronous Millimeter Wave Scheduler for Vehicle-to-Vehicle Communications." IEEE Transactions on Vehicular Technology 71.11 (2022): 11717-11728.
[18]Song, Shijin, et al. "Millimeter wave based 3D clustered MIMO channel modeling and system simulation for vehicle-to-vehicle communication." Physical Communication 40 (2020): 101073.
[19]Attaoui, Wissal, Halima Elbiaze, and Essaid Sabir. "Joint beam alignment and power allocation for multi-user NOMA-mmwave systems." 2021 IEEE 4th 5G World Forum (5GWF). IEEE, 2021.
[20]Xu, Weihua, et al. "Computer Vision Aided mmWave Beam Alignment in V2X Communications." IEEE Transactions on Wireless Communications (2022).
[21]Susarla, Praneeth, et al. "Learning-based Beam Alignment for Uplink mmWave UAVs." IEEE Transactions on Wireless Communications (2022).
[22]Feng, Yijia, et al. "Beamwidth optimization for millimeter-wave V2V communication between neighbor vehicles in highway scenarios." IEEE Access 9 (2020): 4335-4350.
[23]Zhong, Weizhi, et al. "A novel 3D beam training strategy for mmWave UAV communications." 2020 14th European Conference on Antennas and Propagation (EuCAP). IEEE, 2020.
[24]Wang, Zaoshi, Na Chen, and Minoru Okada. "Deep Learning-Based Variable Scaling Beam Training for Massive MIMO mmWave Systems." 2022 21st International Symposium on Communications and Information Technologies (ISCIT). IEEE, 2022.
[25]Dinh-Van, Son, et al. "A Defensive Strategy Against Beam Training Attack in 5G mmWave Networks for Manufacturing." IEEE Transactions on Information Forensics and Security (2023).
[26]Wang, Jun, et al. "Hybrid beamforming design for mmWave joint unicast and multicast transmission." IEEE Communications Letters 22.10 (2018): 2012-2015.
[27]Hao, Wanming, et al. "Beamforming design in SWIPT-based joint multicast-unicast mmWave massive MIMO with lens-antenna array." IEEE Wireless Communications Letters 8.4 (2019): 1124-1128.
[28]Abanto-Leon, Luis F., and Gek Hong Allyson Sim. "Fairness-aware hybrid precoding for mmwave noma unicast/multicast transmissions in industrial iot." ICC 2020-2020 IEEE International Conference on Communications (ICC). IEEE, 2020.
[29]Lien, Shao-Yu, et al. "3GPP NR sidelink transmissions toward 5G V2X." IEEE Access 8 (2020): 35368-35382.
[30]Ghafoor, Kayhan Zrar, et al. "Millimeter-wave communication for internet of vehicles: status, challenges, and perspectives." IEEE Internet of Things Journal 7.9 (2020): 8525-8546.
[31]Azar, Yaniv, et al. "28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York city." 2013 IEEE international conference on communications (ICC). IEEE, 2013.
[32]Wu, Yu, Li Yan, and Xuming Fang. "A low-latency content dissemination scheme for mmWave vehicular networks." IEEE Internet of Things Journal 6.5 (2019): 7921-7933.
[33]Dilli, Ravilla. "Analysis of 5G wireless systems in FR1 and FR2 frequency bands." 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). IEEE, 2020.
[34]Chinkhong, Supachart, and Pasu Kaewplung. "A Design Approach for 5G-NR Radio Planning Using Both FR1 and FR2 on Any Selected Outdoor and Indoor Areas." 2023 International Conference on Electronics, Information, and Communication (ICEIC). IEEE, 2023.
[35]Sharini, D. L., Ravilla Dilli, and M. Kanthi. "Statistical Modelling of Massive MIMO Channel at FR2 Frequency Bands for B5G Networks." 2023 International Conference on Advances in Intelligent Computing and Applications (AICAPS). IEEE, 2023.
[36]Bader, Qamar, et al. "NLoS Detection for Enhanced 5G mmWave-based Positioning for Vehicular IoT Applications." GLOBECOM 2022-2022 IEEE Global Communications Conference. IEEE, 2022.
[37]Pan, Sheng, Xinming Zhang, and Dan Keun Sung. "Intelligent Reflecting Surface-Aided Centralized Scheduling for mmWave V2V Networks." 2022 International Conference on Computer Communications and Networks (ICCCN). IEEE, 2022.
[38]Wang, Yibing, et al. "Coalition game based full-duplex popular content distribution in mmWave vehicular networks." IEEE Transactions on Vehicular Technology 69.11 (2020): 13836-13848.
[39]Zhang, Xinming, Yongzhen Li, and Qingliang Miao. "A cluster-based broadcast scheduling scheme for mmWave vehicular communication." IEEE Communications Letters 23.7 (2019): 1202-1206.
[40]Zhang, Tianyi, Hongwei Zhang, and Zhibo Meng. "Interference and Coverage Analysis of mmWave Inter-Vehicle Broadcast with Directional Antennas." ICC 2022-IEEE International Conference on Communications. IEEE, 2022.
[41]Jiang, Daniel, et al. "Design of 5.9 GHz DSRC-based vehicular safety communication." IEEE wireless communications 13.5 (2006): 36-43.
[42]Tonguz, Ozan K., et al. "On the broadcast storm problem in ad hoc wireless networks." 2006 3Rd international conference on broadband communications, networks and systems. IEEE, 2006.
[43]Briesemeister, Linda, and Günter Hommel. "Role-based multicast in highly mobile but sparsely connected ad hoc networks." 2000 First Annual Workshop on Mobile and Ad Hoc Networking and Computing. MobiHOC (Cat. No. 00EX444). IEEE, 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top