|
[1]Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid scene analysis[J]. PAMI, 1998 (11): 1254-1259. [2]Achanta R, Estrada F, Wils P, et al. Salient region detection and segmentation[C]//International conference on computer vision systems. Springer, Berlin, Heidelberg, 2008: 66-75. [3]Vidal R, Ma Y, Sastry S. Generalized principal component analysis (GPCA)[J]. IEEE transactions on pattern analysis and machine intelligence, 2005, 27(12): 1945-1959. [4]Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection[J]. 2009. [5]Cheng M M, Mitra N J, Huang X, et al. Global contrast based salient region detection[J]. PAMI, 2015, 37(3): 569-582. [6]Wang M, Konrad J, Ishwar P, et al. Image saliency: From intrinsic to extrinsic context[C]. CVPR 2011. IEEE, 2011: 417-424. [7]Wang L, Lu H, Ruan X, et al. Deep networks for saliency detection via local estimation and global search[C]. CVPR, 2015: 3183-3192. [8]Zhao R, Ouyang W, Li H, et al. Saliency detection by multi-context deep learning[C]. CVPR, 2015: 1265-1274. [9]J. Long, E. Shelhameand T. Darrell, “Fully convolutional networks for semantic segmentation”. CVPR, 2015, pp.3431–3440. [10]Borji A, Cheng M M, Hou Q, et al. Salient object detection: A survey[J]. arXiv preprint arXiv:1411.5878, 2014. [11]Li G, Yu Y. Visual saliency based on multiscale deep features[C]. CVPR, 2015: 5455-5463. [12]Liu N, Han J. Dhsnet: Deep hierarchical saliency network for salient object detection[C]. CVPR, 2016: 678-686. [13]Chen T, Lin L, Liu L, et al. Disc: Deep image saliency computing via progressive representation learning[J]. IEEE transactions on neural networks and learning systems, 2016, 27(6): 1135-1149. [14]Lee G, Tai Y W, Kim J. Deep saliency with encoded low level distance map and high level features[C]. CVPR, 2016: 660-668. [15]Li Z, Lang C, Chen Y, et al. Deep Reasoning with Multi-scale Context for Salient Object Detection[J]. CVPR, 2019. [16]Jonathan Huang, Vivek Rathod, Chen Sun, et al. Speed/accuracy trade-offs for modern convolutional object detectors. CVPR, 2017. [17]K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2018. [18]K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CVPR, pages 770–778, 2015. [19]G. Li and Y. Yu. Deep contrast learning for salient object detection. CVPR, pages 478–487, 2016. [20]L. Wang, L. Wang, H. Lu, P. Zhang, and X. Ruan. Saliency detection with recurrent fully convolutional networks. ECCV, pages 825–841, 2016. [21]Q. Hou, M.-M. Cheng, X. Hu, A. Borji, Z. Tu, and P. Torr. Deeply supervised salient object detection with short connections. CVPR, pages 5300–5309, 2017. [22]Z. Luo, A. K. Mishra, A. Achkar, J. A. Eichel, S. Li, and P.-M. Jodoin. Non-local deep features for salient object detection. CVPR, pages 6593–6601, 2017. [23]P. Zhang, D. Wang, H. Lu, H. Wang, and X. Ruan. Amulet: Aggregating multi-level convolutional features for salient object detection. ICCV, pages 202–211, 2017. [24]S. Chen, X. Tan, B. Wang, and X. Hu. Reverse attention for salient object detection. ECCV, pages 236–252, 2018. [25]L. Zhang, J. Dai, H. Lu, Y. He, and G. Wang. A bidirectional message passing model for salient object detection. CVPR, pages 1741–1750, 2018. [26]X. Zhang, T. Wang, J. Qi, H. Lu, and G. Wang. Progressive attention guided recurrent network for salient object detection. CVPR, pages 714–722, 2018. [27]N. Liu, J. Han, and M.-H. Yang. PiCANet: Learning pixelwise contextual attention for saliency detection. CVPR, pages 3089–3098, 2018. [28]Hu X, Zhu L, Qin J, et al. Recurrently aggregating deep features for salient object detection[C]. AAAI , 2018. [29]T. Wang, A. Borji, L. Zhang, P. Zhang, and H. Lu. A stagewise refinement model for detecting salient objects in images. ICCV, pages 4019–4028, 2017. [30]T. Wang, L. Zhang, S. Wang, H. Lu, G. Yang, X. Ruan, and A. Borji. Detect globally, refine locally: A novel approach to saliency detection. CVPR, pages 3127–3135, 2018. [31]Deng Z, Hu X, Zhu L, et al. R3Net: Recurrent residual refinement network for saliency detection[C]. IJCAI, 2018: 684-690. [32]Huang G, Liu Z, van der Maaten L, Weinberger K Q. Densely connected convolutional networks[C]. CVPR, 2017. [33]Chen S, Wang B, Tan X, et al. Embedding Attention and Residual Network for Accurate Salient Object Detection[J]. IEEE transactions on cybernetics, 2018. [34]Yunzhi Zhuge, Yu Zeng, Huchuan Lu. Deep Embedding Features for Salient Object Detection[C]. AAAI, 2019. [35]Wu H, Zheng S, Zhang J, et al. Fast end-to-end trainable guided filter[C]. CVPR, 2018: 1838-1847. [36]Zhang J, Dai Y, Porikli F. Deep salient object detection by integrating multi-level cues[C]. WACV, 2017: 1-10. [37]Zhang P, Liu W, Lu H, et al. Salient Object Detection with Lossless Feature Reflection and Weighted Structural Loss[J].TIP, 2019. [38]Su J, Li J, Xia C, et al. Selectivity or Invariance: Boundary-aware Salient Object Detection[C]. CVPR, 2019. [39]Zhang X, Zhou X, Lin M, et al. Shufflenet: An extremely efficient convolutional neural network for mobile devices[C]. CVPR, 2018: 6848-6856. [40]Y. Chen, M. Rohrbach, Z. Yan, S. Yan, J. Feng, and Y. Kalantidis. Graph-based global reasoning networks. arXiv preprint arXiv:1811.12814, 2018. [41]X. Wang and A. Gupta. Videos as space-time region graphs. arXiv preprint arXiv:1806.01810, 2018. [42]T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear cnn models for fine-grained visual recognition. CVPR, pages 1449–1457, 2015. [43]Li G, Xie Y, Lin L, et al. Instance-level salient object segmentation[C]. CVPR, 2017: 2386-2395. [44]DengPing Fan, MingMing Cheng, JiangJiang Liu, et al. Salient Objects in Clutter: Bringing Salient Object Detection to the Foreground, ECCV, 2018. [45]Fan R, Hou Q, Cheng M M, et al. S4Net: Single Stage Salient-Instance Segmentation[J]. arXiv preprint arXiv:1711.07618, 2017. [46]Wang L, Wang L, Lu H, et al. Salient object detection with recurrent fully convolutional networks[J]. PAMI, 2018. [47]Li X, Zhao L, Wei L, et al. Deepsaliency: Multi-task deep neural network model for salient object detection[J].TIP, 2016, 25(8): 3919-3930. [48]Sen Jia, Neil D. B. Bruce. Richer and Deeper Supervision Network for Salient Object Detection[C]. Arxiv, 2019. [49]: A. Borji, M.-M. Cheng, H. Jiang, and J. Li. Salient object detection: A benchmark. IEEE TIP, 24(12):5706–5722, 2015. [50]DengPing Fan, MingMing Cheng, YunLiu, et al. Structure-measure: A new way to evaluate foreground maps[C]. IEEE ICCV, 2017. [51]: R. Margolin, L. Zelnik-Manor, and A. Tal. How to evaluate foreground maps? In IEEE CVPR, pages 248–255, 2014.
|