跳到主要內容

臺灣博碩士論文加值系統

(44.220.249.141) 您好!臺灣時間:2023/12/11 20:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黎鎮銨
研究生(外文):Cheng-An Li
論文名稱:利用紅外線熱影像建立水稻水分狀態判釋
論文名稱(外文):Utilizing Infrared Thermal Imaging to Establish theInterpretation of Rice Water Content Status
指導教授:楊靜瑩
指導教授(外文):Chin-Ying Yang
口試委員:許富鈞陳建德
口試委員(外文):Fu-Chiun HsuChien-Teh Chen
口試日期:2023-07-07
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:50
中文關鍵詞:極端氣候水稻灌溉決策韌性農業熱影像
外文關鍵詞:extreme weatherriceirrigation decisionresilience agriculturethermal imager
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
世界各地近年來因氣候快速變遷,形成極端與災害性天氣發生,尤其是溫度變化及降雨型態的改變,造成農業生產所需之水資源缺乏,當前作物面臨非生物逆境如乾旱、淹水等狀態,所以強化作物栽培管理的韌性 (resilience)為現階段作物管理的重要目標。然而過去評估作物水分逆境的傳統方法十分耗時,且因環境條件時常變化,而影響觀測值,非接觸式感測 (non-contact sensing)技術擁有快速獲得資訊與非破壞性檢測等優點,如紅外線熱影像儀 (infrared thermal imager)的使用,因此已成為現代面臨乾旱問題中,控制灌溉及檢測作物生長狀態下著重開發的重要工具。本試驗種植中晚熟稉稻台南11號,於國立中興大學農業試驗場霧峰北溝第三試驗區,進行不同乾旱程度試驗,並搭配生理參數及植體溫度之調查,乾旱處理組於分蘗中期進行,乾旱程度分為植體含水率 (plant water content, PWC) 80%、60%及40%三種,當達到植體含水率目標即回復灌溉,且使用紅外線熱影像儀,檢測乾旱處理下水稻之植體溫度資料,初步判斷作物生長狀態後,並搭配作物各項生理指標建立模型,並結合氣象資料與植體含水率進行複回歸分析,結果顯示在於110年一、二期作及111年一期作的校正後決定係數 (adjusted coefficient determination, Ra2)分別為0.80、0.82、0.86以及0.94,因此推斷未來可能可以利用拍攝紅外線熱影像進行植體含水量的推估,並利用作物水分逆境指數 (crop water stress index, CWSI)判斷作物水分逆境狀態,以利於在期作的栽培管理灌溉計畫中,提前規劃田間事務,並賦予在農事中較彈性的安排與決策,而能減少水資源浪費,降低人力、物力及時間成本上的支出,並讓環境及栽培資訊進行連動與共享,確保資源利用效率最大化,最終達成具有韌性的智慧農業體系。
In recent years, extreme and catastrophic weather events have occurred worldwide due to rapid climate change, particularly changes in temperature and rainfall patterns, leading to a lack of water resources necessary for agricultural production. As a result, crops are exposed to non-biological stress such as drought and flooding. In prolonged drought conditions, crops are susceptible to water shortage, affecting their growth and reducing their productivity. Therefore, strengthening the resilience of crop management is an important goal for current crop management.However, traditional methods of measuring crop water status to assess water stress are very time-consuming, and frequent changes in environmental conditions can affect observations. Therefore, non-contact sensing technology has advantages such as rapid information acquisition and non-destructive testing. Infrared thermal imagers have become important tools for controlling irrigation and detecting crop growth status in modern agriculture facing drought problems.In this experiment, the mid-late maturity indica rice cultivar Tainan 11 was used in the third experimental area of the Wufeng Beigou Agricultural Experimental Station of National Chung Hsing University to conduct experiments under different drought conditions. Physiological parameters and plant temperature were investigated. The control group was subjected to conventional cultivation, and the treatment group was subjected to drought in the tillering stage. The drought level was divided into three levels of plant water content (PWC) of 80%, 60%, and 40%. When the target PWC was reached, irrigation was resumed, and the infrared thermal imager was used to detect the plant temperature data of rice under drought treatment, preliminary judging the growth status of crops. A model was established with various physiological indicators of crops and combined with meteorological data and PWC for multiple regression analysis. The results showed that the adjusted coefficient of determination (Ra2) was high at 0.80, 0.81, 0.86 and 0.94 in the 2021 and 2022-year first and second cropping seasons, respectively. Therefore, it is inferred that infrared thermal imaging may be used to estimate PWC in the future, and the crop water stress index (CWSI) may be used to determine the water stress status of crops. This will facilitate the flexible planning of field affairs in cultivation management and irrigation plans in the cropping season, reduce water resource waste, and reduce human, material, and time costs. Moreover, environmental and cultivation information can be linked and shared, providing a reference for decision-makers and implementers, ensuring that resource utilization efficiency is maximized, and ultimately achieving a resilient smart agriculture system.
中文摘要 i
Abstract ii
目次 iii
表目次 vi
圖目次 vii
附圖目次 viii
壹、前言 1
一、極端氣候下全球與臺灣之水稻生產概況 1
二、極端氣候下臺灣韌性農業之概況 2
三、智慧化栽培中利用紅外線熱影像技術之栽培管理 3
(一) 紅外線熱影像在作物栽培管理之應用 3
(二) 紅外線熱影像與其他表型分析方法之差異 4
四、利用紅外線熱影像儀在水稻在生產過程中之水分管理 4
(一) 水稻在生產過程中水分管理之重要性 4
(二) 紅外線熱影像在作物栽培中水分管理之應用 5
貳、材料與方法 7
一、試驗地點與材料 7
二、田間試驗栽培管理 7
三、盆栽試驗栽培管理 8
四、水稻植體含水率之檢測 8
五、水稻葉片葉綠素破壞性取樣之檢測 8
六、水稻離子滲漏率之檢測 9
七、紅外線熱影像儀 10
(一) 紅外線熱影像儀拍攝流程及架設 10
(二) 熱影像溫度選取判讀與分析 10
八、氣象資料 10
(一) 逐時資料 11
(二) 逐日資料 11
(三) 逐月資料 11
(四) 生育度數 (growing degree days, GDDs) 11
九、作物水分逆境指數分析 (crop water stress index, CWSI) 12
十、水稻產量及產量構成要素之測量 12
十一、統計分析 12
(一) 變方分析 (Analysis of variance, ANOVA)及多重比較 12
(二) Student's t-test 12
(三) 簡單線性回歸分析 13
(四) 複回歸分析 13
參、實驗結果 14
一、中晚熟稉稻台南11號於不同乾旱處理下之田間紅外線熱影像拍攝 14
二、中晚熟稉稻台南11號於不同乾旱處理下之生理性狀變化 14
三、中晚熟稉稻台南11號於不同乾旱處理下水稻產量構成要素及產量影響 16
四、中晚熟稉稻台南11號於不同乾旱處理下植體含水率與逆境指數之回歸分析 17
五、中晚熟稉稻台南11號於不同乾旱處理下植體含水率與氣象因子之複回歸分析 17
六、以紅外線熱影像建構回歸模型之水分灌溉決策流程 18
肆、討論 20
一、利用紅外線熱影像建立水稻水分判釋及管理栽培資料庫 20
二、利用紅外線熱影像進行水稻灌溉評估之情況與影響衍生 21
三、如何在臺灣建立具有韌性的智慧農業生態系之探討 21
伍、參考文獻 23
陸、圖表 29
柒、附錄 45
網頁資料
行政院農業委員會農糧署韌性農業計畫成果暨資訊交流平台
https://reurl.cc/9VKOkv
行政院農業委員會農糧署。2021。農業統計年報。https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx
聯合國糧食及農業組織。2022。世界糧食安全及營養狀況。https://www.fao.org/publications/home/fao-flagship-publications/the-state-of-food-security-and-nutrition-in-the-world
中文文獻
林國清 (2004)。水稻新品種台南11號之育成。臺南區農業改良場研究彙報,45: 1-25。
陳鴻堂、曾宥綋、郭雅紋、鄭佳綺 (2018)。水稻台南11號、台稉9號及台中秈10號於砂頁岩及粘板岩混合沖積土壤之最適氮肥用量研究。臺中區農業改良場研究彙報,139: 65-76。
吳東鴻、吳佩真 (2018)。如何再下一籌?稻作省工技術與氣候變遷的抗衡。國際農業科技新知,92: 4-9。
羅正宗、陳榮坤、張素貞 (2008)。苗栗地區水稻生育積溫度數與生育時期之關係。苗栗區農業專訊,42: 5-8。
楊純明、張致盛、陳駿季 (2011)。因應氣候變遷之調適與緩解策略。作物、環境與生物資訊,8: 254-264。
農委會 (2018)。農業生產及生物多樣性領域調適成果報告。
楊純明、蕭巧玲 (2022)。氣候變遷下的永續農業。台灣農業研究,71,3: 185-197。
蘇文瑞、顏銘宏 (2021)。運用防災科技強化全球農業發展韌性-臺灣模式的實際應用與成果。國際開發援助現場季刊,3, 29-38.
英文文獻
Blonquist Jr J. M., Norman J. M., Bugbee B. (2009) Automated measurement of canopy stomatal conductance based on infrared temperature. Agricultural and Forest Meteorology 149: 2183–2197.
Batchuluun G., Nam S. H., Park K. R. (2022) Deep learning-based plant classification using nonaligned thermal and visible light images. Mathematics, 10: 4053.
Eduardo Jimmy P. Quilang (2020) Palaycheck 2020 as integrated crop management system for irrigated lowland rice in the Philippines--a country report. Food and Fertilizer Technology Center annual report 2020.
Elsayed S., Rischbeck P., Schmidhalter U. (2015) Comparing the performance of active and passive reflectance sensors to assess the normalized relative canopy temperature and grain yield of drought-stressed barley cultivars. Field Crops Research 177: 148–160.
Elsayed S., Elhoweity M., Ibrahim H. H., Dewir Y. H., Migdadi H. M., Schmidhalter U. (2017) Thermal imaging and passive reflectance sensing to estimate the water status and grain yield of wheat under different irrigation regimes. Agricultural Water Management 189: 98–110.
Elsherbiny O., Zhou L., Feng L., Qiu Z. (2021) Integration of visible and thermal Imagery with an artificial neural network approach for robust forecasting of canopy water content in rice. Remote Sensing 13: 1785.
Guo J., Tian G., Zhou Y., Wang M., Ling N., Shen Q., Guo S. (2016) Evaluation of the grain yield and nitrogen nutrient status of wheat (Triticum aestivum L.) using thermal imaging. Field Crops Research 196: 463-472.
Holling C. S. (1973) Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4: 1–23.
Ibarra-Castanedo C., Maldague, X. P. (2013) Infrared thermography. In Handbook of Technical Diagnostics: Fundamentals and Application to Structures and Systems Berlin, Heidelberg: Springer Berlin Heidelberg. 175–220.
Irmak S., Haman D. Z., Bastug R. (2000) Determination of crop water stress index for irrigation timing and yield estimation of corn. Agronomy Journal 92: 1221–1227.
Jambunathan N. (2010) Determination and Detection of reactive oxygen species (ROS), Lipid peroxidation, and electrolyte leakage in plants. methods and protocols 291–297.
Jackson R. D., Reginato R. J., Idso S. (1977) Wheat canopy temperature: a practical tool for evaluating water requirements. Water Resources Research, 13: 651–656.
Kim S. L., Kim N., Lee H., Lee E., Cheon K. S., Kim M., Baek J.H., Choi I., Ji, H., Jung K.H., Kwon T.R., Kim K. H. (2020) High-throughput phenotyping platform for analyzing drought tolerance in rice. Planta 252: 1–18.
Khanal S., Fulton J., Shearer S. (2018) An overview of current and potential applications of thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture 139: 22–32.
Khan A. A., Ijaz M., Muhammad J., Goheer A. R., Akbar G., Adnan M. (2016) Climate change implications for wheat crop in Dera Ismail Khan district of Khyber Pakhtunkhwa. Pakistan Journal of Meteorology Vol 13,25.
Lesk C., Rowhani P., Ramankutty N. (2016) Influence of extreme weather disasters on global crop production. Nature 529: 84–87.
Luan Y., Xu J., Lv Y., Liu X., Wang H., Liu S. (2021) Improving the performance in crop water deficit diagnosis with canopy temperature spatial distribution information measured by thermal imaging. Agricultural Water Management 246: 106699.
Li L., Zhang Q., Huang D. (2014) A review of imaging techniques for plant phenotyping. Sensors 14.11: 20078–20111.
Liu T., Li R., Zhong X, Jiang M., Jin X., Zhou P., Liu S., Sun C., Guo W. (2018) Estimates of rice lodging using indices derived from UAV visible and thermal infrared images. Agricultural and Forest Meteorology 252: 144–154.
Li J., Wan Y., Wang B., Waqas M. A., Cai W., Guo C., Wilkes A. (2018) Combination of modified nitrogen fertilizers and water saving irrigation can reduce greenhouse gas emissions and increase rice yield. Geoderma 315: 9–17.
Maleksaeidi H., Karami E. (2013) Social-ecological resilience and sustainable agriculture under water scarcity. Agroecology and Sustainable Food Systems 37: 262–290.
Mahlein A. K. (2016) Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping. Plant Disease 100: 241–251.
Mahreen N., Yasmin S., Asif M., Yousaf S., Yahya M., Ejaz K., Hussain H.S., Sajjid Z.I., Arif M. (2022) Integrated analysis of osmotic stress and infrared thermal imaging for the selection of resilient rice under water scarcity. Frontiers in Plant Science 13: 185.
Moore J. F. (1993). Predators and prey: a new ecology of competition. Harvard Business Review 71: 75–86.
Pandey V., Shukla A. (2015) Acclimation and tolerance strategies of rice under drought stress. Rice Science 22: 147–161.
Pipatsitee P., Praseartkul P., Taota K., Ponganan N., Kongpugdee S., Sakulleerungroj K., Eiumnoh A. (2019) Effects of surface soil temperature on cassava physiology under different water regimes. Science and Technology 27: 9–17.
Teena M., Manickavasagan A. (2014) Thermal infrared imaging. In: Imaging with Electromagnetic Spectrum: Applications in Food and Agriculture. 147–173.
Tuong T. P., Bouman B. A. M. (2003) Rice production in water-scarce environments. Water productivity in agriculture. Limits and opportunities for improvement 1: 13–42.
Vialet-Chabrand S., Lawson T. (2020) Thermography methods to assess stomatal behaviour in a dynamic environment. Journal of Experimental Botany 71: 2329–2338.
Wang L., Miao Y., Han Y., Li H., Zhang M., Peng C. (2023) Extraction of 3D distribution of potato plant CWSI based on thermal infrared image and binocular stereovision system. Frontiers in Plant Science 13.
Walker B., Salt D. (2012) Resilience Practice-Building Capacity to Absorb Disturbance and Maintain Function.
Wintermans J. F. G. M., De Mots A. S. (1965) Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA)-Biophysics including Photosynthesis 109: 448–453.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top