跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:田竣任
研究生(外文):Jun-Ren Tian
論文名稱:台灣中南部水田雜草對除草劑之抗性判斷流程
論文名稱(外文):Valuation process of herbicide-resistant weeds in paddy field in the central and southern Taiwan
指導教授:王慶裕王慶裕引用關係王強生許奕婷
指導教授(外文):Ching-Yuh WangChang-Sheng WangYi-Ting Hsu
口試委員:林資哲謝清祥
口試委員(外文):Tsu-Che LinChing-Hsiang Hsieh
口試日期:2023-06-12
學位類別:碩士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:274
中文關鍵詞:雜草除草劑抗性判斷流程
外文關鍵詞:weedsherbicideresistantvaluation process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:13
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
千金子(Leptochloa chinensis)、稗草(Echinochloa crus-galli)、芒稷(Echinochloa colona)、尖瓣花(Sphenoclea zeylanica)及鴨舌草(Monochoria vaginalis)是水稻田中常見且較難防治的雜草,一般傳統農法防治雜草的主要方式為施用化學除草劑,但隨著除草劑之選汰壓力(selection pressure)上升,逐漸使雜草對除草劑產生抗性。本研究利用台灣中南部水田中疑似對除草劑具有抗性之雜草收集系,經栽培後繁殖種子,並進行發芽能力測試、ALS抑制型除草劑混劑Apiro Forte之普篩試驗、及數種作用機制除草劑之劑量反應分析,以判斷是否可能產生單一(single)、交叉(cross)、及多重(multiple)抗性。根據log-logistic model所進行之非線性回歸分析(nonlinear regression analysis)結果,可判斷出千金子收集系RS(Ⅰ)-15對丁基拉草(butachlor)具有單一抗性,RS(Ⅰ)-14則對丁基拉草、及派伏利(pyriftalid)具有多重抗性,其對丁基拉草具有低度或中度抗性,而對派伏利則具有中度或高度抗性。研究發現稗草收集系BG(Ⅱ)-13對派伏利具有單一抗性;BG(Ⅱ)-8對免速隆(bensulfuron-methyl)、平速爛(penoxsulam)及派伏利三種ALS抑制劑具有交叉抗性,並對免速隆具有中度或高度抗性,對平速爛及派伏利均具有高度抗性。根據多重抗性分析,可知BG(Ⅱ)-8亦對丁基拉草、樂滅草(oxadiazon)、及派伏利具有多重抗性,其對丁基拉草具有低度抗性,對樂滅草、及派伏利均具有高度抗性;另BG(Ⅱ)-17對丁基拉草及派伏利亦具有多重抗性;顯示上述僅稗草收集系出現交叉抗性,而千金子及稗草抗性收集系對丁基拉草、樂滅草、及派伏利均具有不同程度之多重抗性。本研究進一步分析Apiro Forte混劑對千金子及稗草產生藥效之原因,發現Apiro Forte混劑對二雜草物種之效果皆大於二種單劑,尤其免速隆之藥效會因加入派伏利而增強。台灣國內普遍缺少除草劑抗性雜草判斷之研究資料,因此本論文期能建立完整標準作業流程(standard operating procedures),用以判斷除草劑抗性雜草之抗性種類及程度。
Barnyardgrass (Echinochloa crus-galli), ceylon sphenoclea (Sphenoclea zeylanica), jungle rice (Echinochloa colona), red sprangle-top (Leptochloa chinensis), and sheathed monochoria (Monochoria vaginalis) are common and most troublesome weeds in rice (Oryza sativa L.) paddy fields. Application of chemical herbicides is an important strategy for traditional weed control in crop field. However, the continued use of these herbicides increases selection pressure which resulted in the evolution of resistant weeds. This study collects weed accessions which were suspected resistant to herbicides used in the central and southern Taiwan. A series of tests to determine seed germination abilities were made after collection of the seeds propagated from suspected herbicide-resistant weed accessions. Then, the screening test against the Apiro Forte, a mixture of two acetolactate synthase (ALS) inhibitors, with different binding sites, and the dose-response analysis to herbicides with different action mechanisms were also conducted. Finally, resistance valuation of all accessions of both species, red sprangle-top and barnyardgrass, including single, cross, and multiple resistance were confirmed.
According to the results calculated by using a nonlinear regression analysis based on a log-logistic model, red sprangle-top accession RS(Ⅰ)-15 showed a single resistance to butachlor. RS(Ⅰ)-14 showed a multiple resistance to butachlor and pyriftalid; with a low or moderate resistance to butachlor, and a moderate or high resistance to pyriftalid. For the barnyard grass, accession BG(Ⅱ)-13 showed a single resistance to pyriftalid. BG(Ⅱ)-8 showed a cross resistance to bensulfuron-methyl, penoxsulam, and pyriftalid; with a moderate or high resistance to bensulfuron-methyl, and a high resistance to both penoxsulam and pyriftalid. On the other hand, multiple resistance was also found in BG(Ⅱ)-8, with a low resistance to butachlor, and a high resistance to both oxadiazon and pyriftalid. According to the descriptions mentioned above, this study reveals that the cross resistance merely developed in barnyard grass accessions, but the multiple resistance appeared in both barnyard grass and red sprangle-top accessions, though with differential extents to herbiceds including butachlor, oxadiazon, and pyriftalid.
Due to the lacks of researches related to herbicide resistant weed valuation in Taiwan, this study contributes to the establishment of the standard operating procedures for determining the types and extent of herbicide resistance in weeds.
摘要 i
Abstract ii
目次 iv
表目次 vi
圖目次 xix
附錄目次 xxiii
第一章、 緒言 1
第二章、 前人研究 3
一、 除草劑抗性與耐性之定義 3
二、 全球除草劑抗性雜草概況 5
三、 抗性機制 9
第三章、 材料與方法 13
一、 除草劑抗性判斷流程 13
二、 台灣中南部水田雜草覆蓋率及三大類雜草出現頻度 19
三、 台灣中南部水田五種主要雜草之發芽率與幼苗出土率測試 20
四、 千金子及稗草對Apiro Forte抗性之普篩試驗 23
五、 千金子及稗草之劑量反應分析試驗 24
六、 抗性行為判斷 28
七、 統計分析 30
第四章、 結果與討論 31
一、 台灣中南部水田雜草覆蓋率及三大類雜草之出現頻度 31
二、 台灣中南部水田五種主要雜草之發芽率與幼苗出土率測試 47
三、 千金子及稗草對Apiro Forte抗性之普篩試驗 63
四、 單一抗性 70
(一) 千金子及稗草對Apiro Forte之劑量反應分析試驗 70
(二) 千金子及稗草對免速隆之劑量反應分析試驗 95
(三) 千金子及稗草對派伏利之劑量反應分析試驗 115
(四) 千金子及稗草對平速爛之劑量反應分析試驗 138
(五) 千金子及稗草對丁基拉草之劑量反應分析試驗 159
(六) 千金子及稗草對樂滅草之劑量反應分析試驗 182
五、 千金子及稗草之交叉抗性 208
六、 千金子及稗草對除草劑之多重抗性 233
第五章、 結語 244
第六章、 參考文獻 245
附錄 259
王慶裕。2021。除草劑抗性生理學。93-166。臺北市:新學林。
林永立、郭寶錚、王慶裕。1997。對數邏輯模式在劑量反應上的應用。1-18。中華民國雜草學會會刊。第18卷。第一期。
Ahmed, S., Alam, M. J., Hossain, A., Islam, A. K. M. M., Awan, T. H., Soufan, W., Qahtan, A. A., Okla, M. K., and El Sabagh, A. (2020). Interactive effect of weeding regimes, rice cultivars, and seeding rates influence the rice-weed competition under dry direct-seeded condition. Sustainability, 13(1).
Amaro-Blanco, I., Romano, Y., Palmerin, J. A., Gordo, R., Palma-Bautista, C., De Prado, R., and Osuna, M. D. (2021). Different mutations providing target site resistance to ALS- and ACCase-inhibiting herbicides in Echinochloa spp. from rice fields. Agriculture, 11(5), 382-393.
Andreasen, C., and Stryhn, H. (2008) Increasing weed flora in danish arable fields and its importance for biodiversity. Weed Research, 48, 1–9.
Anthimidou, E., Ntoanidou, S., Madesis, P., and Eleftherohorinos, I. (2020). Mechanisms of Lolium rigidum multiple resistance to ALS- and ACCase-inhibiting herbicides and their impact on plant fitness. Pesticide Biochemistry and Physiology, 164, 65-72.
Bajwa, A. A., Jabran, K., Shahid, M., Ali, H. H., Chauhan, B. S., and Ehsanullah. (2015). Eco-biology and management of Echinochloa crus-galli. Crop Protection, 75, 151-162.
Baltazar, A. M. (2017). Herbicide-resistant weeds in the Philippines: Status and resistance mechanisms. Weed Biology and Management, 17(2), 57-67.
Baltazar, A. M. (2017). Herbicide-resistant weeds in the Philippines: Status and resistance mechanisms. Weed Biology and Management, 17(2), 57-67.
Beckie, H. J., and Tardif, F. J. (2012). Herbicide cross resistance in weeds. Crop Protection, 35, 15-28.
Benvenuti, S., Dinelli, G., and Bonetti, A. (2004) Germination ecology of Leptochloa chinensis: a new weed in the Italian rice agro-environment. Weed Research, 44, 87-96.
Bi, B., Wang, Q., Coleman, J. J., Porri, A., Peppers, J. M., Patel, J. D., Betz, M., Lerchl, J., and McElroy, J. S. (2020). A novel mutation A212T in chloroplast protoporphyrinogen oxidase (PPO1) confers resistance to PPO inhibitor oxadiazon in Eleusine indica. Pest Management Science, 76(5), 1786-1794.
Chauhan, B. S., and Abugho, S. B. (2012). Effect of growth stage on the efficacy of postemergence herbicides on four weed species of direct-seeded rice. The Scientific World Journal, 2012, 123071.
Chauhan, B. S., and Johnson, D. E. (2008). Germination ecology of chinese sprangletop (Leptochloa chinensis) in the Philippines. Weed Science, 56(6), 820-825.
Chen, G., Wang, Q., Yao, Z., Zhu, L., and Dong, L. (2016). Penoxsulam-resistant barnyardgrass (Echinochloa crus-galli) in rice fields in China. Weed Biology and Management, 16(1), 16-23.
Clay, S. A. (2021). Near-term challenges for global agriculture herbicide-resistant weeds. Agronomy Journal, 113, 4463-4472.
Delye, C., Jasieniuk, M., and Le Corre, V. (2013). Deciphering the evolution of herbicide resistance in weeds. Trends Genet, 29(11), 649-658.
Dimaano, N. G., Yamaguchi, T., Fukunishi, K., Tominaga, T., and Iwakami, S. (2020). Functional characterization of cytochrome P450 CYP81A subfamily to disclose the pattern of cross-resistance in Echinochloa phyllopogon. Plant Molecular Biology, 102(4-5), 403-416.
Duhoux, A., Carrere, S., Gouzy, J., Bonin, L., and Delye, C. (2015). RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. Plant Molecular Biology, 87(4-5), 473-487.
Duke, S. O., Lydon, J., Becerril, J. M., Sherman, T. D., Lehnen, L. P., and Matsumoto, H. (2017). Protoporphyrinogen oxidase-inhibiting herbicides. Weed Science, 39(3), 465-473.
Duke, S. O., Stidham, M. A., and Dayan, F. E. (2019). A novel genomic approach to herbicide and herbicide mode of action discovery. Pest Management Science, 75(2), 314-317.
Endo, M., Shimizu, T., Fujimori, T., Yanagisawa, S., and Toki, S. (2013). Herbicide-resistant mutations in acetolactate synthase can reduce feedback inhibition and lead to accumulation of branched-chain amino acids. Food and Nutrition Sciences, 4(5), 522-528.
Fang, J., Liu, T., Zhang, Y., Li, J., and Dong, L. (2019). Target site–based penoxsulam resistance in barnyardgrass (Echinochloa crus-galli) from China. Weed Science, 67(3), 281-287.
Fang, J., Liu, T., Zhang, Y., Li, J., and Dong, L. (2019). Target site–based penoxsulam resistance in barnyardgrass (Echinochloa crus-galli) from China. Weed Science, 67(3), 281-287.
Gaines, T. A., Duke, S. O., Morran, S., Rigon, C. A. G., Tranel, P. J., Kupper, A., and Dayan, F. E. (2020). Mechanisms of evolved herbicide resistance. Journal of Biological Chemistry, 295(30), 10307-10330.
Giacomini, D. A., Umphres, A. M., Nie, H., Mueller, T. C., Steckel, L. E., Young, B. G., Scott, R. C., and Tranel, P. J. (2017). Two new PPX2 mutations associated with resistance to PPO-inhibiting herbicides in Amaranthus palmeri. Pest Management Science, 73(8), 1559-1563.
Guo, W., Yuan, G., Liu, W., Bi, Y., Du, L., Zhang, C., Li, Q., and Wang, J. (2015). Multiple resistance to ACCase and AHAS-inhibiting herbicides in shortawn foxtail (Alopecurus aequalis Sobol.) from China. Pesticide Biochemistry and Physiology, 124, 66-72.
Heap, I. (2014). Global perspective of herbicide-resistant weeds. Pest Management Science, 70(9), 1306-1315.
Heap, I. (2014). Herbicide Resistant Weeds. Integrated Pest Management Springer, Dordrecht, 281-301.
Heap, I. M., and Knight, R. (1990) Variation in herbicide cross-resistance among populations of annual ryegrass (Lolium rigidum) resistant to diclofop-methyl. Australian Journal of Agricultural Research, 41, 121-128.
Honèk, A., and Martinková, Z. (1995) Geographic variation in seed dormancy among populations of Echinochloa crus-galli. Oecologia, 108, 419-423.
Honek, A., Martinkova, Z., and Jarosik, V. (1999). Annual cycles of germinability and differences between primary and secondary dormancy in buried seeds of Echinochloa crus-galli. Weed Research, 39, 69-79.
Hwang, J. I., Norsworthy, J. K., Gonzalez-Torralva, F., Piveta, L. B., Priess, G. L., Barber, L. T., and Butts, T. R. (2022). Absorption, translocation, and metabolism of florpyrauxifen-benzyl and cyhalofop-butyl in cyhalofop-butyl-resistant barnyardgrass [Echinochloa crus-galli (L.) P. Beauv.]. Pesticide Biochemistry and Physiology, 180, 104999.
Iwakami, S., Endo, M., Saika, H., Okuno, J., Nakamura, N., Yokoyama, M., Watanabe, H., Toki, S., Uchino, A., and Inamura, T. (2014). Cytochrome P450 CYP81A12 and CYP81A21 are associated with resistance to two acetolactate synthase inhibitors in Echinochloa phyllopogon. Plant Physiology, 165(2), 618-629.
Iwakami, S., Endo, M., Saika, H., Okuno, J., Nakamura, N., Yokoyama, M., Watanabe, H., Toki, S., Uchino, A., and Inamura, T. (2014). Cytochrome P450 CYP81A12 and CYP81A21 are associated with resistance to two acetolactate synthase inhibitors in Echinochloa phyllopogon. Plant Physiology, 165(2), 618-629.
Iwakami, S., Hashimoto, M., Matsushima, K., Watanabe, H., Hamamura, K., and Uchino, A. (2015). Multiple-herbicide resistance in Echinochloa crus-galli var. formosensis, an allohexaploid weed species, in dry-seeded rice. Pesticide Biochemistry and Physiology, 119, 1-8.
Jugulam, M., and Shyam, C. (2019). non-target-site resistance to herbicides: recent developments. Plants, 8(10).
Juliano, L. M., Casimero, M. C., and Llewellyn, R. (2010). Multiple herbicide resistance in barnyardgrass (Echinochloa crus-galli) in direct-seeded rice in the Philippines. International Journal of Pest Management, 56(4), 299-307.
Kaloumenos, N. S., Chatzilazaridou, S. L., Mylona, P. V., Polidoros, A. N., and Eleftherohorinos, I. G. (2013). Target-site mutation associated with cross-resistance to ALS-inhibiting herbicides in late watergrass (Echinochloa oryzicola Vasing.). Pest Management Science, 69(7), 865-873.
Kieloch, R., and Domaradzki, K. (2011). The role of the growth stage of weeds in their response to reduced herbicide doses. Acta Agrobotanica, 64, 259-266.
Lan, Y., Li, W., Wei, S., Huang, H., Liu, Z., and Huang, Z. (2022). Multiple resistance to ACCase- and ALS-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds.) in China. Pesticide Biochemistry and Physiology, 184, 105127.
Leather, G. R., Sung, S. J., and Hale, M. G. (1992). The wounding response of dormant barnyardgrass (Echinochloa crus-galli) seeds. Weed Science, 40, 200-203.
Lillie, K. J., Giacomini, D. A., Green, J. D., and Tranel, P. J. (2019). Coevolution of resistance to PPO inhibitors in waterhemp (Amaranthus tuberculatus) and Palmer amaranth (Amaranthus palmeri). Weed Science, 67(5), 521-526.
Lin, W. T., Chiang, Y. J., Wang, C. S., Wang, C. Y., (2017). Non-target site mechanisms of resistance to fluazifopbutyl of goosegrass (Eleusine indica (L.) Gaertn.) in Taiwan: uptake, translocation and metabolism. Journal of Agriculture and Forestry, 65(1), 1-14.
Liu, W., Bai, S., Zhao, N., Jia, S., Li, W., Zhang, L., and Wang, J. (2018). Non-target site-based resistance to tribenuron-methyl and essential involved genes in Myosoton aquaticum (L.). BMC Plant Biology, 18(1), 225.
Liu, X., Merchant, A., Xiang, S., Zong, T., Zhou, X., and Bai, L. (2020). Managing herbicide resistance in China. Weed Science, 69(1), 4-17.
Llewellyn, R. S., and Powles, S. B. (2001). High levels of herbicide resistance in rigid ryegrass (Lolium rigidum) in the wheat belt of western Australia. Weed Technology, 15, 242-248.
Löbmann, A., Schulte, M., Runge, F., Christen, O., and Petersen, J. (2021). Occurrence, resistance factors and cross-resistance patterns to herbicides inhibiting acetolactate synthase (ALS) of Echinochloa crus-galli (L.) Pal. Beauv. in Central Europe. Journal of Plant Diseases and Protection, 128(3), 843-852.
Luo, Y., Fu, H., Xiong, Y., Xiang, Z., Wang, F., Bugingo, Y. C., Khan, S., and Cui, Y. (2016). Effects of water-saving irrigation on weed infestation and diversity in paddy fields in East China. Paddy and Water Environment, 15(3), 593-604.
Marshall, E. J. P., Brown, V. K., Boatman, N. D., Lutman, P. J. W., Squire, G. R., and Ward, L. K. (2003). The role of weeds in supporting biological diversity within crop fields. Weed Research, 43, 77-89.
Martinkova, Z. (2006). Seed age and storage conditions influence germination of barnyardgrass (Echinochloa crus-galli). Weed Science, 54, 298-304
Matringe, M., Camadro, J. M., Labbe, P., and Scalla, R. (1989) Protoporphyrinogen oxidase inhibition by three peroxidizing herbicides: oxadiazon, LS 82-556 and MandB 39279. FEBS Letters, 245(1), 35-38.
McCourt, J. A., Pang, S. S., King-Scott, J., Guddat, L. W., and Duggleby, R. G. (2006). Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proceedings of the National Academy of Sciences, 103(3), 569-573
Mercado, B. L., de Datta, S. K., Migo T. R., and Baltazar, A. M. (1990). Growth behaviour and leaf morphology of Philippine strains of Sphenoclea zeylanica showing differential response to 2,4-D. Weed Research, 30, 245-250
Nakka, S., Thompson, C. R., Peterson, D. E., and Jugulam, M. (2017). Target site–based and non–target site based resistance to ALS inhibitors in palmer amaranth (Amaranthus palmeri). Weed Science, 65(6), 681-689.
Norsworthy, J. K., Wilson, M. J., Scott, R. C., and Gbur, E. E. (2014). Herbicidal activity on acetolactate synthase-resistant barnyardgrass (Echinochloa crus-galli) in Arkansas, USA. Weed Biology and Management, 14(1), 50-58.
Obenland, O. A., Ma, R., O'Brien, S. R., Lygin, A. V., and Riechers, D. E. (2019). Carfentrazone-ethyl resistance in an Amaranthus tuberculatus population is not mediated by amino acid alterations in the PPO2 protein. PLOS ONE, 14(4), e0215431.
Oerke, E. C. (2005). Crop losses to pests. The Journal of Agricultural Science, 144(1), 31-43.
Owen, M. J., Goggin, D. E., and Powles, S. B. (2012). Non-target-site-based resistance to ALS-inhibiting herbicides in six Bromus rigidus populations from Western Australian cropping fields. Pest Management Science, 68(7), 1077-1082.
Peerzada, A. M., Bajwa, A. A., Ali, H. H., and Chauhan, B. S. (2016). Biology, impact, and management of Echinochloa colona (L.) Link. Crop Protection, 83, 56-66.
Pimentel, D., Lach, L., Zuniga, R., and Morrison, D. (2000). Environmental and economic costs of nonindigenous species in the United States. BioScience, 50(1), 53-65 .
Rangani, G., Salas-Perez, R. A., Aponte, R. A., Knapp, M., Craig, I. R., Mietzner, T., Langaro, A. C., Noguera, M. M., Porri, A., and Roma-Burgos, N. (2019). A novel single-site mutation in the catalytic domain of protoporphyrinogen oxidase IX (PPO) confers resistance to PPO-inhibiting herbicides. Frontiers in Plant Science, 10, 568-579.
Riar, D. S., Norsworthy, J. K., Bond, J. A., Bararpour, M. T., Wilson, M. J., and Scott, R. C. (2012). Resistance of Echinochloa crus-galli populations to acetolactate synthase-inhibiting herbicides. International Journal of Agronomy, 2012, 1-8.
Riar, D. S., Norsworthy, J. K., Srivastava, V., Nandula, V., Bond, J. A., and Scott, R. C. (2013). Physiological and molecular basis of acetolactate synthase-inhibiting herbicide resistance in barnyardgrass (Echinochloa crus-galli). Journal of Agricultural and Food Chemistry, 61(2), 278-289.
Ryan, G. F. (2017). Resistance of common groundsel to simazine and atrazine. Weed Science, 18(5), 614-616.
Sadeghloo, A., Asghari, J., and Ghaderi-Far, F. (2013). Seed germination and seedling emergence of velvetleaf and barnyardgrass (Echinochloa crus-galli). planta daninha, 31, 259-266.
Salas, R. A., Burgos, N. R., Tranel, P. J., Singh, S., Glasgow, L., Scott, R. C., and Nichols, R. L. (2016). Resistance to PPO-inhibiting herbicide in Palmer amaranth from Arkansas. Pest Management Science, 72(5), 864-869.
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. (2017). Log-logistic analysis of herbicide dose-response relationships. Weed Technology, 9(2), 218-227.
Shergill, L. S., Bish, M. D., Jugulam, M., and Bradley, K. W. (2018). Molecular and physiological characterization of six-way resistance in an Amaranthus tuberculatus var. rudis biotype from Missouri. Pest Management Science, 74(12), 2688-2698.
Shoup, D. E., Al-Khatib, K., and Peterson, D. E. (2003). Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase-inhibiting herbicides. Weed Science, 51(2), 145-150.
Singh, S., Singh, V., Salas-Perez, R. A., Bagavathiannan, M. V., Lawton-Rauh, A., and Roma-Burgos, N. (2019). Target-site mutation accumulation among ALS inhibitor-resistant Palmer amaranth. Pest Management Science, 75(4), 1131-1139.
Sung, S.-J. S., Leather, G. R., and Hale, M. G. (2017). Development and germination of barnyardgrass (Echinochloa crus-galli) seeds. Weed Science, 35(2), 211-215.
Talbert, R. E., and Burgos, N. R. (2007). History and management of herbicide-resistant barnyardgrass (Echinochloa crus-galli) in arkansas rice. Weed Technology, 21(2), 324-331.
Torra, J., Montull, J. M., Taberner, A., Onkokesung, N., Boonham, N., and Edwards, R. (2021). Target-site and non-target-site resistance mechanisms confer multiple and cross- resistance to ALS and ACCase inhibiting herbicides in Lolium rigidum from Spain. Frontiers Plant Science, 12, 625138.
Travlos, I. S., Cheimona, N., Roussis, I., and Bilalis, D. J. (2018). Weed-species abundance and diversity indices in relation to tillage systems and fertilization. Frontiers in Environmental Science, 6, 11-20.
Trenkamp, S., Martin, W., and Tietjen, K., (2004). Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides. Proceedings of the National Academy of Sciences, 101(32), 11903-11908.
Varanasi, V. K., Brabham, C., and Norsworthy, J. K. (2018). Confirmation and characterization of non–target site resistance to fomesafen in palmer amaranth (Amaranthus palmeri). Weed Science, 66(6), 702-709.
Varanasi, V. K., Brabham, C., Korres, N. E., and Norsworthy, J. K. (2019). Nontarget site resistance in Palmer amaranth [Amaranthus palmeri (S.) Wats.] confers cross-resistance to protoporphyrinogen oxidase-inhibiting herbicides. Weed Technology, 33(2), 349-354.
Vazquez-Garcia, J. G., Alcantara-de la Cruz, R., Palma-Bautista, C., Rojano-Delgado, A. M., Cruz-Hipolito, H. E., Torra, J., Barro, F., and De Prado, R. (2020). Accumulation of target gene mutations confers multiple resistance to ALS, ACCase, and EPSPS inhibitors in Lolium species in chile. Frontiers Plant Science, 11, 553948.
Vijayarajan, V. B. A., Forristal, P. D., Cook, S. K., Schilder, D., Staples, J., Hennessy, M., and Barth, S. (2021). First detection and characterization of cross- and multiple resistance to acetyl-coa carboxylase (ACCase)- and acetolactate synthase (ALS)-inhibiting herbicides in black-grass (Alopecurus myosuroides) and italian ryegrass (Lolium multiflorum) populations from Ireland. Agriculture, 11(12), 1272-1286.
Wang, C. S., Lin, W. T., Chiang, Y. J., and Wang, C. Y. (2017). Metabolism of fluazifop-p-butyl in resistant goosegrass (Eleusine indica) in Taiwan. Weed Science, 65(2), 228-238.
Wang, D. W., Li, Q., Wen, K., Ismail, I., Liu, D. D., Niu, C. W., Wen, X., Yang, G. F., and Xi, Z. (2017). Synthesis and herbicidal activity of pyrido[2,3-d]pyrimidine-2,4-dione-benzoxazinone hybrids as protoporphyrinogen oxidase inhibitors. Journal of Agricultural and Food Chemistry, 65(26), 5278-5286.
Wang, J., Chen, J., Li, X., Li, D., Li, Z., and Cui, H. (2020). Pro-197-Ser Mutation in ALS and High-Level GST Activities: Multiple Resistance to ALS and ACCase Inhibitors in Beckmannia syzigachne. Frontiers Plant Science, 11, 572610.
Wang, S., Li, H., and Lin, C. (2013). Physiological, biochemical and growth responses of Italian ryegrass to butachlor exposure. Pesticide Biochemistry and Physiology, 106(1-2), 21-27.
Whitcomb, C. E. (1999). An introduction to ALS-inhibiting herbicides. Toxicology and Industrial Health, 15, 232-240.
Whitehead, C. W., and Switzer, C. M., (1963) The differential response of strains of wild carrot to 2,4-D and related herbicides. Canadian Journal of Plant Science, 43(3), 255-262.
Widianto, R., Kurniadie, D., Widayat, D., Umiyati, U., Nasahi, C., Sari, S., Juraimi, A. S., and Kato-Noguchi, H. (2022). Acetolactate synthase-inhibitor resistance in Monochoria vaginalis (Burm. f.) C. Presl from Indonesia. Plants, 11(3), 400.
Yang, Q., Deng, W., Li, X., Yu, Q., Bai, L., and Zheng, M. (2016). Target-site and non-target-site based resistance to the herbicide tribenuron-methyl in flixweed (Descurainia sophia L.). BMC Genomics, 17, 551-563.
Yu, J., Gao, H., Pan, L., Yao, Z., and Dong, L. (2017). Mechanism of resistance to cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees). Pesticide Biochemistry and Physiology, 143, 306-311.
Yuan, C. I., Chaing, M. Y., and Chen, Y. M. (2002). Triple mechanisms of glyphosate-resistance in a naturally occurring glyphosate-resistant plant Dicliptera chinensis. Plant Science, 163, 543-554.
Zhao, L.-X., Jiang, M.-J., Hu, J.-J., Zou, Y.-L., Gao, S., Fu, Y., and Ye, F. (2020). Herbicidal activity and molecular docking study of novel PPO inhibitors. Weed Science, 68(6), 565-574.
Zhao, N., Li, W., Bai, S., Guo, W., Yuan, G., Wang, F., Liu, W., and Wang, J. (2017). Transcriptome profiling to identify genes involved in mesosulfuron-methyl resistance in Alopecurus aequalis. Frontiers in Plant Science, 8, 1391-1406.
Zhao, N., Yan, Y., Ge, L., Zhu, B., Liu, W., and Wang, J. (2019). Target site mutations and cytochrome P450s confer resistance to fenoxaprop-P-ethyl and mesosulfuron-methyl in Alopecurus aequalis. Pest Management Science, 75(1), 204-214.
Zhou, Q., Liu, W., Zhang, Y., and Liu, K. K. (2007). Action mechanisms of acetolactate synthase-inhibiting herbicides. Pesticide Biochemistry and Physiology, 89(2), 89-96.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top